Academic literature on the topic 'Energy transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Energy transfer"

1

Eom, T. Y., C. S. Oh, and S. J. Park. "Wireless Power Transfer Technologies Trends." Journal of Energy Engineering 24, no. 2 (June 30, 2015): 174–78. http://dx.doi.org/10.5855/energy.2015.24.2.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tapolsky, Gilles, Rich Duesing, and Thomas J. Meyer. "Intramolecular energy transfer by an electron/energy transfer cascade." Journal of Physical Chemistry 93, no. 10 (May 1989): 3885–87. http://dx.doi.org/10.1021/j100347a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Byong-Hoon. "Natural Convection Heat Transfer in Inclined Rectangular Enclosures." Journal of Energy Engineering 20, no. 1 (March 31, 2011): 44–53. http://dx.doi.org/10.5855/energy.2011.20.1.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pardeshi, Akash. "Wireless Energy Transfer." IOSR Journal of Electrical and Electronics Engineering 8, no. 1 (2013): 69–79. http://dx.doi.org/10.9790/1676-0816979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krenn, Joachim R. "Watching energy transfer." Nature Materials 2, no. 4 (April 2003): 210–11. http://dx.doi.org/10.1038/nmat865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsakmakidis, Kosmas. "Molecular energy transfer." Nature Materials 11, no. 12 (November 23, 2012): 1002. http://dx.doi.org/10.1038/nmat3514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Flynn, George W., Charles S. Parmenter, and Alec M. Wodtke. "Vibrational Energy Transfer." Journal of Physical Chemistry 100, no. 31 (January 1996): 12817–38. http://dx.doi.org/10.1021/jp953735c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Yingying, Bo Liu, Hongbo Liu, and Yudong Yao. "VLC-based Data Transfer and Energy Harvesting Mobile System." Journal of Ubiquitous Systems and Pervasive Networks 15, no. 01 (March 1, 2021): 01–09. http://dx.doi.org/10.5383/juspn.15.01.001.

Full text
Abstract:
This paper explores a low-cost portable visible light communication (VLC) system to support the increasing needs of lightweight mobile applications. VLC grows rapidly in the past decade for many applications (e.g., indoor data transmission, human sensing, and visual MIMO) due to its RF interference immunity and inherent high security. However, most existing VLC systems heavily rely on fixed infrastructures with less adaptability to emerging lightweight mobile applications. This work proposes Light Storage, a portable VLC system takes the advantage of commercial smartphone flashlights as the transmitter and a solar panel equipped with both data reception and energy harvesting modules as the receiver. Light Storage can achieve concurrent data transmission and energy harvesting from the visible light signals. It develops multi-level light intensity data modulation to increase data throughput and integrates the noise reduction functionality to allow portability under various lighting conditions. The system supports synchronization together with adaptive error correction to overcome both the linear and non-linear signal offsets caused by the low time-control ability from the commercial smartphones. Finally, the energy harvesting capability in Light Storage provides sufficient energy support for efficient short range communication. Light Storage is validated in both indoor and outdoor environments and can achieve over 98% data decoding accuracy, demonstrating the potential as an important alternative to support low-cost and portable short range communication.
APA, Harvard, Vancouver, ISO, and other styles
9

Gridin, S. "Energy transfer in co-doped NaI:(Tl,Eu) crystals." Functional materials 22, no. 4 (December 15, 2015): 498–502. http://dx.doi.org/10.15407/fm21.04.498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kubsch, Marcus, and Paul C. Hamerski. "Dynamic Energy Transfer Models." Physics Teacher 60, no. 7 (October 2022): 583–85. http://dx.doi.org/10.1119/5.0037727.

Full text
Abstract:
Energy is a disciplinary core idea and a cross-cutting concept in the K-12 Framework for Science Education and the Next Generation Science Standards (NGSS). As numerous authors point out, the energy model in these standards emphasizes the connections between energy and systems. Using energy ideas to interpret or make sense of phenomena means tracking transfers of energy across systems (including objects and fields) as phenomena unfold. To support students in progressing towards this goal, numerous representations—both static and dynamic—that describe the flow of energy across systems exist. Static representations work well to describe phenomena where the flow of energy is unidirectional and the dynamics are not a focus but struggle to represent circular energy flows and the temporal order of complex, dynamic phenomena. Existing dynamic representations like Energy Theater are usually qualitative, i.e., they represent energy in ways that differentiate between larger or smaller rates of transfer but do not provide a more detailed quantitative picture. In this article, we present how an existing, empirically tested, static representation called Energy Transfer Model (ETM) can be turned into a dynamic representation that is quantitatively accurate using the freely available 3D animation programming environment GlowScript ( https://www.glowscript.org ). To do so, we first summarize the central ideas in a model of energy that emphasizes the idea of energy transfer between systems, and we describe how the ETM represents those ideas. Then, we introduce the dynamic ETM and explain how it goes beyond the limitations of its static counterpart and how its quantitative accuracy adds to existing dynamic representations. Lastly, we discuss how the dynamic ETM can be used to integrate computational thinking into the physics classroom.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Energy transfer"

1

Muñiz, García Claudia. "Rapid Energy Transfer to an Energy Buffer." Thesis, KTH, Kommunikationssystem, CoS, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91941.

Full text
Abstract:
This master thesis introduces a new technology applicable to nearly all mobile and portable electrical devices since all of them need energy to operate. This thesis attempts to cut the last wire - this one the wire to the primary power source. In other words, fast and efficient wireless energy transference through a strong, focused near magnetic field whose fast attenuation will avoid interference with surrounding communication systems or human harm. This energy is transferred to and will be stored inside the mobile device where nothing but a small and simple secondary circuit has been placed. The thesis project began by creating an initial SPICE computer model, providing an easy and rapid way of testing both convergence and feasibility of the topology as the design evolved from the well-known and widely used Switch Model Power Supply technology through to the detailed design and implementation of the prototype, including supporting the iterative process of testing and optimizing, all stages are carefully described in the document. The thesis shows both theoretically and practically that this idea is feasible and capable of power transmission.
Detta examensarbete introducerar en ny teknologi som är applicerbar till de flesta mobila och portabla elektriska apparater då dessa behöver energi för att fungera. Detta arbete försöker klippa den sista ledningen den som leder till den primära kraftkällan. Med andra ord, är denna teknik en snabb och effektiv trådlös energiöverföring genom ett starkt, fokuserat närbeläget magnetfält. Tack vare magnetfältets kraftiga dämpning undviks interferens med intilliggande kommunikationssystem eller personskador. Denna energi är överförd till, och lagras inuti en bärbar apparat där endast en liten och enkel sekundärkrets har placerats. Examensarbetsprojektet påbörjades med skapandet av en inledande SPICE datormodell. Modellen möjliggjorde ett enkelt och snabbt sätt att testa både konvergens och genomförbarhet av topologin samtidigt som designen utvecklades från den välkända och vitt använda Switch Power Supply-teknologin till den detaljerade designen och implementationen av prototypen. Modellen stöttade samtidigt den iterativa processen av test och optimering. Alla faser är utförligt beskrivna i rapporten och arbetet visar både teoretiskt och praktiskt att denna idé är genomförbar och möjliggör kraftöverföring.
APA, Harvard, Vancouver, ISO, and other styles
2

Ortiz-Hernández, Wilfredo. "Energy transfer in dendrimers." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0009300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ortego, Javier Moreno. "Light-controlled energy transfer." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17263.

Full text
Abstract:
Mit dem Ziel stabile und photomodulierbare Fluorophore für ihre direkte Anwendung in der hochaufgelösten Mikroskopie, wurde die Synthese und Charakterisierung von neuen fern Rot emittierender photoschaltbarer Fluorophore erreicht. Hierbei wurde die elektronische Kopplung zwischen den Komponenten tiefgreifend untersucht, und die Struktur Eigenschafts Beziehung etabliert. Durch die Wechselwirkung der photochromen Einheit mit dem Fluorophor, konnte die Fluoreszenzemission ein- und ausgeschaltet werden. Zusätzlich wurden Einkapselungs Experimente in Micellen durchgeführt, um die Wasserlöslichkeit der synthetisierten Verbindungen zu untersuchen. Letzlich, wurden mögliche Anwendungen mittels Fluoreszenzmikroskopie geprüft. Mit dem Ziel hochaufgelöste Bilder unter biologischen Bedingungen zu erhalten, wurde die Verkapselung der Dyaden in riesige unilamellare Vesikel erprobt. Unter Ausnutzung der Vorteile nichtlinearer Prozesse wurde die Synthese und Charakterisierung von photochromen Verbindungen, die in der Lage indirekt durch einen anfänglichen sensibilisierten Prozess geschaltet werden, untersucht. Zu diesem Zweck wurde ein Triarylamin Chromophor als Zwei-Photonenabsorber kovalent an einen Azobenzol verbunden. Die Charakterisierung der angeregten Zustandsdynamik wurde ausgeführt und die zwei Photonen induzierte Isomerisierung der Dyade bestätigt. Eine detaillierte Untersuchung der elektrochemischen Eigenschaften wurde durchgeführt und Richtlinien zur Verbesserung des Systems wurden kurz genannt.
With the purpose of designing stable and photomodulable fluorophores for their direct application in subdiffraction microscopy techniques, the synthesis and characterization of new far-red emitting photoswitchable fluorophores was accomplished. Fluorescence emission was efficiently modulated or switched On and Off by the interaction of the photochromic unit with the fluorescent-unit. Additionally, encapsulation experiments in micelles were performed to investigate the water solubility of the synthesized compounds. Finally, potential applications were examined with fluorescence microscopy, encapsulating the dyads in giant uni-lamellar vesicles under biological conditions to explore the feasibility to obtain highly resolved subdiffraction images. Exploiting the advantages of nonlinear processes, the synthesis and characterization of photochromes which are able to be switched indirectly through an initial sensitized event were studied. With this determination a two-photon absorbing triarylamine chromophore was covalently linked to an electron poor azobenzene. In-depth characterization of the excited state dynamics was performed and two photon induced isomerization of the dyad was confirmed. A detailed study of the electrochemical properties was set and guidelines towards the improvement of the system were succinctly mentioned.
APA, Harvard, Vancouver, ISO, and other styles
4

Clarkson, Ian Michael. "Energy transfer in lanthanide complexes." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4498/.

Full text
Abstract:
This thesis details investigations into the photophysical properties of lanthanide ions in a number of different systems. The preparation and characterisation of lanthanide containing surfactant salts of the type Ln(A0T)(_3) (Ln = Tb, Nd, Eu, AOT = bis-(2-ethylhexyl) sulfosuccinate) is described. Small angle neutron scattering experiments have been used to determine the size and shape of reverse micelles formed by these surfactants in water/cyclohexane microemulsions. The luminescence lifetimes of the lanthanide ions have been used to investigate the solvation environment within reverse micelle systems as a function of water content. The use of lanthanide complexes based on 1,4,7,10-tetraazacyclododecane bearing phenanthridine antenna in luminescence microscopy has been explored. Samples such as silica particles, onion skin cells and guinea pig heart cells have been imaged. Time- resolved measurements have allowed time gating of the sample from a fluorescent background and lifetime maps of the images have been obtained. The preparation and characterisation of deuteriated complexes of dota (1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid) with lanthanide ions is described. Selective deuteriation of both the ring and arm sites allow the relative quenching effects of C-H/D oscillators to be determined for various lanthanides in a series of structurally well defined complexes. Finally, investigations into the distance dependence of the energy transfer between aromatic chromophores and lanthanide ions have been undertaken. The synthesis of a model system linking a phenanthridine donor to a europium complex by poly(valine) spacer units is described. Preliminary photophysical results show that the quantum yield of emission by europium decreases as the distance between the donor acceptor pair is increased.
APA, Harvard, Vancouver, ISO, and other styles
5

Eley, C. D. "Energy transfer in unimolecular reactions." Thesis, University of Reading, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Pihong. "Nonradiative energy transfer in solutions." Scholarly Commons, 1994. https://scholarlycommons.pacific.edu/uop_etds/2807.

Full text
Abstract:
Electronic excitation energy transfer from coumarins to xanthene dyes in different media has been investigated. Nonradiative energy transfer between coumarin 1 (d) and fluorescein (a), in 95% ethanol and in n-octanol takes place with critical transfer distances: 48.4 A (d-a) and 21.0 A (d-d) in 95% ethanol, and 46.4 A (d-a) and 25.4 A (d-d) in 1-octanol. The rate constants of nonradiative energy transfer and energy migration in these two solvents were compared with the rates of diffusion. Energy transfer in the three-component system coumarin 1/fluorescein/rhodamine B, was studied. The critical transfer distances between each two of the three components were: 48.4 A for coumarin 1/fluorescein; 42.2 A for coumarin 1/rhodamine B; and 65.5 A for fluorescein rhodamine B respectively. The quantitative description of this three component system indicates that, using our modified correction factors, the experimental data coincided satisfactorily with Kusba-Bojarski general equations of multi-component luminescence system. Nonradiative energy transfer between coumarin 6 and rhodamine 3B in poly-(methyl methacrylate) was studied. The fluorescence quantum yields of coumarin 6 in the monomer and polymer were measured to be 1.00 and 0.94 respectively. The calculated critical transfer distances were: 50.0 A (d-a) and 38.9 A (d-d) in the monomer; and 47.7 A (d-a) and 38.2 A (d-d) in the polymer. Unexpected high energy transfer efficiency was observed in the polymer. Environmental effects on the fluorescence of the fluorophore and the mechanism of energy transfer in fluid and rigid solutions were discussed. Fluorescence quantum yields of coumarin 1 in various alcohols were measured to be: 0.573 in 95% ethanol; 0.688 in ethanol; 0.826 in n-propanol; 0.814 in n-butanol; 0.818 in n-pentanol; 0.912 in n-hexanol; 0.846 in n-heptanol; 0.869 in n-octanol; 0.876 in n-nonanol and 0.882 in n-decanol. The fluorescence lifetimes of coumarin 1 in these alcohols, were calculated to be: 2.23; 3.20; 3.67; 3.42; 3.76; 3.47; 3.35; 3.88; 3.64; and 3.57 ns respectively. Solvent effects on the quantum yields were discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Shilin. "Reversible electronic energy transfer in rotaxane architectures." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0127/document.

Full text
Abstract:
L'objectif de cette thèse est la mise en place et l'étude d'un transfert d'énergie électronique réversible (REET), à la suite d’une excitation lumineuse, entre des sous-composants moléculaires au sein d’architectures nanométriques de type rotaxane. Dans un système bichromophorique, lorsque les états excités du chromophore les plus bas sont quasi-isoénergétiques et que la cinétique du transfert interchromophore est rapide, le REET peut être instillé en modifiant les propriétés de l'état excité. Des dérivés du pyrène et du tris(bipyridine)ruthénium(II) ont été choisis comme chromophores appariés. La formation de rotaxane a été catalysée par du cuivre (réactions de Huisgen et Cadiot-Chodkiewicz) au sein d’un macrocycle doté de pyrène, couplant des demi-fils moléculaires comprenant des groupements terminaux volumineux - dont Ru(bpy)32+. Des durées de vie de luminescence prolongée (jusqu'à 14 μs), comparées au parent Ru(bpy)32+, indiquent que des processus de transfert d'énergie électroniques réversibles ont été établis dans une série de rotaxanes de structure variable, sont étudiés par spectroscopies stationnaire et résolue dans le temps
The focus of this thesis is the establishment and study of reversible electronic energy transfer (REET), following light excitation, between molecular subcomponents within ring-on-thread rotaxane nanometric architectures. When the lowest-lying chromophore excited states are quasi-isoenergetic and kinetics of interchromophore transfer are rapid, REET can be instilled - changing excited-state properties. Pyrene and ruthenium(II) tris(bipyridine) derivatives were chosen as matched chromophores. Rotaxane formation was based on active template copper catalysis (Huisgen and Cadiot-Chodkiewicz reactions) within a pyrene-decorated macrocycle, coupling half threads comprising bulky stopper groups - one of which being Ru(bpy)32+. Prolonged luminescence lifetimes (up to 14 μs), compared to parent Ru(bpy)32+, indicated that reversible electronic energy transfer processes were instilled in a series of rotaxanes of varying structure, which were studied by state-state and time-resolved spectroscopies
APA, Harvard, Vancouver, ISO, and other styles
8

Westlund, Arvid, and Oskar Bernberg. "Efficient Energy Transfer for Wireless Devices." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-177255.

Full text
Abstract:
This project is intended to findsuitable circuit architecture forefficient power transmission where thepower supply is low.Two circuits will be built. The firstwill receive high AC which correspondsto the voltage created in a piezoelement once subjected to stress fromfoot steps It will deliver 3.3DC.The second circuit will receive low ACwhich will represent voltage receivedfrom a wireless transfer.Due to a failing high voltage powersupply the second circuit was never putto practice. The idea was to send a wavefile through an OP-amplifier to simulatethe voltage from the piezo element. Thevoltage was then rectified and convertedto 3.3DC.Circuit 2 was tested with a frequencygenerator as power supply. The voltagewas transformed, rectified and at lastconverted to 3.3DC through a voltageregulator. Due to lack of deliveredpower from the frequency generator itwas necessary to duty cycle the load tolimit the power dissipation.The power dissipation in the voltageregulator was limited as well byswitching it on and off. When switchedoff a capacitor was charged. When in onmode the capacitor was emptied into thevoltage regulator.
Det här projektet är ämnat att hittalämpliga kretsarkitetkturer för braeffektöverföring där energikällorna ärmycket begränsade.Två kretsar ska byggas. Den första skata emot hög växelspänning motsvarandespänningen som uppkommer i ettpiezoelement vilket utsätts för växlandetryck. I det här fallet trycket från enmänniskas fotsteg. Kretsen ska leverera3.3V likspänning.Den andra kretsen ska ta emot en lågväxelspänning, vilken motsvarar spänningfrån en trådlös överföring, och leverera3.3V.Krets 1 blev aldrig testad på grund avett fallerande högspänningsaggregat.Genom att skicka en wav-fil genom en OPförstärkareskulle en simulerad spänningfrån piezoelementet användas. Därefterskulle spänningen likriktas ochkonverteras ner till 3.3V.Krets 2 testades med en signalgeneratorsom spänningskälla. Spänningentransformerades först upp innan denlikriktades och skickades in i enspänningsreglator för att därefter ge ut3.3V. Med en liten levererad effekt frånsignalgeneratorn var det nödvändigt attbegränsa effektåtgången i lasten genompulsbreddmodulering. Effektåtgången ispänningsreglatorn begränsades ocksågenom att stänga av och på IC:n(spänningsregulatorn). När IC:n varavstängd laddades en kondensator upp somsedan tömdes i IC:n då den aktiveradesigen.
APA, Harvard, Vancouver, ISO, and other styles
9

Quacquarelli, Francesca Paola. "Energy transfer in directly reconfigurable nanomachines." Thesis, University of Sheffield, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.632820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gowrie, Sarah. "FTIR emission studies of energy transfer." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531817.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Energy transfer"

1

Barrett, Terence W., and Herbert A. Pohl, eds. Energy Transfer Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71867-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Andrews David. Resonance energy transfer. New York: Wiley, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Joerg, Reuss, ed. Molecular energy transfer. Amsterdam: North-Holland, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oguti, Takasi. Sun-earth energy transfer. [Oslo, Norway]: Norwegian Academy of Science and Letters, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vekshin, N. L. Energy transfer in macromolecules. Bellingham, Wash: SPIE Optical Engineering Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1967-, Dauxois T., ed. Energy localisation and transfer. River Edge, NJ: World Scientific, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. National Aeronautics and Space Administration., ed. Monoball energy transfer: Test report. Huntsville, Ala: University of Alabama, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. Congress. Office of Technology Assessment., ed. Energy technology transfer to China. Washington, D.C: Congress of the U.S., Office of Technology Assessment, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yeh, Chou, Bertoglio Jean-Pierre, and Institute for Computer Applications in Science and Engineering., eds. Energy transfer in compressible turbulence. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. Congress. Office of Technology Assessment., ed. Energy technology transfer to China. Washington, D.C: Congress of the U.S., Office of Technolgy Assessment, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Energy transfer"

1

Lakowicz, Joseph R. "Energy Transfer." In Principles of Fluorescence Spectroscopy, 367–94. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-3061-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joyce, Philip. "Energy Transfer." In Practical Numerical C Programming, 145–49. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6128-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Struck, Charles W., and William H. Fonger. "Energy Transfer." In Inorganic Chemistry Concepts, 75–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-48629-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eisert, Wolfgang G. "Energy Transfer." In Flow Cytometry, 189–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blasse, G., and B. C. Grabmaier. "Energy Transfer." In Luminescent Materials, 91–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79017-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kajimoto, Okitsugu. "Energy Transfer." In From Molecules to Molecular Systems, 110–26. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-66868-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cole, Robert E. "Technology Transfer." In Global Energy Strategies, 189–93. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1256-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McMordie, Robert K., Mitchel C. Brown, and Robert S. Stoughton. "Heat Transfer." In Solar Energy Fundamentals, 19–48. New York: Routledge, 2021. http://dx.doi.org/10.1201/9780203739204-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Govorov, Alexander, Pedro Ludwig Hernández Martínez, and Hilmi Volkan Demir. "Energy Transfer Review." In Understanding and Modeling Förster-type Resonance Energy Transfer (FRET), 9–17. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-378-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Horneck, Gerda. "Linear Energy Transfer." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_892-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Energy transfer"

1

Di Wu, Hao Chen, T. Das, and D. C. Aliprantis. "Bidirectional Power Transfer between HEVs and Grid without External Power Converters." In 2008 IEEE Energy 2030 Conference. IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andrews, David L., and Richard G. Crisp. "Directed energy transfer." In Optics & Photonics 2005, edited by Martin W. McCall, Graeme Dewar, and Mikhail A. Noginov. SPIE, 2005. http://dx.doi.org/10.1117/12.612260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Hierarchical Energy-transfer Features." In International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004829506950702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Contactless energy transfer systems." In 2011 IEEE 20th International Symposium on Industrial Electronics (ISIE). IEEE, 2011. http://dx.doi.org/10.1109/isie.2011.5984456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MANIADIS, P., G. KOPIDAKIS, and S. AUBRY. "QUANTUM TARGETED ENERGY TRANSFER." In Proceedings of the Third Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704627_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Muller-Steinhagen, Hans, and Franz Trieb. "High temperature solar energy - The key to sustainable energy provision." In International Heat Transfer Conference 12. Connecticut: Begellhouse, 2002. http://dx.doi.org/10.1615/ihtc12.3410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clegg, Robert M., Melih Sener, and Govindjee. "From Förster resonance energy transfer to coherent resonance energy transfer and back." In BiOS, edited by Robert R. Alfano. SPIE, 2010. http://dx.doi.org/10.1117/12.840772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Balaji, Chakravarthy, and Srikanth Rangarajan. "THERMAL ENERGY STORAGE - PATHWAY TO ENERGY-EFFICIENT ELECTRONICS AND BATTERY SYSTEMS." In International Heat Transfer Conference 17. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ihtc17.90-180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lavrinovich, Ivan V., Anton P. Artyomov, Alexander S. Zhigalin, Vladimir I. Oreshkin, Nikolay A. Ratakhin, Alexander G. Rousskikh, Anatoly V. Fedyunin, Stanislav A. Chaikovsky, Alexander A. Erfort, and Vladimir F. Feduschak. "Capacitive energy stores with nanosecond energy transfer." In 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7180006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Xiao Ping, Masataka Mochizuki, Koichi Mashiko, Thang Nguyen, Tien Nguyen, Vijit Wuttijumnong, Gerald Cabusao, Randeep Singh, and Aliakbar Akbarzadeh. "Data Center Energy Conservation by Heat Pipe Cold Energy Storage System." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23128.

Full text
Abstract:
In this paper, design and economic analysis for applying a novel type of heat pipe into cold energy storage systems have been proposed and discussed. The heat pipe cold energy storage systems can be designed into several types that are ice storage, cold water storage and pre-cool heat exchanger. Those systems can be used for co-operating with conventional chiller system for cooling data centers. The heat load used for discussing in this paper is 8800 kW which represents a large scale data center. The methodology addressed in this paper can be also converted into the middle and small sizes of the data centers. This type of storage system will help to downsize the chiller and decrease its running time that would be able to save significant electricity cost and decrease green house gas emissions from the electricity generation. The proposed systems can be easily connected into the existing conventional systems without major design changes. The analysis in this paper is using Air Freezing Index AFI >= 400 °C-days/year for sizing the heat pipe modules. For the locations where AFI has different value the storage size will be varied accordingly. The paper also addressed a result that an optimum size of cold energy storage system that should be designed at a level to handle 60% of total yearly heat load of a data center.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Energy transfer"

1

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/6369309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6020364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/6020379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6022834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5118367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barker, J. R. Energy transfer properties and mechanisms. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/6743182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sinclair, Michael B., Julie A. Last, Andrea Lynn Slade, Thomas A. Westrich, Darryl Yoshio Sasaki, Jerrold Anthony Floro, and Steven Craig Seel. Nanomaterials for directed energy transfer. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/882541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barker, J. R. Energy transfer properties and mechanisms. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5615709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fayer, M. D. Energy transfer processes in solar energy conversion. Progress report. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/10102283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mills, Evan. Risk transfer via energy savings insurance. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/789175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography