Academic literature on the topic 'Engineering - Statistical methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Engineering - Statistical methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Engineering - Statistical methods"
Marco-Almagro, Lluís, and Xavier Tort-Martorell. "Statistical Methods in Kansei Engineering: a Case of Statistical Engineering." Quality and Reliability Engineering International 28, no. 5 (July 2012): 563–73. http://dx.doi.org/10.1002/qre.1434.
Full textAbate, Marcey. "Statistical Methods in Software Engineering." Technometrics 43, no. 1 (February 2001): 108. http://dx.doi.org/10.1198/tech.2001.s563.
Full textChernick, Michael R., and John E. Brown. "Statistical Methods in Engineering and Manufacturing." Technometrics 33, no. 3 (August 1991): 356. http://dx.doi.org/10.2307/1268787.
Full textChernick, Michael R. "Statistical Methods in Engineering and Manufacturing." Technometrics 33, no. 3 (August 1991): 355–56. http://dx.doi.org/10.1080/00401706.1991.10484841.
Full textNelson, Lloyd S. "Handbook of Statistical Methods in Engineering." Journal of Quality Technology 25, no. 1 (January 1993): 64–65. http://dx.doi.org/10.1080/00224065.1993.11979420.
Full textNelson, Lloyd S. "Statistical Methods in Engineering and Manufacturing." Journal of Quality Technology 26, no. 1 (January 1994): 74–76. http://dx.doi.org/10.1080/00224065.1994.11979504.
Full textBrugger, Richard M., and Peter W. M. John. "Statistical Methods in Engineering and Quality Assurance." Technometrics 35, no. 1 (February 1993): 91. http://dx.doi.org/10.2307/1269300.
Full textWardrop, Daniel M., and Peter W. M. John. "Statistical Methods in Engineering and Quality Assurance." American Statistician 47, no. 3 (August 1993): 234. http://dx.doi.org/10.2307/2684985.
Full textBugger, Richard M. "Statistical Methods iu Engineering and Quality Assurance." Technometrics 35, no. 1 (February 1993): 91–92. http://dx.doi.org/10.1080/00401706.1993.10485004.
Full textPark, Sung H. "Statistical methods in engineering and quality assurance." Computational Statistics & Data Analysis 13, no. 1 (January 1992): 108. http://dx.doi.org/10.1016/0167-9473(92)90160-h.
Full textDissertations / Theses on the topic "Engineering - Statistical methods"
Marco, Almagro Lluís. "Statistical methods in Kansei engineering studies." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/85059.
Full textEsta tesis doctoral trata sobre Ingeniería Kansei (IK), una técnica para trasladar emociones transmitidas por productos en parámetros técnicos, y sobre métodos estadísticos que pueden beneficiar la disciplina. El propósito básico de la IK es descubrir de qué manera algunas propiedades de un producto transmiten ciertas emociones a sus usuarios. Es un método cuantitativo, y los datos se recogen típicamente usando cuestionarios. Se extraen conclusiones al analizar los datos recogidos, normalmente usando algún tipo de análisis de regresión.La IK se puede situar en el área de investigación del diseño emocional. La tesis empieza justificando la importancia del diseño emocional. Como que el rango de técnicas usadas bajo el nombre de IK es extenso y no demasiado claro, la tesis propone una definición de IK que sirve para delimitar su alcance. A continuación, se sugiere un modelo para desarrollar estudios de IK. El modelo incluye el desarrollo del espacio semántico – el rango de emociones que el producto puede transmitir – y el espacio de propiedades – las variables técnicas que se pueden modificar en la fase de diseño. Después de la recogida de datos, la etapa de síntesis enlaza ambos espacios (descubre cómo distintas propiedades del producto transmiten ciertas emociones). Cada paso del modelo se explica detalladamente usando un estudio de IK realizado para esta tesis: el experimento de los zumos de frutas. El modelo inicial se va mejorando progresivamente durante la tesis y los datos del experimento se reanalizan usando nuevas propuestas. Muchas inquietudes prácticas aparecen cuando se estudia el modelo para estudios de IK mencionado anteriormente (entre otras, cuántos participantes son necesarios y cómo se desarrolla la sesión de recogida de datos). Se ha realizado una extensa revisión bibliográfica con el objetivo de responder éstas y otras preguntas. Se describen también las aplicaciones de IK más habituales, junto con comentarios sobre ideas particularmente interesantes de distintos artículos. La revisión bibliográfica sirve también para listar cuáles son las herramientas más comúnmente utilizadas en la fase de síntesis. La parte central de la tesis se centra precisamente en las herramientas para la fase de síntesis. Herramientas estadísticas como la teoría de cuantificación tipo I o la regresión logística ordinal se estudian con detalle, y se proponen varias mejoras. En particular, se propone una nueva forma gráfica de representar los resultados de una regresión logística ordinal. Se introduce una técnica de aprendizaje automático, los conjuntos difusos (rough sets), y se incluye una discusión sobre su idoneidad para estudios de IK. Se usan conjuntos de datos simulados para evaluar el comportamiento de las herramientas estadísticas sugeridas, lo que da pie a proponer algunas recomendaciones. Independientemente de las herramientas de análisis utilizadas en la fase de síntesis, las conclusiones serán probablemente erróneas cuando la matriz del diseño no es adecuada. Se propone un método para evaluar la idoneidad de matrices de diseño basado en el uso de dos nuevos indicadores: un índice de ortogonalidad y un índice de confusión. Se estudia el habitualmente olvidado rol de las interacciones en los estudios de IK y se propone un método para incluir una interacción, juntamente con una forma gráfica de representarla. Finalmente, la última parte de la tesis se dedica al escasamente tratado tema de la variabilidad en los estudios de IK. Se proponen un método (basado en el análisis clúster) para segmentar los participantes según sus respuestas emocionales y una forma de ordenar los participantes según su coherencia al valorar los productos (usando un coeficiente de correlación intraclase). Puesto que muchos usuarios de IK no son especialistas en la interpretación de salidas numéricas, se incluyen representaciones visuales para estos dos nuevos métodos que facilitan el procesamiento de las conclusiones.
This PhD thesis deals with Kansei Engineering (KE), a technique for translating emotions elicited by products into technical parameters, and statistical methods that can benefit the discipline. The basic purpose of KE is discovering in which way some properties of a product convey certain emotions in its users. It is a quantitative method, and data are typically collected using questionnaires. Conclusions are reached when analyzing the collected data, normally using some kind of regression analysis. Kansei Engineering can be placed under the more general area of research of emotional design. The thesis starts justifying the importance of emotional design. As the range of techniques used under the name of Kansei Engineering is rather vast and not very clear, the thesis develops a detailed definition of KE that serves the purpose of delimiting its scope. A model for conducting KE studies is then suggested. The model includes spanning the semantic space – the whole range of emotions the product can elicit – and the space of properties – the technical variables that can be modified in the design phase. After the data collection, the synthesis phase links both spaces; that is, discovers how several properties of the product elicit certain emotions. Each step of the model is explained in detail using a KE study specially performed for this thesis: the fruit juice experiment. The initial model is progressively improved during the thesis and data from the experiment are reanalyzed using the new proposals. Many practical concerns arise when looking at the above mentioned model for KE studies (among many others, how many participants are used and how the data collection session is conducted). An extensive literature review is done with the aim of answering these and other questions. The most common applications of KE are also depicted, together with comments on particular interesting ideas from several papers. The literature review also serves to list which are the most common tools used in the synthesis phase. The central part of the thesis focuses precisely in tools for the synthesis phase. Statistical tools such as quantification theory type I and ordinal logistic regression are studied in detail, and several improvements are suggested. In particular, a new graphical way to represent results from an ordinal logistic regression is proposed. An automatic learning technique, rough sets, is introduced and a discussion is included on its adequacy for KE studies. Several sets of simulated data are used to assess the behavior of the suggested statistical techniques, leading to some useful recommendations. No matter the analysis tools used in the synthesis phase, conclusions are likely to be flawed when the design matrix is not appropriate. A method to evaluate the suitability of design matrices used in KE studies is proposed, based on the use of two new indicators: an orthogonality index and a confusion index. The commonly forgotten role of interactions in KE studies is studied and a method to include an interaction in KE studies is suggested, together with a way to represent it graphically. Finally, the untreated topic of variability in KE studies is tackled in the last part of the thesis. A method (based in cluster analysis) for finding segments among subjects according to their emotional responses and a way to rank subjects based on their coherence when rating products (using an intraclass correlation coefficient) are proposed. As many users of Kansei Engineering are not specialists in the interpretation of the numerical output from statistical techniques, visual representations for these two new proposals are included to aid understanding.
Molaro, Mark Christopher. "Computational statistical methods in chemical engineering." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/111286.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 175-182).
Recent advances in theory and practice, have introduced a wide variety of tools from machine learning that can be applied to data intensive chemical engineering problems. This thesis covers applications of statistical learning spanning a range of relative importance of data versus existing detailed theory. In each application, the quantity and quality of data available from experimental systems are used in conjunction with an understanding of the theoretical physical laws governing system behavior to the extent they are available. A detailed generative parametric model for optical spectra of multicomponent mixtures is introduced. The application of interest is the quantification of uncertainty associated with estimating the relative abundance of mixtures of carbon nanotubes in solution. This work describes a detailed analysis of sources of uncertainty in estimation of relative abundance of chemical species in solution from optical spectroscopy. In particular, the quantification of uncertainty in mixtures with parametric uncertainty in pure component spectra is addressed. Markov Chain Monte Carlo methods are utilized to quantify uncertainty in these situations and the inaccuracy and potential for error in simpler methods is demonstrated. Strategies to improve estimation accuracy and reduce uncertainty in practical experimental situations are developed including when multiple measurements are available and with sequential data. The utilization of computational Bayesian inference in chemometric problems shows great promise in a wide variety of practical experimental applications. A related deconvolution problem is addressed in which a detailed physical model is not available, but the objective of analysis is to map from a measured vector valued signal to a sum of an unknown number of discrete contributions. The data analyzed in this application is electrical signals generated from a free surface electro-spinning apparatus. In this information poor system, MAP estimation is used to reduce the variance in estimates of the physical parameters of interest. The formulation of the estimation problem in a probabilistic context allows for the introduction of prior knowledge to compensate for a high dimensional ill-conditioned inverse problem. The estimates from this work are used to develop a productivity model expanding on previous work and showing how the uncertainty from estimation impacts system understanding. A new machine learning based method for monitoring for anomalous behavior in production oil wells is reported. The method entails a transformation of the available time series of measurements into a high-dimensional feature space representation. This transformation yields results which can be treated as static independent measurements. A new method for feature selection in one-class classification problems is developed based on approximate knowledge of the state of the system. An extension of features space transformation methods on time series data is introduced to handle multivariate data in large computationally burdensome domains by using sparse feature extraction methods. As a whole these projects demonstrate the application of modern statistical modeling methods, to achieve superior results in data driven chemical engineering challenges.
by Mark Christopher Molaro.
Ph. D.
Chang, Chia-Jung. "Statistical and engineering methods for model enhancement." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44766.
Full textWalls, Frederick George 1976. "Topic detection through statistical methods." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80244.
Full textIncludes bibliographical references (p. 77-79).
by Frederick George Walls.
M.Eng.
Maas, Luis C. (Luis Carlos). "Statistical methods in ultrasonic tissue characterization." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36456.
Full textIncludes bibliographical references (p. 88-93).
by Luis Carlos Maas III.
M.S.
Yu, Huan. "New Statistical Methods for Simulation Output Analysis." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4931.
Full textBetschart, Willie. "Applying intelligent statistical methods on biometric systems." Thesis, Blekinge Tekniska Högskola, Avdelningen för signalbehandling, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1694.
Full textChandrasekaran, Venkat. "Convex optimization methods for graphs and statistical modeling." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66002.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 209-220).
An outstanding challenge in many problems throughout science and engineering is to succinctly characterize the relationships among a large number of interacting entities. Models based on graphs form one major thrust in this thesis, as graphs often provide a concise representation of the interactions among a large set of variables. A second major emphasis of this thesis are classes of structured models that satisfy certain algebraic constraints. The common theme underlying these approaches is the development of computational methods based on convex optimization, which are in turn useful in a broad array of problems in signal processing and machine learning. The specific contributions are as follows: -- We propose a convex optimization method for decomposing the sum of a sparse matrix and a low-rank matrix into the individual components. Based on new rank-sparsity uncertainty principles, we give conditions under which the convex program exactly recovers the underlying components. -- Building on the previous point, we describe a convex optimization approach to latent variable Gaussian graphical model selection. We provide theoretical guarantees of the statistical consistency of this convex program in the high-dimensional scaling regime in which the number of latent/observed variables grows with the number of samples of the observed variables. The algebraic varieties of sparse and low-rank matrices play a prominent role in this analysis. -- We present a general convex optimization formulation for linear inverse problems, in which we have limited measurements in the form of linear functionals of a signal or model of interest. When these underlying models have algebraic structure, the resulting convex programs can be solved exactly or approximately via semidefinite programming. We provide sharp estimates (based on computing certain Gaussian statistics related to the underlying model geometry) of the number of generic linear measurements required for exact and robust recovery in a variety of settings. -- We present convex graph invariants, which are invariants of a graph that are convex functions of the underlying adjacency matrix. Graph invariants characterize structural properties of a graph that do not depend on the labeling of the nodes; convex graph invariants constitute an important subclass, and they provide a systematic and unified computational framework based on convex optimization for solving a number of interesting graph problems. We emphasize a unified view of the underlying convex geometry common to these different frameworks. We describe applications of both these methods to problems in financial modeling and network analysis, and conclude with a discussion of directions for future research.
by Venkat Chandrasekaran.
Ph.D.
Lingg, Andrew James. "Statistical Methods for Image Change Detection with Uncertainty." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1357249370.
Full textRanger, Jeremy. "Adaptive image magnification using edge-directed and statistical methods." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26753.
Full textBooks on the topic "Engineering - Statistical methods"
National Research Council (U.S.). Panel on Statistical Methods in Software Engineering. Statistical software engineering. Washington, D.C: National Academy Press, 1996.
Find full textSingpurwalla, Nozer D., and Simon P. Wilson. Statistical Methods in Software Engineering. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0565-4.
Full textVining, G. Geoffrey. Statistical methods for engineers. 3rd ed. Boston, Mass: Cengage Learning, 2011.
Find full textGnedenko, Boris Vladimirovich. Statistical reliability engineering. New York: J. Wiley, 1999.
Find full textHahn, Gerald J. Statistical models in engineering. New York: Wiley, 1994.
Find full textVining, G. Geoffrey. Statistical methods for engineers. Pacific Grove, CA: Duxbury Press, 1998.
Find full textA, Escobar Luis, ed. Statistical methods for reliability data. New York: Wiley, 1998.
Find full textRyan, Thomas P. Modern Engineering Statistics. New York: John Wiley & Sons, Ltd., 2007.
Find full text1946-, Rhinehart R. Russell, ed. Applied engineering statistics. New York: M. Dekker, 1991.
Find full textBethea, Robert M. Applied engineering statistics. New York: M. Dekker, 1991.
Find full textBook chapters on the topic "Engineering - Statistical methods"
Richards, Keith L. "Statistical Methods for Engineers." In The Engineering Design Primer, 223–50. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429264917-14.
Full textYu, Weichuan, Baolin Wu, Tao Huang, Xiaoye Li, Kenneth Williams, and Hongyu Zhao. "Statistical Methods in Proteomics." In Springer Handbook of Engineering Statistics, 623–38. London: Springer London, 2006. http://dx.doi.org/10.1007/978-1-84628-288-1_34.
Full textRosenberg, Jarrett. "Statistical Methods and Measurement." In Guide to Advanced Empirical Software Engineering, 155–84. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-044-5_6.
Full textTaniguchi, Masanobu, Tomoyuki Amano, Hiroaki Ogata, and Hiroyuki Taniai. "Various Methods for Financial Engineering." In Statistical Inference for Financial Engineering, 65–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03497-3_3.
Full textBujorianu, Luminita Manuela. "Statistical Methods to Stochastic Reachability." In Communications and Control Engineering, 163–72. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2795-6_8.
Full textJiang, Renyan. "Statistical Methods for Lifetime Data Analysis." In Springer Series in Reliability Engineering, 67–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47215-6_5.
Full textMai, Qing, and Xin Zhang. "Statistical Methods for Tensor Data Analysis." In Springer Handbook of Engineering Statistics, 817–29. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-7503-2_39.
Full textKenett, Ron S., Shelemyahu Zacks, and Peter Gedeck. "Advanced Methods of Statistical Process Control." In Statistics for Industry, Technology, and Engineering, 59–111. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28482-3_3.
Full textSingpurwalla, Nozer D., and Simon P. Wilson. "Statistical Analysis of Software Failure Data." In Statistical Methods in Software Engineering, 101–67. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0565-4_4.
Full textLima, Miguel F. M., and J. A. Tenreiro Machado. "A Statistical Approach for Tuning the Windowed Fourier Transform." In Mathematical Methods in Engineering, 269–81. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7183-3_25.
Full textConference papers on the topic "Engineering - Statistical methods"
Kitchenham, Barbara. "Robust statistical methods." In EASE '15: 19th International Conference on Evaluation and Assessment in Software Engineering. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2745802.2747956.
Full textRossi, Nicola, and Meho-Saša Kovačević. "Statistical methods in geotechnics." In 4th Symposium on Doctoral Studies in Civil Engineering. University of Zagreb Faculty of Civil Engineering, 2018. http://dx.doi.org/10.5592/co/phdsym.2018.03.
Full textJulie, Hongki. "Application of pedagogy reflective in statistical methods course and practicum statistical methods." In INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION: Empowering Engineering using Mathematics. Author(s), 2017. http://dx.doi.org/10.1063/1.4994429.
Full textStandring, Jamie, and Prasad Malisetty. "Pump Noise Reduction Using Shainin Statistical Engineering Methods." In SAE 2001 Noise & Vibration Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-1542.
Full textRodriguez, E., D. M. Tetzlaff, A. Mezzatesta, and E. Frost. "Estimating Rock Properties by Statistical Methods." In International Meeting on Petroleum Engineering. Society of Petroleum Engineers, 1988. http://dx.doi.org/10.2118/17603-ms.
Full textLuettgen, Mark R., William C. Karl, Alan S. Willsky, and Robert R. Tenney. "Multiresolution statistical methods in image analysis." In Applications in Optical Science and Engineering, edited by David P. Casasent. SPIE, 1992. http://dx.doi.org/10.1117/12.131582.
Full textAbella García, Ainoa, Lluís Marco-Almagro, and Laura Clèries. "Relationship between statistical methods and design, through Kansei engineering." In 9th International Conference on Kansei Engineering and Emotion Research (KEER2022). Kansei Engineering and Emotion Research (KEER), 2022. http://dx.doi.org/10.5821/conference-9788419184849.60.
Full textPark, Gyuhae, Amanda C. Rutherford, Hoon Sohn, and Charles R. Farrar. "Damage Identification Using Impedance Methods Coupled With Statistical Classifiers." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43179.
Full textTrost, R. C., R. A. Ambros, and S. J. Robboy. "Statistical methods for morphometric analysis." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94524.
Full textJi, Xin-Yuan Serena, Shen Randy Kang, Yan-Ju Lisa Yu, and Wei-Ting Kary Chien. "A study on the statistical comparison methods for engineering applications." In 2013 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2013. http://dx.doi.org/10.1109/ieem.2013.6962477.
Full textReports on the topic "Engineering - Statistical methods"
Utley, Dawn R. A Research and Analysis of Technology Trends, Engineering Management, and Statistical Methods. Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada399686.
Full textNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano, and R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Full textTucker-Blackmon, Angelicque. Engagement in Engineering Pathways “E-PATH” An Initiative to Retain Non-Traditional Students in Engineering Year Three Summative External Evaluation Report. Innovative Learning Center, LLC, July 2020. http://dx.doi.org/10.52012/tyob9090.
Full textSinger, C., and D. Cox. Methods for testing transport models. [Departments of Nuclear Engineering and Statistics, Univ. of Illinois at Urbana[endash]Champaign]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6886000.
Full textLozev. L52022 Validation of Current Approaches for Girth Weld Defect Sizing Accuracy. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2002. http://dx.doi.org/10.55274/r0011325.
Full textStuedlein, Armin, Ali Dadashiserej, and Amalesh Jana. Models for the Cyclic Resistance of Silts and Evaluation of Cyclic Failure during Subduction Zone Earthquakes. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2023. http://dx.doi.org/10.55461/zkvv5271.
Full textRESEARCH PROGRESS ON FATIGUE PROPERTIES OF THE HIGHPERFORMANCE STEEL AND CONNECTION FORMS. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.196.
Full textEFFECT OF RANDOM PRE-STRESSED FRICTION LOSS ON THE PERFORMANCE OF A SUSPEN-DOME STRUCTURE. The Hong Kong Institute of Steel Construction, March 2022. http://dx.doi.org/10.18057/ijasc.2022.18.1.5.
Full text