Journal articles on the topic 'Energy functional'

To see the other types of publications on this topic, follow the link: Energy functional.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Energy functional.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mi, Wenhui, Alessandro Genova, and Michele Pavanello. "Nonlocal kinetic energy functionals by functional integration." Journal of Chemical Physics 148, no. 18 (May 14, 2018): 184107. http://dx.doi.org/10.1063/1.5023926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Read, James. "Functional Gravitational Energy." British Journal for the Philosophy of Science 71, no. 1 (March 1, 2020): 205–32. http://dx.doi.org/10.1093/bjps/axx048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, Xiaoqing, Xinting Huang, and Shengyu Wu. "Energy Revolution Path Based on Main Functional Region Planning." Journal of Clean Energy Technologies 5, no. 3 (May 2017): 263–67. http://dx.doi.org/10.18178/jocet.2017.5.3.380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hyun, Jin-Woo, and Dong-Un Yeom. "Equipment Importance Classification of Nuclear Power Plants Using Functional Based System." Journal of Energy Engineering 20, no. 3 (September 30, 2011): 200–208. http://dx.doi.org/10.5855/energy.2011.20.3.200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Andriotis, Antonis N. "LDA exchange-energy functional." Physical Review B 58, no. 23 (December 15, 1998): 15300–15303. http://dx.doi.org/10.1103/physrevb.58.15300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saura-Muzquiz, Matilde, and Mogens Christensen. "Functional and Energy Materials." Neutron News 27, no. 1 (January 2, 2016): 7. http://dx.doi.org/10.1080/10448632.2016.1125261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koures, Antonios G., and Frank E. Harris. "Improved correlation energy functional." International Journal of Quantum Chemistry 59, no. 1 (1996): 3–6. http://dx.doi.org/10.1002/(sici)1097-461x(1996)59:1<3::aid-qua1>3.0.co;2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sim, Eunji, Joe Larkin, Kieron Burke, and Charles W. Bock. "Testing the kinetic energy functional: Kinetic energy density as a density functional." Journal of Chemical Physics 118, no. 18 (May 8, 2003): 8140–48. http://dx.doi.org/10.1063/1.1565316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gambin, B., and W. Bielski. "Incompressible limit for a magnetostrictive energy functional." Bulletin of the Polish Academy of Sciences: Technical Sciences 61, no. 4 (December 1, 2013): 1025–30. http://dx.doi.org/10.2478/bpasts-2013-0110.

Full text
Abstract:
Abstract The modern materials undergoing large elastic deformations and exhibiting strong magnetostrictive effect are modelled here by free energy functionals for nonlinear and non-local magnetoelastic behaviour. The aim of this work is to prove a new theorem which claims that a sequence of free energy functionals of slightly compressible magnetostrictive materials with a non-local elastic behaviour, converges to an energy functional of a nearly incompressible magnetostrictive material. This convergence is referred to as a Γ -convergence. The non-locality is limited to non-local elastic behaviour which is modelled by a term containing the second gradient of deformation in the energy functional.
APA, Harvard, Vancouver, ISO, and other styles
10

Ludeña, E. V., R. López-Boada, and R. Pino. "Approximate kinetic energy density functionals generated by local-scaling transformations." Canadian Journal of Chemistry 74, no. 6 (June 1, 1996): 1097–105. http://dx.doi.org/10.1139/v96-123.

Full text
Abstract:
Different stages in the development of density functional theory are succinctly reviewed for the purpose of tracing the origin of the local-scaling transformation version of density functional theory. Explicit kinetic energy functionals are generated within this theory. These functionals are analyzed in terms of several approximations to the local-scaling function and are applied to a few selected first-row atoms. Key words: density functional theory, kinetic energy density functionals, local-scaling transformations, explicit kinetic energy functionals, kinetic energy of first-row atoms.
APA, Harvard, Vancouver, ISO, and other styles
11

Ramachandran, B. "Scaling Dynamical Correlation Energy from Density Functional Theory Correlation Functionals†." Journal of Physical Chemistry A 110, no. 2 (January 2006): 396–403. http://dx.doi.org/10.1021/jp050584x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Weiner, B., and S. B. Trickey. "State energy functionals and variational equations in density functional theory." Journal of Molecular Structure: THEOCHEM 501-502 (April 2000): 65–83. http://dx.doi.org/10.1016/s0166-1280(99)00415-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Baumann, G., and R. Duscher. "The Functional Equations for the Kinetic and Exchange Energy Functionals." physica status solidi (b) 158, no. 2 (April 1, 1990): 573–87. http://dx.doi.org/10.1002/pssb.2221580219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Prasankumar, Thibeorchews, Sujin Jose, Pulickel M. Ajayan, and Meiyazhagan Ashokkumar. "Functional carbons for energy applications." Materials Research Bulletin 142 (October 2021): 111425. http://dx.doi.org/10.1016/j.materresbull.2021.111425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Devan, Rupesh S., Yuan-Ron Ma, Jin-Hyeok Kim, Raghu N. Bhattacharya, and Kartik C. Ghosh. "Functional Nanomaterials for Energy Applications." Journal of Nanomaterials 2015 (2015): 1–2. http://dx.doi.org/10.1155/2015/131965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Furnstahl, R. J., and James C. Hackworth. "Skyrme energy functional and naturalness." Physical Review C 56, no. 5 (November 1, 1997): 2875–78. http://dx.doi.org/10.1103/physrevc.56.2875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mattsson, Ann E., and Walter Kohn. "An energy functional for surfaces." Journal of Chemical Physics 115, no. 8 (August 22, 2001): 3441–43. http://dx.doi.org/10.1063/1.1396649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chung, T. C. Mike. "Functional Polyolefins for Energy Applications." Macromolecules 46, no. 17 (August 13, 2013): 6671–98. http://dx.doi.org/10.1021/ma401244t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Harriman, John E. "A kinetic energy density functional." Journal of Chemical Physics 83, no. 12 (December 15, 1985): 6283–87. http://dx.doi.org/10.1063/1.449578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Campbell, Loudon, and F. A. Matsen. "The Ising free-energy functional." International Journal of Quantum Chemistry 59, no. 5 (1996): 391–400. http://dx.doi.org/10.1002/(sici)1097-461x(1996)59:5<391::aid-qua3>3.0.co;2-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xu, Terry T., and Jung-Kun Lee. "Functional Nanomaterials: Energy and Sensing." JOM 68, no. 4 (February 16, 2016): 1143–44. http://dx.doi.org/10.1007/s11837-016-1839-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Medvedev, Michael G., Ivan S. Bushmarinov, Jianwei Sun, John P. Perdew, and Konstantin A. Lyssenko. "Density functional theory is straying from the path toward the exact functional." Science 355, no. 6320 (January 5, 2017): 49–52. http://dx.doi.org/10.1126/science.aah5975.

Full text
Abstract:
The theorems at the core of density functional theory (DFT) state that the energy of a many-electron system in its ground state is fully defined by its electron density distribution. This connection is made via the exact functional for the energy, which minimizes at the exact density. For years, DFT development focused on energies, implicitly assuming that functionals producing better energies become better approximations of the exact functional. We examined the other side of the coin: the energy-minimizing electron densities for atomic species, as produced by 128 historical and modern DFT functionals. We found that these densities became closer to the exact ones, reflecting theoretical advances, until the early 2000s, when this trend was reversed by unconstrained functionals sacrificing physical rigor for the flexibility of empirical fitting.
APA, Harvard, Vancouver, ISO, and other styles
23

GÁL, TAMÁS. "TREATMENTS OF THE EXCHANGE ENERGY IN DENSITY-FUNCTIONAL THEORY." International Journal of Modern Physics B 22, no. 14 (June 10, 2008): 2225–39. http://dx.doi.org/10.1142/s0217979208039344.

Full text
Abstract:
Following a recent work [Gál, Phys. Rev. A64, 062503 (2001)], a simple derivation of the density-functional correction of the Hartree–Fock equations, the Hartree–Fock–Kohn–Sham equations, is presented, completing an integrated view of quantum mechanical theories, in which the Kohn–Sham equations, the Hartree–Fock–Kohn–Sham equations and the ground-state Schrödinger equation formally stem from a common ground: density-functional theory, through its Euler equation for the ground-state density. Along similar lines, the Kohn–Sham formulation of the Hartree–Fock approach is also considered. Further, it is pointed out that the exchange energy of density-functional theory built from the Kohn–Sham orbitals can be given by degree-two homogeneous N-particle density functionals (N = 1, 2, …), forming a sequence of degree-two homogeneous exchange-energy density functionals, the first element of which is minus the classical Coulomb-repulsion energy functional.
APA, Harvard, Vancouver, ISO, and other styles
24

Sharma, Prachi, Jie J. Bao, Donald G. Truhlar, and Laura Gagliardi. "Multiconfiguration Pair-Density Functional Theory." Annual Review of Physical Chemistry 72, no. 1 (April 20, 2021): 541–64. http://dx.doi.org/10.1146/annurev-physchem-090419-043839.

Full text
Abstract:
Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.
APA, Harvard, Vancouver, ISO, and other styles
25

DOBSON, J. F. "ELECTRON DENSITY FUNCTIONAL THEORY." International Journal of Modern Physics B 13, no. 05n06 (March 10, 1999): 511–23. http://dx.doi.org/10.1142/s0217979299000412.

Full text
Abstract:
A brief summary is given of electronic density functional theory, including recent developments: generalized gradient methods, hybrid functionals, time dependent density functionals and excited states, van der Waals energy functionals.
APA, Harvard, Vancouver, ISO, and other styles
26

Yang, Weitao, and John E. Harriman. "Analysis of the kinetic energy functional in density functional theory." Journal of Chemical Physics 84, no. 6 (March 15, 1986): 3320–23. http://dx.doi.org/10.1063/1.450265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yin, Wan-Jian, and Xin-Gao Gong. "Hybridized kinetic energy functional for orbital-free density functional method." Physics Letters A 373, no. 4 (January 2009): 480–83. http://dx.doi.org/10.1016/j.physleta.2008.11.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Isobe, Takeshi. "Energy estimate, energy gap phenomenon, and relaxed energy for Yang-Mills functional." Journal of Geometric Analysis 8, no. 1 (January 1998): 43–64. http://dx.doi.org/10.1007/bf02922108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gil, H., P. Papakonstantinou, C. H. Hyun, T. S. Park, and Y. Oh. "Nuclear Energy Density Functional for KIDS." Acta Physica Polonica B 48, no. 3 (2017): 305. http://dx.doi.org/10.5506/aphyspolb.48.305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kelarakis, Antonios. "Functional Nanomaterials For Energy And Sustainability." Advanced Materials Letters 5, no. 5 (May 1, 2014): 236–41. http://dx.doi.org/10.5185/amlett.2014.amwc1026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

ITOH, Yasuhiko, Masayoshi UNO, Hisao OJIMA, Shunsuke UCHIDA, Shinsuke YAMANAKA, Yukio WADA, Kensho FUJI, et al. "Nuclear Energy Systems and Functional Materials." Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 40, no. 5 (1998): 343–62. http://dx.doi.org/10.3327/jaesj.40.343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bellettini, G., A. De Masi, and E. Presutti. "Energy levels of a nonlocal functional." Journal of Mathematical Physics 46, no. 8 (August 2005): 083302. http://dx.doi.org/10.1063/1.1990107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ebert, H. P. "Functional materials for energy-efficient buildings." EPJ Web of Conferences 98 (2015): 08001. http://dx.doi.org/10.1051/epjconf/20159808001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, LU. "Functional materials for electrochemical energy storage." Materials Technology 29, sup4 (November 2014): A57—A58. http://dx.doi.org/10.1179/1066785714z.000000000304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lesinski, T., T. Duguet, K. Bennaceur, and J. Meyer. "Non-empirical pairing energy density functional." European Physical Journal A 40, no. 2 (April 30, 2009): 121–26. http://dx.doi.org/10.1140/epja/i2009-10780-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Ming, Roi Baer, Daniel Neuhauser, and Eran Rabani. "Energy window stochastic density functional theory." Journal of Chemical Physics 151, no. 11 (September 21, 2019): 114116. http://dx.doi.org/10.1063/1.5114984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nesbet, R. K. "Kinetic energy in density-functional theory." Physical Review A 58, no. 1 (July 1, 1998): R12—R15. http://dx.doi.org/10.1103/physreva.58.r12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Read, A. J., and R. J. Needs. "Tests of the Harris energy functional." Journal of Physics: Condensed Matter 1, no. 41 (October 16, 1989): 7565–76. http://dx.doi.org/10.1088/0953-8984/1/41/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Anero, J. G., and P. Español. "Dynamic Boltzmann free-energy functional theory." Europhysics Letters (EPL) 78, no. 5 (May 22, 2007): 50005. http://dx.doi.org/10.1209/0295-5075/78/50005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Levy, Mel, and Andreas Görling. "Approach to density-functional ionization energy." Physical Review B 53, no. 3 (January 15, 1996): 969–72. http://dx.doi.org/10.1103/physrevb.53.969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liang, Yu-Xia, and Rongwei Yang. "Energy functional of the Volterra operator." Banach Journal of Mathematical Analysis 13, no. 2 (April 2019): 255–74. http://dx.doi.org/10.1215/17358787-2018-0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

López-Boada, R., R. Pino, and E. V. Ludeña. "Locality of the exchange energy functional." Journal of Molecular Structure: THEOCHEM 501-502 (April 2000): 35–38. http://dx.doi.org/10.1016/s0166-1280(99)00411-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zarnikau, Jay. "Functional forms in energy demand modeling." Energy Economics 25, no. 6 (November 2003): 603–13. http://dx.doi.org/10.1016/s0140-9883(03)00043-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liang, Ji, Feng Li, and Hui-Ming Cheng. "Carbons: Multi-functional Energy Storage Materials." Energy Storage Materials 2 (January 2016): A1—A2. http://dx.doi.org/10.1016/j.ensm.2016.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Jun, Guang Zhu, Weiqing Yang, Jin Yang, Long Lin, and Yaqing Bie. "Functional Nanomaterials for Sustainable Energy Technologies." Journal of Nanomaterials 2016 (2016): 1–2. http://dx.doi.org/10.1155/2016/2606459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dimitrova, S. S., I. Zh Petkov, and M. V. Stoitsov. "A rigorous energy density functional approach." Zeitschrift f�r Physik A Atomic Nuclei 325, no. 1 (March 1986): 15–26. http://dx.doi.org/10.1007/bf01294238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dasi, Lakshmi P., Kerem Pekkan, Hiroumi D. Katajima, and Ajit P. Yoganathan. "Functional analysis of Fontan energy dissipation." Journal of Biomechanics 41, no. 10 (July 2008): 2246–52. http://dx.doi.org/10.1016/j.jbiomech.2008.04.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ammann, Bernd, Hartmut Weiss, and Frederik Witt. "The spinorial energy functional on surfaces." Mathematische Zeitschrift 282, no. 1-2 (September 28, 2015): 177–202. http://dx.doi.org/10.1007/s00209-015-1537-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ghosh, Swapan K. "Energy derivatives in density-functional theory." Chemical Physics Letters 172, no. 1 (August 1990): 77–82. http://dx.doi.org/10.1016/0009-2614(90)87220-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhou, Baojing, and Yan Alexander Wang. "An accurate total energy density functional." International Journal of Quantum Chemistry 107, no. 15 (2007): 2995–3000. http://dx.doi.org/10.1002/qua.21471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography