Academic literature on the topic 'Engineering preparation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Engineering preparation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Engineering preparation"

1

Mohanty, Atasi, and Deepshikha Dash. "Engineering Education in India: Preparation of Professional Engineering Educators." Journal of Human Resource and Sustainability Studies 04, no. 02 (2016): 92–101. http://dx.doi.org/10.4236/jhrss.2016.42011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oleinik, Pavel Pavlovich, Larisa Stsnislavovna Grigoryeva, and Viktor Isaevich Brodsky. "Outstripping Engineering Preparation of Construction Sites." Applied Mechanics and Materials 580-583 (July 2014): 2294–98. http://dx.doi.org/10.4028/www.scientific.net/amm.580-583.2294.

Full text
Abstract:
The basic scheme of intensive implementation preparatory work, the general form of the formulas for determining the structure and amount of preparatory work performed prior to the start of construction.
APA, Harvard, Vancouver, ISO, and other styles
3

Hasanova, A. M., F. Y. Aliyev, S. B. Mammadli, D. R. Nurullayeva, and B. A. Mammadov. "Preparation of Oligo (Hexene-1-So-Indenes) and Investigation of Its Products as Additives to Oils." International Journal of Engineering Research and Science 3, no. 11 (November 30, 2017): 21–26. http://dx.doi.org/10.25125/engineering-journal-ijoer-nov-2017-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vlasov, A. "Simulation training complex for preparation engineering staff." Актуальные направления научных исследований XXI века: теория и практика 3, no. 5 (December 2, 2015): 55–59. http://dx.doi.org/10.12737/16205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bondi, Hermann. "Preparation for careers in engineering and science." IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews 135, no. 4 (1988): 227. http://dx.doi.org/10.1049/ip-a-1.1988.0035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lifshits, V. M., A. E. Korobeynikova, and I. V. Dunichkin. "Aeration modes and engineering preparation of slopes." Vestnik MGSU, no. 9 (September 2018): 1043–54. http://dx.doi.org/10.22227/1997-0935.2018.9.1043-1054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gong, Ying, Guang Ting Han, Yuan Ming Zhang, Jin Feng Zhang, Wei Jiang, Xiao Wei Tao, and Sheng Chuan Gao. "Preparation of alginate membrane for tissue engineering." Journal of Polymer Engineering 36, no. 4 (May 1, 2016): 363–70. http://dx.doi.org/10.1515/polyeng-2015-0065.

Full text
Abstract:
Abstract Sodium alginate was provided with good processibility according to physical and chemical characterization of itself. Alginate scaffold has been used for preparation of soft or hard tissue engineering, but the structure of the scaffold needs to be improved for better performance for skin tissue engineering. In this study, highly porous alginate membrane was formed with ionic crosslinking. High molecular weight (Mw=3.0×105) alginate showed the best film-forming property. Therefore, the appropriate molecular weight should be selected for improving its performance. With freeze-drying technology and pre-freezing at -10°C, we have built the honeycomb materials (porosity=92.06%). Changing the pre-freezing temperature can regulate pore structure to some extent. With the increased dosage of sodium alginate, the porosity and the pore size of the materials were reduced, whereas tensile strength and elongation at break increased. Water absorption performance of the materials was good. The above studies lay a foundation for construction of skin tissue engineering scaffold.
APA, Harvard, Vancouver, ISO, and other styles
8

Perevislov, S. N., M. V. Tomkovich, A. S. Lysenkov, and M. G. Frolova. "Preparation and Properties of Reinforced Engineering Materials." Refractories and Industrial Ceramics 59, no. 5 (January 2019): 534–44. http://dx.doi.org/10.1007/s11148-019-00267-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, B., R. Nazari, D. Elmo, D. Stead, and E. Eberhardt. "Data preparation for machine learning in rock engineering." IOP Conference Series: Earth and Environmental Science 1124, no. 1 (January 1, 2023): 012072. http://dx.doi.org/10.1088/1755-1315/1124/1/012072.

Full text
Abstract:
Abstract Digitalization in rock engineering has resulted in significant technological advancements and the increasing use of machine learning techniques. As rock engineering transitions into becoming more data-driven, machine learning can help rock engineers improve the efficiency and utilization of large data sets in the design process. While machine learning is a powerful tool, the success of machine learning algorithms is intrinsically related to the quality and quantity of data available. It is commonly accepted that machine learning algorithms that are trained on poor quality data will result in poor and inaccurate (i.e. highly subjective) results. To limit the human factors that result from using data that represent qualitative assessments rather than objective measurements of physical properties, it is imperative to improve the data analysis and preparation/labelling process. Data preparation is especially important when applying machine learning to rock engineering problems due to the inductive and empirical nature of the design process as a result of the inherent variability of geological materials. Despite data preparation accounting for more than half of the machine learning process, there is limited research on data preparation for machine learning in rock engineering. This paper aims to fill this gap by providing a set of guidelines on the necessary data preparation steps for applying machine learning to rock engineering problems, thereby helping rock engineers improve the performance of their machine learning models.
APA, Harvard, Vancouver, ISO, and other styles
10

Resende, Daniel, Camila Dornelas, Maria I. B. Tavares, Lucio Cabral, Luis Simeoni, and Ailton Gomes. "Preparation of Modified Montmorillonite with Benzethonium and Benzalconium Chloride for Nanocomposites Preparation." Chemistry & Chemical Technology 3, no. 4 (December 15, 2009): 291–94. http://dx.doi.org/10.23939/chcht03.04.291.

Full text
Abstract:
Modified clays were intercalated with benzethonium chloride and benzalkonium chloride by exchanging the sodium ions. The organoclays obtained were characterized by X-ray diffraction (XRD); thermogravimetric analysis (TGA) and low field nuclear magnetic resonance (NMR), through proton spin-lattice relaxation time measurements (T1H). From the characterization data, the formation of organically modified clays was confirmed. These products can probably be used to prepare PVC nanocomposites with superior processing characteristics due to better chemical structure of clay surfactants.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Engineering preparation"

1

Whiteley, Clinton E. "Emergency Preparation and Green Engineering Tool." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Rongsheng. "Dextran hydrogel preparation and applications in biomedical engineering." Thesis, University of Bath, 2004. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DeBiase, Kirstie. "Teacher preparation in science, technology, engineering, and mathematics instruction." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10118901.

Full text
Abstract:

The purpose of this qualitative case study was to gain a better understanding of how induction programs might effectively support STEM K?8 teacher preparation. American schools are not producing competent STEM graduates prepared to meet employment demands. Over the next decade, STEM employment opportunities are expected to increase twice as fast as all other occupations combined. To meet the economic needs, the STEM pipeline must be expanded to educate and produce additional STEM graduates. The meeting of this objective begins with having the teachers working in American classrooms fully prepared and trained in STEM content, curriculum, and pedagogy. Research shows that the interest in STEM subjects starts in elementary school and, therefore, the preparation of elementary teachers to be proficient in teaching STEM to their students is vital. However, most induction programs do not focus on preparing their teachers in STEM. This study researched the Alternative Induction Pathway (AIP) program, which had STEM preparation as one of its core outcomes in the Long Beach Unified School District (LBUSD). It investigated the program?s effectiveness in preparing K?8 teachers with STEM content knowledge, curriculum, pedagogical instruction preparation, and the program elements that contributed the most to their experience in the program and overall STEM preparation as a result. This study was carried out over the course of approximately 6 months. Data included focused interviews with participants as well as analysis of existing documents in order to triangulate perspectives from multiple sources. The AIP program had varied levels of effectiveness in STEM content, curriculum, and pedagogy preparation. Relationships between the induction mentor, the administration, and the participating teacher, when strong and positive, were powerful contributions to the success of the acquisition and integration of the STEM content, curriculum, and pedagogy. The most effective components of the AIP program were the monthly support groups, the curricular resources, and the professional development nights facilitating the teaching and learning process for the participating teacher in STEM integration. The results of this training included examples of well-planned and executed STEM lessons with creative risk-taking, and enhanced confidence for teachers and administrators alike. At the same time, the AIP program had struggles in achieving the desired outcomes of STEM integration, due to lack of preliminary training for program administrators in STEM integration, varied needs between the MS and SS credential teachers, and state standard requirements that spoke to science and mathematics, but not engineering or technology. The main recommendation for policy from the results of this study is that STEM should be woven into preservice and continue through induction and professional development to become one of the main tenets of curriculum development and standards of effective teaching. This policy would affect colleges of education and district induction programs, requiring that STEM courses be added or embedded into the credential pathways. However, this approach would ensure that STEM integration is supported academically as an important and valued aspect of the teacher?s entrance to their career, and that pre-service teachers are ready to take advantage of induction offerings on STEM integration in the induction phase and throughout their careers in continuing professional development. The study also provides practice and research recommendations in regard to possible roles and supports for mentor teachers, including their relationships with resident teachers, as well as suggestions for and to maximize the benefits for effective teaching and learning during the induction process.

APA, Harvard, Vancouver, ISO, and other styles
4

Erasmus, Willem Johannes. "Preparation of model cobalt catalysts for Fischer-Tropsch synthesis using ultrasound preparation techniques." Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/5335.

Full text
Abstract:
Includes bibliographical references (leaves 84-87).
In order to study the oxidation behaviour of small cobalt crystallites during Fischer-Tropsch synthesis, it is necessary to prepare model catalysts with cobalt crystallites of which the size distributions can be adjusted. Here ultrasonication was used to decomposed a tricarbonyl precursor in n-decane to prepare small cobalt crystallites. The aim of this study was to vary the cobalt crystallite size distribution by adjusting the preparation conditions. Transmission Electron Microscopy (TEM) was used to measure the crystallites and to obtain the crystallite size distributions.
APA, Harvard, Vancouver, ISO, and other styles
5

Waterbury, Raymond. "The electron microscopy proteomic organellar preparation robot /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102768.

Full text
Abstract:
An Electron Microscopy Proteomic Organellar Preparation (EMPOP) robot was developed as a tool for high-throughput preparation of subcellular fraction samples for electron microscopic identification. It will provide a means for validation of subcellular sample purity and confirmation of protein localization needed for organellar proteomics.
The device automates all chemical and mechanical manipulations required to prepare organelles for electron microscopic examination. It has a modular, integrated design that supports automated filtration, chemical processing, delivery and embedding of up to 96 subcellular fraction samples in parallel. Subcellular fraction specimens are extremely fragile. Consequently, the system was designed as a single unit to minimize mechanical stress on the samples by integrating a core mechanism, composed of four modular plates, and seven support subsystems for: (1) cooling, (2-3) fluid handling, (4-7) positioning. Furthermore, control software was developed specifically for the system to provide standardized, reproducible sample processing while maintaining flexibility for adjustment and recall of operational parameters.
Development of the automated process progressed from initial validation experiments and process screening to define operational parameters for preservation of sample integrity and establish a basic starting point for successful sample preparation. A series of successive modifications to seal the local environment of the samples and minimize the effect of fluidic perturbations further increased process performance. Subsequent testing of the robot's full sample preparation capacity used these refinements to generate 96 samples in approximately 16 hours; reducing the time and labor requirement of equivalent manual preparation by up to 1,000 fold.
These results provide a basis for a structured approach toward process optimization and subsequent utilization the device for massive, parallel preparation of subcellular fraction samples for electron microscopic screening and quantitative analysis of subcellular and protein targets necessary for high-throughput proteomics.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Huan Ph D. Massachusetts Institute of Technology. "Preparation and applications of catalytic magnetic nanoparticles." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46672.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2009.
Includes bibliographical references.
It is critical to decontaminate organophosphate compounds in large scale economically, including OP pesticides in groundwater system and chemical nerve agents on the battle field. Homogeneous or micellar decomposition systems with various nucleophiles improve reaction rates significantly without affording the recovery and reuse of the nucleophiles. This research focuses on developing functional magnetic particles to carry strong [alpha]--nucleophilic groups, which are able to catalyze the decomposition reaction and can be recycled and reused.The amidoxime modified magnetic particles were prepared first. The original particles were synthesized with the two-step procedure to obtain average particle size of around 80nm for effective capture by high gradient magnetic separation (HGMS). The precursor molecule cyanoacetohydrazide reacted with the free carboxyl groups on the particle surfaces and subsequently the nitrile groups were transformed into amidoxime groups. The modified particles were of similar average hydrodynamic diameter as the original ones and colloidally stable over a wide range of solutin pH. The amidoxime-modified particles accelerated the hydrolysis reaction of p-nitrophenyl acetate (PNPA). They were easily recycled by HGMS without loss of reactivity. Higher reactivity of the particle system than homogenous amidoxime systems was attributed to the increased concentration of the substrate on the particle surface due to the presence of hydrophobic centers using pseudo-phase exchange model.Stronger nucleophilic groups, hydroxamic acid, were then attached on the particle surfaces. Original particles were prepared with unsaturated carboxylic acid as the second coating in the two-step procedure. The acrylamide monomers were copolymerized with the second coating and the attached amide groups were converted into the hydroxamic acid groups.
(cont.) The reaction was very efficient. Crosslinking increased the particle size to 200nm and therefore the particles were effectively captured by HGMS. The modified particles significantly accelerated the hydrolysis reaction of PNPA. They were five times more reactive than the amidoxime modified particles based on the same weight of materials. The acetylated particles were only partially regenerated due to the Lossen rearrangement of the acetylated hydroxamic acid groups.During the hydrolysis of OP substrates, including diisopropyl fluorophosphate, methylparaoxon and ethyl-paraoxon, the added a-nucleophiles, 2-PAM and acetohydroxamic acid, only attacked the phosphorus atom to substitute the p-nitrophenol groups in methyland ethyl- paraoxon and the fluoride ions in DFP through second order nucleophilic substitution. Reactions between all three substrates and both nucleophiles yielded the same hydrolysis products as the spontaneous hydrolysis with no detected intermediates, indicating the unstable nature of any intermediates that may be formed. The hydroxamic acid modified particles accelerated the hydrolysis of methyl- and ethyl- paraoxon with relatively modest reactivity. Similar to polyhydroxamic acid, the reactivity was much lower than that of monomeric hydroxamic acid due to the steric hindrance from the polymer chains. The particles lost their reactivity after the reaction due to Lossen rearrangement of the phosphoryl hydroxamic acid.
by Huan Zhang.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
7

Hill, Matthew Raymond. "Preparation of catalyst coated membranes using screen printing." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/11834.

Full text
Abstract:
Includes abstract.
Includes bibliographical references.
Of the various types of fuel cells, Polymer Electrolyte Fuel Cells (PEFCs) have already been demonstrated in transportation appliances from light-duty vehicles to buses and in portable appliances including laptops and cell phones. A key component of a PEFC is its platinum electrocatalyst. With an estimated 75% of the world’s platinum reserves and resources in South Africa, local development of this technology will allow South Africa to become a major player in the growing hydrogen economy. This project therefore forms part of the Department of Science and Technologies strategy, to develop fuel cell technology in South Africa. More specifically, this study aims to contribute to the development of membrane electrode assembly (MEA) platform technology at the HySA/Catalysis Centre. In order to achieve this goal, a catalyst coated membrane (CCM) fabrication procedure was implemented using a newly acquired screen printer. In this procedure, catalyst ink is forced through a mesh onto a substrate, where it can then be transferred to a membrane via decal transfer to form a CCM. Two gas diffusions layers can then be placed on either side of the CCM forming a 5-layered MEA. Characterisation techniques of the catalyst ink, CCM and 5-layered MEA were successfully implemented such that future researchers can expand on the ideas. Catalyst inks with varying amounts of isopropanol, 1,2-propanediol and water were screened for their suitability for screen printing. In particular the catalyst ink rheology required for a smooth and even printed surface was determined for a given screen and squeegee combination. With all the established steps in pace, screen printing proved to be a fast and reliable approach for CCM fabrication with potential for future scale up and commercialisation. The fabricated CCMs performed on a par with a commercial Ion Power CCM, but under performed in comparison to a commercial Johnson Matthey (JM) MEA. Possible reasons for this include improved materials in the JM MEA and cell conditions favouring the JM MEA. Future projects which specifically arise from this work entail an investigation into the water management of the fuel cell environment at HySA/Catalysis, as well as a modification of the various steps in order to optimise the process and in doing so manufacture commercially viable MEAs.
APA, Harvard, Vancouver, ISO, and other styles
8

Hsu, Hung-Liang. "The preparation and characterisation of porous degradable chitosan structures for tissue engineering." Thesis, Queen Mary, University of London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tanahashi, Kazuhiro. "DESIGN AND PREPARATION OF FUMARATE-BASED BIODEGRADABLE POLYMER HYDROGELS FOR TISSUE ENGINEERING." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hasson, Dhari A. "Mixture preparation and combustion in spark ignition engines." Thesis, Aston University, 1986. http://publications.aston.ac.uk/11867/.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Engineering preparation"

1

fu, Chen yuan, ed. Zhizaoxue: Preparation and weaving engineering. Bei jing: Zhong guo fang zhi chu ban she, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamelink, Jerry H. Mechanical engineering: FE/EIT exam preparation. 3rd ed. Chicago, IL: Kaplan AEC Education, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

G, Newnan Donald, ed. Fundamentals of engineering: FE exam preparation. Chicago, Ill: Kaplan Education, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Electrical NEC exam preparation. 4th ed. [Tamarac, Fla.]: Mike Holt Enterprises, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gokarneshan, N. Weaving preparation technology. Chandigarh, India: Abhishek Publications, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alan, Williams. Structural engineering: California license review problems & solutions : exam preparation. 3rd ed. Chicago: Kaplan AEC Education, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alan, Williams. Structural engineering: California license review problems & solutions : exam preparation. 3rd ed. Chicago: Kaplan AEC Education, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Traister, John E. Electrician's exam preparation guide. Carlsbad, Calif: Craftsman Book Co., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ganguli, D. Ceramic powder preparation: A handbook. Boston: Kluwer Academic Publishers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

FE civil review manual: Rapid preparation for the Civil Fundamentals of Engineering Exam. Belmont, California: Professional Publications, Inc., 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Engineering preparation"

1

Ye, Andre, and Andy Wang. "Data Preparation and Engineering." In Modern Deep Learning for Tabular Data, 95–179. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8692-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seeley, Ivor H. "Bill Preparation Processes." In Civil Engineering Quantities, 252–69. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-22719-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seeley, Ivor H. "Bill Preparation Processes." In Civil Engineering Quantities, 229–45. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18652-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sheikh, Ahmed. "Sniffers and Social Engineering." In Certified Ethical Hacker (CEH) Preparation Guide, 71–84. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7258-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cullen, Dermott E. "Nuclear Data Preparation." In Handbook of Nuclear Engineering, 279–425. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-98149-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yadav, Mahesh Kumar, Praveen Somwanshi, Sameer Khandekar, Sanghamitro Chatterjee, Mohit Gonga, K. Muralidhar, and Sudeep Bhattacharjee. "Surface Preparation: Some Techniques." In Mechanical Engineering Series, 331–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48461-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maurya, Rakesh Kumar. "Premixed Charge Preparation Strategies." In Mechanical Engineering Series, 167–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68508-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bauman, A. V. "Criteria of Engineering Efficiency of Thickening Flowcharts." In XVIII International Coal Preparation Congress, 106–9. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40943-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soh, Julian, and Priyanshi Singh. "Data Preparation and Data Engineering Basics." In Data Science Solutions on Azure, 65–115. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6405-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sheppard, Keith, Henry L. Kellner, Kenneth J. Gatchel, J. Bernard Hignett, Dean E. Ward, Kenneth S. Surprenant, Lawrence J. Durney, Cloyd A. Snavely, and Charles L. Faust. "Metal Surface Preparation and Cleaning." In Electroplating Engineering Handbook, 58–173. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-2547-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Engineering preparation"

1

Asmus, John F. "Plasma pinchlamp surface preparation." In Optical Science, Engineering and Instrumentation '97, edited by Angelo V. Arecchi. SPIE, 1997. http://dx.doi.org/10.1117/12.284088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stanglmaier, Rudolf H. "Spec Race Engine Preparation Techniques." In Motorsports Engineering Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-3501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Jianqin. "Considerations in the Preparation for Teaching Tunnel Engineering." In Third International Conference on Social Science, Public Health and Education (SSPHE 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200205.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bulír, Jiří, Michal Novotný, Anna Lynnykova, Ján Lančok, Michal Bodnár, and Marek Škereň. "Preparation of nanostructured ultrathin silver layer." In SPIE NanoScience + Engineering, edited by Raúl J. Martin-Palma, Yi-Jun Jen, and Akhlesh Lakhtakia. SPIE, 2010. http://dx.doi.org/10.1117/12.860634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khlibyshyn, Yuriy, Iryna Pochapska, Oleg Grynyshyn, and Oleh Hladkyi. "Preparation of bitumen using acidic tars." In Chemical technology and engineering. Lviv Polytechnic National University, 2019. http://dx.doi.org/10.23939/cte2019.01.394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bavdaz, M., Ph Gondoin, K. Wallace, T. Oosterbroek, D. Lumb, D. Martin, P. Verhoeve, L. Puig, L. Torres Soto, and A. N. Parmar. "IXO system studies and technology preparation." In SPIE Optical Engineering + Applications, edited by Stephen L. O'Dell and Giovanni Pareschi. SPIE, 2009. http://dx.doi.org/10.1117/12.825967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Langfermann, M., G. Jahn, A. Runge, J. Huber, C. Jewell, and J. G. Weisend. "LAUNCH PREPARATION OF THE HERSCHEL CRYOSTAT." In TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC: Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bi, Yong-guang, and Meng-qian Huang. "Preparation with Orthogonal Hydroxyapatite Nanomaterials." In 2015 International Conference on Advanced Material Engineering. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696029_0066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jayasinghe, Dushan I. "Preparation of Preventive and Predictive Maintenance Guidelines for Emulsion Preparation and Processing Plant Using Risk Management Techniques." In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2018. http://dx.doi.org/10.1109/ieem.2018.8607340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Hua, Zibin Shu, Ya Yan, Jing Yin, and Xinran Peng. "Preparation of Collagenic Wound Dressings." In 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, 2012. http://dx.doi.org/10.1109/icbeb.2012.306.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Engineering preparation"

1

ARMY WAR COLL CARLISLE BARRACKS PA. Systems Engineering Plan Preparation Guide: Technical Planning for Mission Succes. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada486716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muslov, S. A., A. V. Shelyakov, and V. A. Andreev. Shape memory alloys: properties, preparation and use in engineering and medicine. Мозартика, 2018. http://dx.doi.org/10.18411/a-2018-208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gleason, Donald L. Civil Engineering Prime Beef Contingency Training - Preparation for the Spectrum of Operations. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada397859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

VanderZanden, M. D. Engineering task plan for tank farm ventilation strategy document preparation and maintenance. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10186164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BOGER, R. M. Engineering Task Plan (ETN-98-0007) Preparation of the Long Length Contaminated Equipment Transport System (LLCETS) for Deployment. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/802999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tarasov, Alexander F., Irina A. Getman, Svetlana S. Turlakova, Ihor I. Stashkevych, and Serhiy M. Kozmenko. Methodological aspects of preparation of educational content on the basis of distance education platforms. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3857.

Full text
Abstract:
The urgency of application of technologies and means of distance learning in educational process of higher educational institutions is designated. The growing frequency of using cloud services and electronic textbooks in mobile and distance learning is noted. The importance of building educational environment is highlighted, where the key element is e-learning resources in digital form, including structure, subject content and metadata about the course. For higher educational institutions, the need for methodical support for the preparation of educational content on the basis of distance education platforms is determined. The experience of using the free distance education platform Moodle within the framework of the higher educational institution Donbass State Engineering Academy is considered. Methodical aspects of training content preparation on the basis of distance education platforms on the example of MoodleDDMA system are given. The General structure of the distance course and an example of evaluation of test tasks of the distance course (module) on topics are considered. An example of the presentation of the course on the basis of distance education platform MoodleDDMA is given. Conclusions about the experience of using the Moodle distance education system at the Donbass State Engineering Academy from the point of view of teachers and students are drawn. The perspective directions of researches and development of the Moodle distance education platform in completion and expansion of educational materials by multimedia elements and links, and also creation of the application for mobile devices for possibility of more effective use of the platform are allocated.
APA, Harvard, Vancouver, ISO, and other styles
7

ERPENBECK, E. G. COMPARISON OF FINAL TREATMENT & PROCESS METHODS FOR THE PREPARATION & INTERIM STORAGE OF K BASIN KNOCKOUT POT SLUDGE ENGINEERING STUDY. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/825445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vakaliuk, Tetiana A., Valerii V. Kontsedailo, Dmytro S. Antoniuk, Olha V. Korotun, Iryna S. Mintii, and Andrey V. Pikilnyak. Using game simulator Software Inc in the Software Engineering education. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3762.

Full text
Abstract:
The article presents the possibilities of using game simulator Sotware Inc in the training of future software engineer in higher education. Attention is drawn to some specific settings that need to be taken into account when training in the course of training future software engineers. More and more educational institutions are introducing new teaching methods, which result in the use of engineering students, in particular, future software engineers, to deal with real professional situations in the learning process. The use of modern ICT, including game simulators, in the educational process, allows to improve the quality of educational material and to enhance the educational effects from the use of innovative pedagogical programs and methods, as it gives teachers additional opportunities for constructing individual educational trajectories of students. The use of ICT allows for a differentiated approach to students with different levels of readiness to study. A feature of any software engineer is the need to understand the related subject area for which the software is being developed. An important condition for the preparation of a highly qualified specialist is the independent fulfillment by the student of scientific research, the generation, and implementation of his idea into a finished commercial product. In the process of research, students gain knowledge, skills of the future IT specialist and competences of the legal protection of the results of intellectual activity, technological audit, marketing, product realization in the market of innovations. Note that when the real-world practice is impossible for students, game simulators that simulate real software development processes are an alternative.
APA, Harvard, Vancouver, ISO, and other styles
9

Mosalam, Khalid, and Amarnath Kasalanati. PEER Activities 2018—2020. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/pwvt2699.

Full text
Abstract:
The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. PEER’s mission is to (1) develop, validate, and disseminate performance-based engineering (PBE) technologies for buildings and infrastructure networks subjected to earthquakes and other natural hazards, with the goal of achieving community resilience; and (2) equip the earthquake engineering and other extreme-event communities with new tools. This report presents the activities of the Center over the period of July 1, 2018 to June 30, 2020. PEER staff, in particular Grace Kang, Erika Donald, Claire Johnson, Christina Bodnar-Anderson, Arpit Nema and Zulema Lara, helped in preparation of this report.
APA, Harvard, Vancouver, ISO, and other styles
10

Morkun, Vladimir S., Serhiy O. Semerikov, Nataliya V. Morkun, Svitlana M. Hryshchenko, and Arnold E. Kiv. Defining the Structure of Environmental Competence of Future Mining Engineers: ICT Approach. [б. в.], November 2018. http://dx.doi.org/10.31812/123456789/2650.

Full text
Abstract:
The object is to the reasonable selection of the ICT tools for formation of ecological competence. Pressing task is constructive and research approach to preparation of future engineers to performance of professional duties in order to make them capable to develop engineering projects independently and exercise control competently. Subject of research: the theoretical justification of competence system of future mining engineers. Methods: source analysis on the problem of ecological competence formation. Results: defining the structure of environmental competence of future mining engineers. Conclusion: the relevance of the material covered in the article, due to the need to ensure the effectiveness of the educational process in the preparation of the future mining engineers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography