Books on the topic 'Energy management strategies for hybrid electric vehicles'

To see the other types of publications on this topic, follow the link: Energy management strategies for hybrid electric vehicles.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 25 books for your research on the topic 'Energy management strategies for hybrid electric vehicles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Williamson, Sheldon S. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7711-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Engineers, Society of Automotive, and Future Transportation Technology Conference and Exposition (1997 : San Diego, Calif.), eds. Electric/hybrid vehicles: Alternative powerplants, energy management, and battery technology. Warrendale, PA: Society of Automotive Engineers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yuecheng, and Hongwen He. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-79206-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rizzoni, Giorgio, Simona Onori, and Lorenzo Serrao. Hybrid Electric Vehicles: Energy Management Strategies. Springer London, Limited, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rizzoni, Giorgio, Simona Onori, and Lorenzo Serrao. Hybrid Electric Vehicles: Energy Management Strategies. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Williamson, Sheldon S. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Williamson, Sheldon S. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Williamson, Sheldon S. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. SPRINGER, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Williamson, Sheldon S. Energy Management Strategies for Electric and Plug-In Hybrid Electric Vehicles. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Williamson, Sheldon S. S. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Panigrahi, Siba Prasada. Energy Management in Hybrid Electric Vehicles. Elsevier Science & Technology Books, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bridges, Hilda. Hybrid Vehicles and Hybrid Electric Vehicles: New Developments, Energy Management and Emerging Technologies. Nova Science Publishers, Incorporated, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Energy Systems for Electric and Hybrid Vehicles. Institution of Engineering & Technology, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Innovative Antriebe 2018. VDI Verlag, 2018. http://dx.doi.org/10.51202/9783181023341.

Full text
Abstract:
Zukünftiges Mobilitätsverhalten Mobilität 2050 – Selfdriving-eCo-Hyperflyyer, Drahtesel, oder was? . . . . . . . . . . . . . . . . . . .1 K. C. Keller, Aveniture GmbH, Freinsheim Ökobilanzierung Einfluss von Zellbauform und Zellchemie auf die Ökobilanz von batterieelektrischen Fahrzeugen . . . . . . . . . .5 T. Semper, M. Clauß, IAV GmbH, Stollberg; A. Forell, IAV GmbH, Bad Cannstatt Anwendungsfallabhängige CO2 -Bilanzen elektrifizierter Fahrzeugantriebe –Use case driven CO2 footprint of electrified powertrains . . . . . . . . . . . . . . .17 O. Ludwig, J. Muth, M. Gernuks, H. Schröder, T. Löscheter Horst, Volkswagen AG, Wolfsburg Prädiktion der Lebensdauer von Traktionsbatteriesystemen für reale Nutzungsszenarien . . . .33 M. Ufert, Professur für Fahrzeugmechatronik, Technische Universität Dresden; A. Batzdorf, L. Morawietz, IAM GmbH, Dresden Predictive Energy Management Strategies for Hybrid Electric Vehicles: eHorizon for Battery Management System. . . . . 49 M. ...
APA, Harvard, Vancouver, ISO, and other styles
15

Engineers, Society of Automotive. Electric Hybrid Vehicles: Alternative Powerplants, Energy Management, and Battery Technology. SAE International, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Teng, Liu, and Amir Khajepour. Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

He, Hongwen, and Li Yeuching. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Teng, Liu. Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles. Springer International Publishing AG, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Yeuching, and Hongwen He. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yeuching, Li, and He Hongwen. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Teng, Liu, and Amir Khajepour. Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Yeuching, and Hongwen He. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Teng, Liu, and Amir Khajepour. Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

SIMVEC – Simulation und Erprobung in der Fahrzeugentwicklung. VDI Verlag, 2018. http://dx.doi.org/10.51202/9783181023334.

Full text
Abstract:
Inhalt Zukünftiges Mobilitätsverhalten Mobilität 2050 – Selfdriving-eCo-Hyperflyyer, Drahtesel, oder was? . . . . . . . . . . . . . . . . . . .1 K. C. Keller, Aveniture GmbH, Freinsheim Ökobilanzierung Einfluss von Zellbauform und Zellchemie auf die Ökobilanz von batterieelektrischen Fahrzeugen . . . . . . .5 T. Semper, M. Clauß, IAV GmbH, Stollberg; A. Forell, IAV GmbH, Bad Cannstatt Anwendungsfallabhängige CO2 -Bilanzen elektrifizierter Fahrzeugantriebe – Use case driven CO2 footprint of electrified powertrains . . . . . . . . . . . . . . . . . . . . . . . . . . 17 O. Ludwig, J. Muth, M. Gernuks, H. Schröder, T. Löscheter Horst, Volkswagen AG, Wolfsburg Prädiktion der Lebensdauer von Traktionsbatteriesystemen für reale Nutzungsszenarien . . . .33 M. Ufert, Professur für Fahrzeugmechatronik, Technische Universität Dresden; A. Batzdorf, L. Morawietz, IAM GmbH, Dresden Predictive Energy Management Strategies for Hybrid Electric Vehicles: eHorizon for Battery Manage...
APA, Harvard, Vancouver, ISO, and other styles
25

Sarkar, B. K., and Reena Singh. Hydrogen Fuel Cell Vehicles Current Status. Namya Press, 2022. http://dx.doi.org/10.56962/9789355451118.

Full text
Abstract:
Abstract: The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources, the perfect one to use as an energy source for vehicles is hydrogen. Like electricity, hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. On-board hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study, a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes, the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants, which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers, the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies, one can produce a sustainable hybrid car.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography