Academic literature on the topic 'ENERGY MOLECULES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ENERGY MOLECULES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ENERGY MOLECULES"
Willich, Marcel M., Lucas Wegener, Johannes Vornweg, Manuel Hohgardt, Julia Nowak, Mario Wolter, Christoph R. Jacob, and Peter Jomo Walla. "A new ultrafast energy funneling material harvests three times more diffusive solar energy for GaInP photovoltaics." Proceedings of the National Academy of Sciences 117, no. 52 (December 14, 2020): 32929–38. http://dx.doi.org/10.1073/pnas.2019198117.
Full textYu, Chang Feng. "A Novel High Precision Analytic Potential Function for Diatomic Molecules." Key Engineering Materials 645-646 (May 2015): 313–18. http://dx.doi.org/10.4028/www.scientific.net/kem.645-646.313.
Full textBorodin, Dmitriy, Igor Rahinov, Pranav R. Shirhatti, Meng Huang, Alexander Kandratsenka, Daniel J. Auerbach, Tianli Zhong, et al. "Following the microscopic pathway to adsorption through chemisorption and physisorption wells." Science 369, no. 6510 (September 17, 2020): 1461–65. http://dx.doi.org/10.1126/science.abc9581.
Full textMATSUI, A. H., M. TAKESHIMA, K. MIZUNO, and T. AOKI-MATSUMOTO. "PHOTOPHYSICAL OVERVIEW OF EXCITATION ENERGY TRANSFER IN ORGANIC MOLECULAR ASSEMBLIES — A ROUTE TO STUDY BIO-MOLECULAR ARRAYS —." International Journal of Modern Physics B 15, no. 28n30 (December 10, 2001): 3857–60. http://dx.doi.org/10.1142/s0217979201008846.
Full textMehboob, Muhammad Yasir, Muhammad Usman Khan, Riaz Hussain, Rafia Fatima, Zobia Irshad, and Muhammad Adnan. "Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells." Journal of Theoretical and Computational Chemistry 19, no. 08 (September 18, 2020): 2050034. http://dx.doi.org/10.1142/s0219633620500340.
Full textMishra, Mirtunjai, Narinder Kumar, Khem Thapa, B. S. Rawat, Reena Dhyani, Devendra Singh, and Devesh Kumar. "Physical, chemical, optical and insulating properties of alkyl benzoic acid derivatives liquid crystal due to extension alkyl chain (CNH2N+1) length: A DFT study." Kragujevac Journal of Science, no. 45 (2023): 21–28. http://dx.doi.org/10.5937/kgjsci2345021m.
Full textSivanathan, M., and B. Karthikeyan. "Computational Studies of Self Assembled 3,5 Bis(Tri Fluoro Methyl) Benzyl Amine Phenyl Alanine Nano Tubes." Materials Science Forum 1070 (October 13, 2022): 105–13. http://dx.doi.org/10.4028/p-ftw4x6.
Full textJungclas, Hartmut, Viacheslav V. Komarov, Anna M. Popova, and Lothar Schmidt. "Pyrene Fluorescence in Nanoaggregates Irradiated by IR Photons." Zeitschrift für Naturforschung A 69, no. 12 (December 1, 2014): 629–34. http://dx.doi.org/10.5560/zna.2014-0069.
Full textGajdoš, Ján, and Tomáš Bleha. "Stability of molecular aggregates of hydrocarbons with all-trans chains and translation of the molecules." Collection of Czechoslovak Chemical Communications 50, no. 7 (1985): 1553–64. http://dx.doi.org/10.1135/cccc19851553.
Full textLu, Peifen, Junping Wang, Hui Li, Kang Lin, Xiaochun Gong, Qiying Song, Qinying Ji, et al. "High-order above-threshold dissociation of molecules." Proceedings of the National Academy of Sciences 115, no. 9 (February 13, 2018): 2049–53. http://dx.doi.org/10.1073/pnas.1719481115.
Full textDissertations / Theses on the topic "ENERGY MOLECULES"
Hoffmeyer, Ruth Ellen. "High-energy electron scattering from molecules." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35471.pdf.
Full textRawi, Zaid. "Rotational energy transfer in polyatomic molecules." Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390073.
Full textPounds, Andrew J. "A generalized discrete dynamical search method for locating minimum energy molecular geometries." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/27144.
Full textBall, Christopher D. "Rotational energy transfer in low temperature molecules /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487951214940079.
Full textRempe, Susan Lynne Beamis. "Potential energy surfaces for vibrating hexatomic molecules /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8536.
Full textShi, Yuanyuan. "Materials and molecules for pollution free clean energy." Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/664725.
Full textLa combustión de los combustibles fósiles ha causado problemas medioambientales y energéticos a nivel mundial, lo que influye en la salud y las actividades humanas. Con la motivación de contribuir para resolver estos problemas, hemos realizado una serie de investigaciones para explorar materiales y moléculas para la generación de energía libre de contaminación, como es la energía solar convertida en hidrógeno que propone esta tesis. Hemos analizado estadísticamente las partículas contaminantes en el aire, partículas de PM2.5, las cuales indican que los agregados de hollín ricos en carbono muestran una adhesividad y agregación muy altas. Más del 50% de las partículas PM2.5 interactúan fuertemente con el sustrato a través de una capa muy delgada (<10 nm) de trazas oscura la cual es muy estable incluso bajo estrés mecánico y está compuesta de metales alcalinos, hidrógeno y grupos CH. Después del estudio sobre partículas contaminantes en el aire, nos hemos centrado en el estudio de dispositivos de división de agua mediante radiación solar para explorar la generación de hidrógeno a gran escala. En esta tesis, nos hemos centrado principalmente en la investigación de materiales y moléculas para divisores de moléculas de agua fotoelectroquímicos (PEC) y fotovoltaico-electrolíticos (PV-EC). Nuestros resultados muestran que en los dispositivos PEC, pueden depositarse en la superficie de los foto-ánodos de silicio películas delgadas metálicas de cobre y níquel, pudiendo formar CuO y NiOX respectivamente. Ambos materiales actúan como catalizadores muy activos para la reacción de oxidación de agua y a la vez como una capa protectora de la corrosión para superficie de silicio. Por otro lado, los dispositivos PV-EC, para los que se usó un ánodo basado en moléculas catalizadoras de Rutenio, se ha integrado con células solares de unión triple comerciales. Estos dispositivos han logrado una eficiencia máxima de conversión energía solar-hidrógeno del 21,2% a pH neutro y justo por debajo de la iluminación solar sin ninguna polarización externa. Estos resultados allanan el camino para la generación de hidrógeno por conversión solar a gran escala.
The combustion of the fossil fuels has caused the global environment and energy problems, which influences human health and activities. With the motivation to make our contributions to solving these problems, we have performed a series of investigations to explore materials and molecules for pollution free clean energy, which is solar energy converted hydrogen in this thesis. We have statistically analyzed the airborne pollutant particles, PM2.5 particles, which indicates that the carbon-rich fluffy soot aggregates always show very high adhesiveness and aggregation. And more than 50% PM2.5 particles strongly interact with the substrate through a ultra-thin (< 10 nm) dark trace layer, which is very stable even under mechanical stress and it is consisted of alkali metals, hydrogen and CH groups. After the study about airborne pollutant particles, we have moved to the study of solar-driven water splitting devices for exploring the large-scale generation of hydrogen. In this thesis, we have mainly focused on the investigation of the materials and molecules for photoelectrochemical (PEC) and photovoltaic-electrolysis (PV-EC) water splitting devices. Our results show that in the PEC water splitting devices, copper and nickel metallic thin films can be deposited on the surface of silicon photoanodes, which can form CuO and NiOX respectively and then serve as very active catalysts for water oxidation reaction and a protecting layer for silicon surface from corrosion. And in PV-EC water splitting devices, the ruthenium molecular catalysts based anode has been used for the electrolyzer, which has been integrated with commercially available triple junction solar cells. This integrated PV-EC device achieves the highest solar-to-hydrogen efficiency of 21.2 % at neutral pH and just under solar illumination without any external bias. These results pave the way for the generation of large-scale solar converted hydrogen.
Wickham-Jones, C. T. "Studies of vibrational energy transfer of small molecules." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371569.
Full textLyons, Benjamin Paul. "Energy transfer to dopant molecules in polyfluorene films." Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2722/.
Full textHock, Kai Meng. "Low energy electron scattering from molecules on surfaces." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240119.
Full textBarnard, John Cameron. "Low energy electron scattering by ordered adsorbed molecules." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321430.
Full textBooks on the topic "ENERGY MOLECULES"
1950-, Scott P. R., ed. Energy levels in atoms and molecules. Oxford: Oxford University Press, 1994.
Find full textLafferty, Peter. Matter and energy. New York: Macmillan, 1991.
Find full textWong, Wai-Yeung, ed. Organometallics and Related Molecules for Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46054-2.
Full textMay, Volkhard. Charge and energy transfer dynamics in molecular systems. 3rd ed. Weinheim: Wiley-VCH, 2011.
Find full textOliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems. 2nd ed. Weinheim: Wiley-VCH, 2004.
Find full textOliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems. 3rd ed. Weinheim: Wiley-VCH, 2011.
Find full textGroup theory for atoms, molecules, and solids. Englewood Cliffs, N.J: Prentice-Hall International, 1986.
Find full textJacox, Marilyn E. Vibrational and electronic energy levels of polyatomic transient molecules. Woodbury, N.Y: American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, 1994.
Find full textRoman, Curik, ed. Low-energy electron scattering from molecules, biomolecules, and surfaces. Boca Raton: Taylor & Francis, 2012.
Find full textOliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems: A theoretical introduction. Berlin: Wiley-VCH, 2000.
Find full textBook chapters on the topic "ENERGY MOLECULES"
Kajimoto, Okitsugu. "Energy Transfer." In From Molecules to Molecular Systems, 110–26. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-66868-8_7.
Full textGuelachvili, G. "Energy level designations." In Linear Triatomic Molecules, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_1.
Full textGuelachvili, G. "Energy level designations." In Linear Triatomic Molecules, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74187-9_1.
Full textKhristenko, Sergei V., Viatcheslav P. Shevelko, and Alexander I. Maslov. "Energy Constants of Molecules." In Molecules and Their Spectroscopic Properties, 39–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71946-2_3.
Full textGuelachvili, G. "Potential energy function (PEF)." In Linear Triatomic Molecules, 13–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_4.
Full textGuelachvili, G. "Potential energy function (PEF)." In Linear Triatomic Molecules, 19–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74187-9_4.
Full textBohm, Arno. "Energy Spectra of Some Molecules." In Quantum Mechanics: Foundations and Applications, 117–58. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4352-6_3.
Full textBohm, Arno, and Mark Loewe. "Energy Spectra of Some Molecules." In Quantum Mechanics: Foundations and Applications, 117–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88024-7_3.
Full textBohm, Arno. "Energy Spectra of Some Molecules." In Quantum Mechanics: Foundations and Applications, 117–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-01168-3_3.
Full textYurchenko, Sergey. "Kinetic energy operator: Triatomic molecules." In Computational Spectroscopy of Polyatomic Molecules, 79–100. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429154348-4.
Full textConference papers on the topic "ENERGY MOLECULES"
Garcia Ortega, Pablo. "Hadronic Molecules." In 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0165.
Full textHill, Jeffrey R., and Dana D. Dlott. "Vibrational Relaxation and Energy Transfer in Ordered and Disordered Molecular Crystals." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.tuf2.
Full textQuan, Haiyong, and Zhixiong (James) Guo. "Energy Transfer and Molecule-Radiation Interaction in Optical Microcavities." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14689.
Full textOng, Wen Jie, Ellen M. Sletten, Farnaz Niroui, Jeffrey H. Lang, Vladimir Bulovic, and Timothy M. Swager. "Electromechanically actuating molecules." In 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE, 2015. http://dx.doi.org/10.1109/e3s.2015.7336809.
Full textWolf, H. C. "Molecules for energy transfer and switching." In Molecular electronics—Science and Technology. AIP, 1992. http://dx.doi.org/10.1063/1.42656.
Full textCasado, Juan. "Diradicaloid Organic Molecules in Energy Conversion." In nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.237.
Full textLiang, Zhi, and Hai-Lung Tsai. "Ab Initio Calculations of Vibrational Energy Levels and Transition Dipole Moments of CO2 Molecules." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67765.
Full textHarris, C. B., D. J. Russell, K. E. Schultz, and J. Z. Zhang. "Energy redistribution in molecules on the femtosecond timescale." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fj1.
Full textBoeckler, Cathrin, Armin Feldhoff, and Torsten Oekermann. "Nanostructured ZnO films electrodeposited using monosaccharide molecules as templates." In Solar Energy + Applications, edited by Jinghua Guo. SPIE, 2007. http://dx.doi.org/10.1117/12.730630.
Full textIvanov, Evgeny, Munetake Nishihara, Igor Adamovich, and J. Rich. "Energy Transfer Kinetics of Vibrationally Excited Molecules." In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4514.
Full textReports on the topic "ENERGY MOLECULES"
Chang, Yan-Tyng. Potential energy surfaces and reaction dynamics of polyatomic molecules. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5926228.
Full textChang, Yan-Tyng. Potential energy surfaces and reaction dynamics of polyatomic molecules. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10124759.
Full textDavis, Steven J. Rotational Energy Transfer in Metastable States of Heteronuclear Molecules. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada226768.
Full textBadgett, Alex, William Xi, and Mark Ruth. The Potential for Electrons to Molecules Using Solar Energy. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819945.
Full textDlott, Dana D. Vibrational Energy in Molecules and Nanoparticles: Applications to Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada495351.
Full textLewandowski, Heather. Resonant Energy Transfer in a System of Cold Trapped Molecules. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada565577.
Full textCrim, F. F. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada469746.
Full textPulay, Peter, and Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416248.
Full textTanjore, Deepti. Testing molecules that disperse biofilms and biofouling and improve water recycling energy efficiency. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1633788.
Full textRempe, Susan, Josh Vermaas, and Emad Tajkhorshid. Coupling Chemical Energy with Protein Conformational Changes to Translocate Small Molecules Across Membranes. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1563079.
Full text