Dissertations / Theses on the topic 'ENERGY HARVESTING APPLICATIONS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'ENERGY HARVESTING APPLICATIONS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Martin, Benjamin Ryan. "Energy Harvesting Applications of Ionic Polymers." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32024.
Full textMaster of Science
Ersoy, Kurtulus. "Piezoelectric Energy Harvesting For Munitions Applications." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613589/index.pdf.
Full textand ORCAD PSPICE®
, and finite element method models generated in ATILA®
. Optimum energy storage methods are considered.
Sze, Ngok Man. "Switching converter techniques for energy harvesting applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?ECED%202007%20SZE.
Full textOliva, Alexander. "Multi-source energy harvesting for lightweight applications." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119580.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 193-197).
This thesis analyzes, designs and tests circuit topologies for simultaneous energy harvesting from solar and 915-MHz RF energy sources. An important design objective is to minimize system weight while maximizing output power and operating time for applications in the sub-170-mg and single-mW ranges. The resulting energy harvesting system uses a unique approach of categorizing the harvesters as primary and auxiliary harvesters due to the power levels of each in relation to the high load demand. This work results in a 162-mg supercapacitor-powered system capable of powering a 2-V load at up to approximately 2-3 mW and a 150-mg battery-powered system capable of powering a 2-V load at up to 6 mW. The auxiliary RF harvester uses a fully-integrated charge pump to impedance-match to a rectenna with greater than 94% matching. The parasitic models developed for the RF harvester show errors less than 1.4% in the measured system.
by Alexander Oliva.
M. Eng.
Smilek, Jan. "Energy Harvesting Power Supply for MEMS Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-386765.
Full textWang, X., S. Dong, Ashraf F. Ashour, and B. Han. "Energy-harvesting concrete for smart and sustainable infrastructures." A Springer Nature Publication, 2021. http://hdl.handle.net/10454/18553.
Full textConcrete with smart and functional properties (e.g., self-sensing, self-healing, and energy-harvesting) represents a transformative direction in the field of construction materials. Energy-harvesting concrete has the capability to store or convert the ambient energy (e.g., light, thermal, and mechanical energy) for feasible uses, alleviating global energy and pollution problems as well as reducing carbon footprint. The employment of energy-harvesting concrete can endow infrastructures (e.g., buildings, railways, and highways) with energy self-sufficiency, effectively promoting sustainable infrastructure development. This paper provides a systematic overview on the principles, fabrication, properties, and applications of energy-harvesting concrete (including light-emitting, thermal-storing, thermoelectric, pyroelectric, and piezoelectric concretes). The paper concludes with an outline of some future challenges and opportunities in the application of energy-harvesting concrete in sustainable infrastructures.
The full-text of this article will be released for public view at the end of the publisher embargo on 19 Jul 2022.
Constantinou, Peter. "A magnetically sprung generator for energy harvesting applications." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508049.
Full textSimone, Dominic J. "Modeling a linear generator for energy harvesting applications." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44669.
Full textThe intent of this research is to draw attention to linear generators and their potential uses. A flexible model of a linear generator created in MATLAB Simulink is presented. The model is a three-phase, 12-pole, non-salient, synchronous permanent magnet linear generator with a non-sinusoidal back electromotive force (EMF) but could easily be adapted to fit any number of poles or any back EMF waveform. The emerging technologies related to linear generators such as wave energy converters and free-piston engines are explained. A selection of these technologies is generically modeled and their results are discussed and contrasted against one another. The model clearly demonstrates the challenges of using linear generators in different scenarios. It also proves itself a useful tool in analyzing and improving the performance of linear generators under a variety of circumstances.
Choi, Yeonsik. "Novel functional polymeric nanomaterials for energy harvesting applications." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/282877.
Full textThompson, Nicholas John. "Singlet exciton fission : applications to solar energy harvesting." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89959.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-147).
Singlet exciton fission transforms a single molecular excited state into two excited states of half the energy. When used in solar cells it can double the photocurrent from high energy photons increasing the maximum theoretical power efficiency to greater than 40%. The steady state singlet fission rate can be perturbed under an external magnetic field. I utilize this effect to monitor the yield of singlet fission within operating solar cells. Singlet fission approaches unity efficiency in the organic semiconductor pentacene for layers more than 5 nm thick. Using organic solar cells as a model system for extracting photocurrent from singlet fission, I exceed the convention limit of 1 electron per photon, realizing 1.26 electrons per incident photon. One device architecture proposed for high power efficiency singlet fission solar cells coats a conventional inorganic semiconducting solar with a singlet fission molecule. This design requires energy transfer from the non-emissive triplet exciton to the semiconducting material, a process which has not been demonstrated. I prove that colloidal nanocrystals accept triplet excitons from the singlet fission molecule tetracene. This enables future devices where the combine singlet fission material and nanocrystal system energy transfer triplet excitons produced by singlet fission to a silicon solar cell.
by Nicholas J. Thompson.
Ph. D.
Abeywickrama, Thulitha Madawa. "Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications." TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1748.
Full textThomas, Michael Brandon. "Donor-Acceptor Systems: Photochemistry and Energy Harvesting Applications." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703335/.
Full textOlgun, Ugur. "Efficient Microwave Energy Harvesting Technology and its Applications." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1348776239.
Full textChen, Zhi Yuan. "Efficient power management design for energy harvesting biomedical applications." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3952096.
Full textNagode, Clement Michel Jean. "Electromechanical Suspension-based Energy Harvesting Systems for Railroad Applications." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50611.
Full textThe focus of this research is on the development of vibration-based electromechanical energy harvesting systems that would provide electrical power in a freight car. With size and shape similar to conventional shock absorbers, these devices are designed to be placed in parallel with the suspension elements, possibly inside the coil spring, thereby maximizing unutilized space. When the train is in motion, the suspension will accommodate the imperfections of the track, and its relative velocity is used as the input for the harvester, which converts the mechanical energy to useful electrical energy.
Beyond developing energy harvesters for freight railcar primary suspensions, this study explores track wayside and miniature systems that can be deployed for applications other than railcars. The trackside systems can be used in places where electrical energy is not readily available, but where, however, there is a need for it. The miniature systems are useful for applications such as bicycle energy.
Beyond the design and development of the harvesters, an extensive amount of laboratory testing was conducted to evaluate both the amount of electrical power that can be obtained and the reliability of the components when subjected to repeated vibration cycles. Laboratory tests, totaling more than two million cycles, proved that all the components of the harvester can satisfactorily survive the conditions to which they are subjected in the field. The test results also indicate that the harvesters are capable of generating up to 50 Watts at 22 Vrms, using a 10-Ohm resistor with sine wave inputs, and over 30 Watts at peak with replicated suspension displacements, making them suitable to directly power onboard instruments or to trickle charge a battery.
Ph. D.
Roscow, James. "Composite ferroelectric materials for energy harvesting and storage applications." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761037.
Full textWang, Xiaoyu. "An Ambient Energy Harvesting System for Passive RFID Applications." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175154.
Full textShen, Dongna Kim Dong Joo. "Piezoelectric energy harvesting devices for low frequency vibration applications." Auburn, Ala., 2009. http://hdl.handle.net/10415/1603.
Full textCarvalho, Carlos Manuel Ferreira. "CMOS indoor light energy harvesting system for wireless sensing applications." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/13127.
Full textThis research thesis presents a micro-power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched-capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT Fractional Open Circuit Voltage (VOC) technique is implemented by an asynchronous state machine (ASM) that creates and, dynamically, adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point (MPP) condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge reusing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm2 in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm2, is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m2. After starting-up, the system requires an irradiance of only 0.18 W/m2 (18 mW/cm2) to remain in operation. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mW. These values are, to the best of the authors’ knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3% for an input power of 48 mW, which is comparable with reported values from circuits operating at similar power levels.
Portuguese Foundation for Science and Technology (FCT/MCTES), under project PEst-OE/EEI/UI0066/2011, and to the CTS multiannual funding, through the PIDDAC Program funds. I am also very grateful for the grant SFRH/PROTEC/67683/2010, financially supported by the IPL – Instituto Politécnico de Lisboa.
Hawes, David. "Nonlinear stochastic vibration analysis for energy harvesting and other applications." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/263016.
Full textChanyawadee, Soontorn. "Resonant energy transfer in light harvesting and light emitting applications." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/72508/.
Full textOsborne, Daniel Josiah. "A Nanoengineering Approach to Oxide Thermoelectrics For Energy Harvesting Applications." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/36133.
Full textMaster of Science
Shao, Hui. "System design and power management for ultra low energy applications using energy harvesting techniques /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?ECED%202009%20SHAO.
Full textMcVay, Elaine D. "Large scale applications of 2D materials for sensing and energy harvesting." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111925.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
In this project we demonstrate the fabrication and characterization of printed reduced graphene oxide strain sensors, Chemical Vapor Deposition (CVD) 2D material transistors, and tungsten diselenide (WSe₂) photovoltaic devices that were produced through a combination of printing and conventional microfabrication processes. Each of these components were designed with the purpose of fitting into a "smart skin" system that could be discretely integrated into and sense its environment. This thesis document will describe the modification-of a 3D printer to give it inkjet capabilities that allow for the direct deposition of graphene oxide flakes onto a 3D printed surface. These graphene oxide flake traces were then reduced, making them more conductive and able to function as strain sensors. Next, this thesis will discuss the development of CVD molybdenum disulfide (MoS₂) and CVD graphene transistors and how they can be modified to function as chemical sensors. Finally, this work will detail steps taken to design, fabricate, and test a WSe₂ photovoltaic device which is composed of a printed active layer. In summary, these devices can fit into the sensing, communication, and energy harvesting blocks required in realizing a ubiquitous sensing system.
by Elaine D. McVay.
S.M.
Zainal, Nurfarina. "Rapid melt growth of crystalline germanium for solar energy harvesting applications." Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.677964.
Full textAbdelmoaty, Ahmed A. "Circuit and System Techniques for Energy-Harvesting Platforms for Mobile Applications." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1481832223757049.
Full textCavalheiro, David. "Ultra-low power circuits based on tunnel FETs for energy harvesting applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/406391.
Full textHa habido una tremenda evolución en la tecnología de circuitos integrados en las últimas décadas. Con el escalado de transistores de metal-óxido-semiconductor (CMOS), se han hecho posibles chips más rápidos, con menos consumo de energía y más complejos con menos área y esto ha posibilitado la existencia de los aparatos electrónicos que vemos en la actualidad. La creciente demanda de portabilidad implica que el consumo de energía es un indicador clave en el diseño analógico y digital. Mientras que el consumo de potencia dinámica disminuye cuadráticamente con la disminución de la tensión de fuente de alimentación, la potencia de fugas presenta una limitación debido a la pendiente sub-umbral inverso (sub-threshold slope, SS). Una reducción de la tensión de alimentación implica una consecuente reducción de tensión umbral a fin de mantener las prestaciones que, dado el SS fijo, causa un aumento exponencial de la corriente de fuga. Esto plantea una limitación en la reducción de consumo de energía que es inherente a los transistores convencionales basados en inyección de portadores termoiónicos (MOSFETS y FinFETs). En transistores termoiónicos la SS a temperatura ambiente está limitado a 60 mV / dec. Para eludir la limitación SS de transistores convencionales se requieren dispositivos con mecanismos diferentes de inyección de portadores. El transistor túnel de efecto campo (TFET) se presenta como la tecnología más prometedora debido a su mecanismo de inyección de portadores no térmico basado en el efecto Band-To-Band Tunneling (BTBT). Los TFETs se conocen como dispositivos de alta pendiente sub-umbral (SS <60 mV / dec a temperatura ambiente). Han sido ya demostradas ganancias de corriente elevadas (ION / IOFF> 10 ^ 5) en operación de baja tensión (sub-0,25 V) y una corriente de fugas extremadamente bajo, colocando los TFETs como serios candidatos para aplicaciones de circuitos eficientes de ultra-baja potencia y energía. Los TFETs se han explorado sobre todo en circuitos digitales y aplicaciones. En esta tesis, el uso de TFETs se explora como una tecnología alternativa también para circuitos de potencia y de conversión de tensión ultra-bajas, adecuada para fuentes de energía del ambiente, usualmente muy limitadas en magnitud. Debido a que los TFETs están diseñados como diodos p-i-n en polarización inversa (hay diferente tipo de dopaje en las regiones fuente / drenador), sus características eléctricas particulares en condiciones de polarización inversa requieren cambios en las topologías de circuito convencionales. En la tesis, rectificadores, bombas de carga y circuitos de gestión de la energía (PMC) con TFETs se diseñan y analizan, realizando una evaluación de su rendimiento con la propuesta de nuevas topologías que extienden el rango de tensión y potencia de operación en comparación con tecnologías y topologías de circuitos actuales. Se proponen PMCs basados en TFET para fuentes de RF y DC y se identifican las limitaciones (con soluciones) de la utilización de TFETs en convertidores elevadores convencionales basados en inductores.
Hi ha hagut una tremenda evolució en la tecnologia de circuits integrats en les últimes dècades. Amb l'escalat de transistors de metall-òxid-semiconductor (CMOS), s'han fet possibles xips més ràpids, amb menys consum d'energia i més complexos amb menys àrea i això ha possibilitat l'existència dels aparells electrònics que veiem en l'actualitat. La creixent demanda de portabilitat implica que el consum d'energia és un indicador clau en el disseny analògic i digital. Mentre que el consum de potència dinàmica disminueix quadràticament amb la disminució de la tensió de font d'alimentació, la potència de fuites presenta una limitació a causa del pendent sub-llindar invers (sub-threshold slope, SS). Una reducció de la tensió d'alimentació implica una conseqüent reducció de tensió llindar a fi de mantenir les prestacions que, donat el SS fix, causa un augment exponencial del corrent de fuita. Això planteja una limitació en la reducció de consum d'energia que és inherent als transistors convencionals basats en injecció de portadors termoiònics (MOSFETS i FinFETs). En transistors termoiònics la SS a temperatura ambient està limitat a 60 mV / dec. Per eludir la limitació SS de transistors convencionals es requereixen dispositius amb mecanismes diferents d'injecció de portadors. El transistor túnel d'efecte camp (TFET) es presenta com la tecnologia més prometedora a causa del seu mecanisme d'injecció de portadors no tèrmic basat en l'efecte Band-To-Band Tunneling (BTBT). Els TFETs es coneixen com a dispositius d'alt pendent sots-llindar (SS <60 mV / dec a temperatura ambient). Han estat ja demostrats guanys de corrent gran (ION / IOFF> 10 ^ 5) en operació de baixa tensió (sub-0,25 V) i un corrent de fuites extremadament baix, col·locant els TFETs com a seriosos candidats per a aplicacions de circuits eficients d'ultra-baixa potència i energia. Els TFETs s'han explorat sobretot en circuits digitals i aplicacions. En aquesta tesi, l'ús de TFETs s'explora com una tecnologia alternativa també per a circuits de potència i de conversió de tensió ultra-baixes, adequada per a fonts d'energia de l'ambient, usualment molt limitades en magnitud. Degut a que els TFETs estan dissenyats com díodes p-i-n en polarització inversa (hi ha diferent tipus de dopatge en les regions font / drenador), les seves característiques elèctriques particulars en condicions de polarització inversa requereixen canvis en les topologies de circuit convencionals. En la tesi, rectificadors, bombes de càrrega i circuits de gestió de l'energia (PMC) amb TFETs es dissenyen i analitzen, realitzant una avaluació del seu rendiment amb la proposta de noves topologies que estenen el rang de tensió i potència d'operació en comparació amb tecnologies i topologies de circuits actuals. Es proposen PMCs basats en TFET per fonts de RF i DC i s'identifiquen les limitacions (amb solucions) de la utilització de TFETs en convertidors elevadors convencionals basats en inductors.
Chang, Samuel C. "A 1-mW vibration energy harvesting system for moth flight-control applications." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58456.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 97-98).
This thesis focuses on the approach and methodologies required to build a 1-mW energy-harvesting system for moth flight control applications. The crepuscular hawk moth Manduca sexta is the chosen test subject. This project is part of the Hybrid Insect MEMS (HI-MEMS) program. The objective of the program is to establish an interface between adult insect neural systems, wireless communication and MEMS systems so that insects may be directed to fly to specific locations in real time. As in all micro-air vehicles, power is one of the major concerns. A power source on the moth is required to support the flight control and wireless communication systems. There are two methods by which these payloads might be powered. The first method is to draw power from a battery, while the second method is to harvest energy from the environment. Batteries have the advantage of simplicity, while energy harvesting systems have much longer life and lower mass per total energy delivered. In addition, the total mass of circuitry, MEMS devices, and batteries may severely limit flight duration. Therefore, we have chosen the energy-harvesting method. The energy harvesting system includes a vibration energy harvester and a boost converter that delivers power at the required 1-V level for the entire flight control system.
(cont.) The latest harvester has a mass of 1.28 g and output power of 1.7 mW into a matched resistive load when the moth vibrates with a +0.37-mm amplitude at 25.8 Hz, resulting in a ±7.82-mm harvester amplitude. A 2-stage AC-DC boost converter with off chip inductors has been designed and fabricated in 0.18 um CMOS technology. SPICE simulation and experiments using equivalent discrete components prove that the converter can achieve 71.68% efficiency. The test experiment of the chip will be conducted later this winter and is not included in the scope of this thesis.
by Samuel C. Chang.
S.M.
Martínez-Denegrí, Sánchez Guillermo. "Light harvesting and energy efficiency in perovskite solar cells and their applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672666.
Full textLos problemas medioambientales asociados al uso de combustibles convencionales requieren del uso de fuentes de energía renovables, así como de la implementación de diseños eficientemente energéticos para reducir el consumo de energía. La tecnología fotovoltaica puede emplearse para cubrir ambas estrategias convirtiendo no sólo la luz natural, sino también la artificial, en electricidad. De entre las diferentes tecnologías fotovoltaicas emergentes, las perovskitas alcanzan la más alta eficiencia en conversión de potencia, al mismo tiempo que proporcionan una banda de energía prohibida ampliamente ajustable con pérdidas mínimas de tensión de circuito abierto. Además, su fabricación usa materiales abundantemente disponibles, y no requiere necesariamente de procesos a alta temperatura ni de técnicas de deposición en vacío. En esta tesis, mejoramos la colección de luz en celdas de perovskitas, a la vez que abordamos el concepto de eficiencia energética a través de una fabricación optimizada y su integración en estructuras selectivas de luz. Esto es conseguido gracias a la implementación de estrategias ópticas y materiales aplicadas a diseños específicos de celdas solares de perovskita. Los resultados demuestran que tales estrategias proporcionan una colección de luz y un rendimiento fotovoltaico mayor aplicable a dispositivos fabricados a baja temperatura, y permiten el reciclaje de luz en electricidad para aplicaciones fotónicas alternativas. Las técnicas presentadas podrían ser utilizadas en procedimientos futuros para disminuir la cantidad de Pb empleado en celdas solares de perovskita, y para reducir el consumo de energía durante su fabricación y el funcionamiento de otros dispositivos optoelectrónicos. La tesis está organizada en cuatro capítulos. El Capítulo 1 sirve como una introducción, donde la actual situación energética y la tecnología fotovoltaica son analizadas junto a una descripción de la recolección de luz y la eficiencia energética en celdas solares de perovskita. En el Capítulo 2, demostramos el uso de una estructura periódica para propagar luz ergódicamente y así aumentar la absorción de luz en las celdas solares de perovskita, de manera equivalente a lo que se obtendría usando superficies aleatoriamente texturizadas. Esta estructura sirve como herramienta para reducir el contenido de Pb empleado en celdas solares de perovskita, ya que se puede utilizar 30% menos de material para obtener una celda solar con un rendimiento equivalente. En el Capítulo 3, la misma configuración periódica con una estructura de capa fina depositada en su superficie es empleada como guía de luz, la cual es, además, capaz de transmitir luz polarizada. Además, dos celdas de perovskita integradas en sus laterales reciclan la luz no transmitida en electricidad, incrementando la eficiencia energética del proceso óptico, lo cual podría tener futura aplicación en pantallas de cristal líquido. Finalmente, en el Capítulo 4, demostramos la aplicación de una bicapa de nanopartículas hecha de una capa de SnO2 y otra de TiO2 como materiales de tipo n en celdas solares perovskita. Este tipo de dispositivos, basados en procesos a baja temperatura, funcionan mejor que los que integran un único tipo de nanopartículas, especialmente en dispositivos semitransparentes. En tales dispositivos conseguimos un funcionamiento hasta 30% mejor para celdas solares basadas en capas activas extremadamente finas.
Fotònica
Ramesh, Dinesh. "The Role of Interface in Crystal Growth, Energy Harvesting and Storage Applications." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752367/.
Full textTrimble, A. Zachary. "Energy harvesting of random wide-band vibrations with applications to an electro-magnetic rotational energy harvester." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67604.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 205-207).
In general, vibration energy harvesting is the scavenging of ambient vibration by transduction of mechanical kinetic energy into electrical energy. Many mechanical or electro-mechanical systems produce mechanical vibrations. The kinetic energy associated with these mechanical vibrations represents a potential source of energy for sensors and other electronics. In fact, as the energy requirements for electronics and wireless communications systems has reduced, harvested energy from vibrations has been successfully used to power several wireless sensors. However, these sensors are implemented on systems with harmonic vibration sources. Most ambient vibrations are noisy, wide-band, and/or stochastic. As such, a resonant tuned-mass damper, with a narrow band-width, filters and discards much of the energy in the vibration spectrum, or worse, resonant harvesters will not resonate in stochastic environments. Several solutions are commonly proposed for harvesting energy from wide-band excitations; multiple resonators tuned to different frequencies (farm systems), non-linear systems, input excitation rectification, and frequency tuning are the most common. This thesis addresses some of the wide-band and/or stochastic challenges to vibration energy harvesting by investigating vibration energy harvesting as a power source for sensors and communications in a down-hole environment. This thesis shows that regardless of the transducer, a single resonant harvester tuned to the frequency with the maximum displacement times frequency cubed produces more power than a farm of resonant harvesters tuned to a range of frequencies. Additionally, this thesis shows that an electromagnetic harvester can be passively tuned to increase the power in a non-stationary system with a peak frequency that is a function of time. Finally, this thesis presents a new resonant, rotational architecture, which has the advantage of simultaneously maximizing the coupling inertia and displacement.
by A. Zachary Trimble.
Ph.D.
Cao, Jinwei. "BIOELECTRICITY INSPIRED POLYMER ELECTROLYTE MEMBRANES FOR SENSING AND ENGERGY HARVESTING APPLICATIONS." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1541721597835991.
Full textAlothman, Abdulmohsen Abdulrahman. "Modeling and Applications of Thermoelectric Generators." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79846.
Full textPh. D.
Song, Hang. "Fabrication and characterisation of electrospun polyvinylidene fluoride (PVDF) nanocomposites for energy harvesting applications." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/12850.
Full textMasghouni, Nejib. "Hybrid Carbon Fiber/ZnO Nanowires Polymeric Composite for Stuctural and Energy Harvesting Applications." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64354.
Full textPh. D.
Deshpande, Samruddhi Aniruddha. "Numerical Investigation of Various Heat Transfer Performance Enhancement Configurations for Energy Harvesting Applications." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72129.
Full textMaster of Science
Melilli, Giuseppe. "Irradiation and nanostructuration of piezoelectric polymers for nano-sensoring and harvesting energy applications." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX072/document.
Full textThe versatility of the track-etching technique has allowed to investigate deeper the direct and inverse piezoelectric effect of a polarized Poly(vinylidene fluoride) (PVDF) film in building nanostructured hybrid Nickel nanowires (Ni NWs)/PVDF membrane. The magnetic properties of the Ni NW, such as anisotropic magneto resistance (AMR), are exploited to investigate the response of the magnetization to a mechanical deformation of the PVDF matrix. In particular, the deformations were induced either by thermo-mechanical or an electro-mechanical (inverse piezoelectric effect) stress. The sensitivity of the single NW has allowed to determine the amplitude and direction of a mechanical stress exerted at the nano-scale by the PVDF matrix. The outstanding resistance of the direct piezoelectric response of polarized PVDF film to radiation, such as SHI and e-beam, (doses range < 100kGy) was reported. Beyond the conservation of the piezoelectric response, in this dose range, irradiation defects (chain scissions, increase of the crystalline -phase, crosslinking) had a significative impact on the polymer material. All these defects, ones predominant above the gel dose (herein 10 kGy), and the other ones below, compensate their antagonistic effects towards the globally unchanged piezoelectric responses. Motivated by the high radiation resistance of the PVDF in terms of piezoelectric response, the idea was to exploit Ni NWs array embedded in the polarized PVDF membrane to study the influence of the Ni NWs on the piezoelectric response in view of harvesting energy application. The presence of the Ni NWs array leads a non-negligible increase of the piezoelectric efficiency. Related to the presence of the NWs, an increase of the dielectric permittivity in the nanostructured PVDF was also reported. An interfacial polarization between the Ni NWs and the PVDF matrix could explain the higher efficiency value respect to nanoporous PVDF, without NWs
KIPTIEMOI, KIPRONO KORIR. "ZnO nanowires for energy harvesting and gas sensing applications: a quantum mechanical study." Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2539901.
Full textIMBRAGUGLIO, DARIO. "Nanostructured carbon/silicon composite opto-electrochemical devices for sensing and energy harvesting applications." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2506359.
Full textBoughey, Chess. "Electrodeposited functional nanowires for energy applications." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277679.
Full textÁlvarez-Carulla, Albert. "Energy Harvesting Solutions for Self-Powered Devices: From Structural Health Monitoring to Biomedical Applications." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/670900.
Full textLa tesis recoge la investigación realizada sobre el desarrollo de dispositivos verdaderamente auto- alimentados. Se muestra el desarrollo de dispositivos para el ámbito de la monitorización de la salud de estructuras (SHM) y el ámbito de los dispositivos Point-of-Care (PoC). Para ello, se implementan nuevas soluciones del ámbito de la recolección de energía para utilizar un único transductor como elemento sensor y de fuente de alimentación para el sistema. En esta investigación, los transductores utilizados son generadores piezoeléctricos y celdas galvánicas, siendo extrapolables los desarrollos realizados a otro tipos de transductores o generadores.
Reed, Ryan Tyler. "Wireless Information and Power Transfer Methods for IoT Applications." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104146.
Full textMaster of Science
Future devices are expected to feature high levels of interconnectivity and have long lifetimes. RF energy from dedicated power beacons or ambient sources, such as Wi-Fi, cellular, DTV, or radio stations can be used to power these devices allowing them to be battery-less. These devices that harvest the RF energy can use that energy to transmit information. This thesis develops various methods to harvest RF energy and use this energy to transmit information as efficiently as possible. The designs are verified through simulation and experimental results.
Chen, Yu-Yin. "Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00847336.
Full textWang, Leran. "Mixed technology modelling and optimisation for automotive, energy harvesting and MEMS applications using VHDL-AMS." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/65104/.
Full textMeek, Romney. "Synthesis and Characterization of Graphene-family Mesoporous Nanomaterials for Themal Energy Harvesting and Sensing Applications." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/3090.
Full textLin, Rui. "Archimedean Screw Turbine Based Energy Harvester and Acoustic Communication in Well Site Applications." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/104385.
Full textMaster of Science
Oil and Gas industry has been the primary energy source provider for our society for hundreds of years. As this industry evolves with new technologies, it also faces new challenges. One of the main challenges is the power supply problem in the oil field because of the limited lifespan of traditional batteries used in the oil production process. This study present a novel energy harvesting device that can replace the traditional batteries. By taking advantage of the constant fluid flow in various wells at oil field, the device can provide power for electronic devices, including but not limited to wireless sensors, communication modules, at the oil extraction sites, without needing additional power supply. This novel energy harvesting device can also be integrated with communication modules that uses acoustic wave to achieve wireless acoustic communication between underground and the surface. In this study, the harvester design, optimization, tests, and integration with acoustic modems were presented. With the help of such energy harvesting device, Oil and Gas industry will be one step closer to achieving true wireless, and real-time monitoring and communication. This will not only reduce maintenance cost but also greatly improve the production efficiency.
Ahmet, Ibrahim. "An investigation of tin chalcogenide precursors and thin film materials for applications in energy harvesting devices." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715286.
Full textMayer, Matthew T. "Ionic and electronic behaviors of earth-abundant semiconductor materials and their applications toward solar energy harvesting." Thesis, Boston College, 2013. http://hdl.handle.net/2345/3034.
Full textSemiconductor devices offer promise for efficient conversion of sunlight into other useful forms of energy, in either photovoltaic or photoelectrochemical cell configurations to produce electrical power or chemical energy, respectively. This dissertation examines ionic and electronic phenomena in some candidate semiconductors and seeks to understand their implications toward solar energy conversion applications. First, copper sulfide (Cu₂S) was examined as a candidate photovoltaic material. It was discovered that its unique property of cation diffusion allows the room-temperature synthesis of vertically-aligned nanowire arrays, a morphology which facilitates study of the diffusion processes. This diffusivity was found to induce hysteresis in the electronic behavior, leading to the phenomena of resistive switching and negative differential resistance. The Cu₂S were then demonstrated as morphological templates for solid-state conversion into different types of heterostructures, including segmented and rod-in-tube morphologies. Near-complete conversion to ZnS, enabled by the out-diffusion of Cu back into the substrate, was also achieved. While the ion diffusion property likely hinders the reliability of Cu₂S in photovoltaic applications, it was shown to enable useful electronic and ionic behaviors. Secondly, iron oxide (Fe₂O₃, hematite) was examined as a photoanode for photoelectrochemical water splitting. Its energetic limitations toward the water electrolysis reactions were addressed using two approaches aimed at achieving greater photovoltages and thereby improved water splitting efficiencies. In the first, a built-in n-p junction produced an internal field to drive charge separation and generate photovoltage. In the second, Fe₂O₃ was deposited onto a smaller band gap material, silicon, to form a device capable of producing enhanced total photovoltage by a dual-absorber Z-scheme mechanism. Both approaches resulted in a cathodic shift of the photocurrent onset potential, signifying enhanced power output and progress toward the unassisted photoelectrolysis of water
Thesis (PhD) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Ababneh, Majdi M. "Design of Micro-Scale Energy Harvesting Systems for Low Power Applications Using Enhanced Power Management System." Scholar Commons, 2018. http://scholarcommons.usf.edu/etd/7117.
Full textZamparette, Roger Luis Brito. "High efficiency MPPT switched capacitor DC-DC converter for photovoltaic energy harvesting aiming for IoT applications." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/173738.
Full text