Dissertations / Theses on the topic 'Energy efficiency not elsewhere classified'

To see the other types of publications on this topic, follow the link: Energy efficiency not elsewhere classified.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 25 dissertations / theses for your research on the topic 'Energy efficiency not elsewhere classified.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Thakore, Renuka. "A strategic engagement model for delivering energy efficiency initiatives in the English housing sector." Thesis, University of Central Lancashire, 2016. http://clok.uclan.ac.uk/18647/.

Full text
Abstract:
Housing sectors have particular significance and impact on resource use, deployment and sustainability. Given this, they are inextricably enmeshed in a raft of conjoined issues, ranging from energy, production and consumption, through to effective governance structures and leveraged sustainable transformations. However, the real challenges facing the Housing sectors rest with the supportive societal structures which underpin the operationalisation of these issues. This includes such factors as consultation and engagement, and the identification of critical drivers and proven solutions – which are tangible barriers for sustainable transformations (particularly in the English housing system). This research presents a conceptual model – STRIDES (Strategic Tri-level Relational Interventions for Delivering Energy efficiency and Sustainability), which purposefully addresses the aforementioned barriers, and critically challenges thinking and engagement. STRIDES explicitly captures 5-INs, which embodies interrelated essential conditions needed for successful transformation. This conceptual model was developed using a mixed-method approach, engaging constructivism/interpretivism to guide the development and augmentation of this (to ensure maximum relevance and impact). The English housing system was used as the primary lens – which helped both shape and inform the research methodological approach. STRIDES was developed through: an online survey questionnaire (for systems-knowledge); Delphi questionnaires (for target-knowledge); and focus group discussions (for transformative-knowledge). The theoretical constructs and methods revealed exclusive hidden dialogue of composite correlated multi-perspective stakeholders, which highlighted tri-level influences on interdependent system-components for effective governance of sustainable transformations. Recognising and prioritising relationally responsive emerging strategies arising from STRIDES help stakeholders appreciate subtle nuances and forces across and beyond contexts. This helps positioning, especially to shape/tailor strategic interventions to deliver meaningful objectives of these sustainable transformations.
APA, Harvard, Vancouver, ISO, and other styles
2

Azabany, Azad. "Economic analysis and environmental impact of energy usage in microbusinesses in UK and Kurdistan, Iraq." Thesis, University of Central Lancashire, 2014. http://clok.uclan.ac.uk/20475/.

Full text
Abstract:
Over reliance on fossil fuels, rising global population, industrialization, demands for a higher standard of living and transportation have caused alarming damage to the environment. If current trend continues then catastrophic damage to the earth and its environment may not be reversible. There is an urgent need to reduce the use of fossils fuels and substituting it with renewable energy sources such as wind, tidal and hydroelectric. Solar source seems to be the most promising due to its environmental friendly nature, portability and reliability. This source was examined in terms of microbusinesses such as SMEs including hair dressing salon, education centre, fried chicken outlet and printing shop. Small businesses account for a large proportion of the economy. The analysis developed could be applied to small business to show their contribution to the carbon footprint and how this could be reduced using solar energy. The proportions of their current electricity usage that could be substituted with solar cells were calculated. Combined these have a significant impact. These businesses were considered for UK and Iraq with the former being more amenable to solar energy implementation. Analysis of the four SMEs showed that the most energy intensive business was fried chicken take away using a large amount of electricity and the least energy intensive business was the education centre. In the latter in UK 57% of the electricity usage could be replaced by solar energy compared to Kurdistan, which generated a surplus energy that could be fed into the national grid. The gents groom hairdressing and blue apple businesses gave intermediate figures. Parallel conclusions were drawn regarding CO2 emissions released into the atmosphere with education centre being the most environmentally friendly and the fried chicken the least. In addition, a larger public space, an international airport data was analysed and the value of solar replacement demonstrated. The methodology and data analysis approach used may be implemented for other business units and larger public spaces such as hospitals, shopping complexes and football stadiums.
APA, Harvard, Vancouver, ISO, and other styles
3

Öhman, Ben Sebastian. "Energy efficiency investments in the commercial real estate business : A study of decision drivers on the Swedish market." Thesis, Uppsala universitet, Industriell teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355254.

Full text
Abstract:
The International Energy Agency has stated that it is more sustainable to improve the energy efficiency of already existing buildings than increasing the national energy production to provide inefficient buildings with even more energy, which would result in that an increased amount of resources required to power the existing energy inefficient building stock. Taken into consideration that buildings in Sweden consume about 40% of Sweden’s final energy consumption and count for about 36% of the total greenhouse gas emissions it becomes evident that in order to decrease Sweden’s carbon foot print, it is important to understand real estate investors decision-making process. The aspiration is to provide stakeholders both on a micro and macro level with a better understanding of the real estate investors decision making process. This will enable companies (micro level) in the field to better customize their value propositions and there by enable companies to contribute to decreasing the primary energy consumption of buildings in Sweden. The macro level, referring to governmental institutions, will be provided with a better understanding of what kind of measures can be taken, to increase investments into buildings energy efficiency. It could be found from the literature reviewed for the study that there is a gap in research what comes to the Swedish market. Majority of the existing literature covers bigger markets e.g. the USA and UK but very little or if at all the Swedish market. During the literature study an existing framework on decision drivers for real estate investors was developed. The study uses mixed method consisting of qualitative and quantitative methods to answer the research questions. The study showed that the most prominent drivers on the Swedish market were the customers strategic decisions, environmental and energy certificates, reporting protocols, investment horizon, rental agreements, internal investment policies decreased property costs and building specific characteristics. It was found that the Swedish real estate investors experience very little pressure from the government to increase the energy efficiency of their buildings. It was also found that governmental subsidies are more considered a gamble than an encouragement to invest in energy efficiency due to long processing times and heavy bureaucracy.
APA, Harvard, Vancouver, ISO, and other styles
4

(6623699), Juan Carlos Orozco. "Analysis of Energy Efficiency in Truck-Drone “Last Mile” Delivery Systems." Thesis, 2019.

Find full text
Abstract:

Truck-drone delivery systems have the potential to improve how the logistics industry approaches the “last mile problem”. For the purposes of this study, the “last mile” refers to the portion of the journey between the last transportation hub and the individual customer that will consume the product. Drones can deliver packages directly, without the need for an underlying transportation network but are limited by their range and payload capacity. Studies have developed multiple truck-drone configurations, each with different approaches to leverage the benefits and mitigate the limitations of drones. Existing research has also established the drone’s reduction to package delivery time over the traditional truck only model. Two key model factors that have not been considered in previous research are the distribution of package demand, and the distribution of package weight. This study analyzes the drone’s impact to the energy efficiency of a package delivery system, which has taken a backseat to minimizing delivery time. Demand distribution dictates the travel distances required for package delivery, as well as the proportion of delivery locations that are in range for drone delivery. Package weight determines the energy consumption of a delivery and further restricts the proportion of drone eligible packages. The major contributions of this study are the development of a truck-drone tandem mathematical model which minimizes energy consumption, the construction of a population-based package demand distribution, a realistic package weight distribution, and a genetic algorithm used to solve the mathematical model developed for problems that are too computationally expensive to be solved optimally using an exact method. Results show that drones can only have a significant impact to energy efficiency in package delivery systems if implemented under the right conditions. Using truck-drone tandem systems in areas with lower package demand density affords the drone the potential for larger energy savings as larger portions of the truck distance can be replaced. Further, the lower density translates to greater differences between the road-restricted driving distance and the flying distance between delivery points. Finally, energy savings are highly dependent on the underlying package weight distribution of the system. A heavier average package weight increases the energy consumption of the system, but more importantly the portion of packages above the drone’s payload capacity severely limit the savings afforded by the incorporation of drones.


APA, Harvard, Vancouver, ISO, and other styles
5

(9503810), Jose Adrian Chavez Velasco. "COMPREHENSIVE STUDY OF THE ENERGY CONSUMPTION OF MEMBRANES AND DISTILLATION." Thesis, 2020.

Find full text
Abstract:

Molecular separations are essential in the production of many chemicals and purified products. Of all the available separation technologies, distillation, which is a thermally driven process, has been and continues to be one of the most utilized separation methods in chemical and petrochemical plants. Although distillation and other commercial technologies fulfilled most of the current separation needs, the energy-intensive nature of many molecular separations and the growing concern of reducing CO2 emissions has led to intense research to seek for more energy-efficient separation processes.


Among the emerging separation technologies alternative to distillation, there is special attention on non-thermally driven methods, such as membranes. The growing interest in non-thermal methods, and particularly in the use of membranes, has been influenced significantly from the widespread perception that they have a potential to be markedly less energy-intensive than thermal methods such as distillation. Even though many publications claim that membranes are more energy-efficient than distillation, except for water desalination, the relative energy intensity between these processes in the separation of chemical mixtures has not been deeply studied in the literature. One of the objectives of this work focuses on introducing a framework for comparative analysis of the energy intensity of membranes and distillation.


A complication generally encountered when comparing the energy consumption of membranes against an alternative process is that often the purity and recovery that can be achieved through a single membrane stage is limited. While using a multi-stage membrane process is a plausible solution to achieve both high purity and recovery, even for a simple binary separation, finding the most suitable multistage membrane process is a difficult task. This is because, for a given separation, there exists multiple cascades that fulfill the separation requirements but consume different amounts of energy. Moreover, the energy requirement of each cascade depends on the operating conditions. The first part of this work is dedicated to the development of a Mixed Integer Non-linear Program (MINLP) which allows for a given gaseous or liquid binary separation, finding the most energy-efficient membrane cascade. The permeator model, which is derived from a combination of the cross-flow model and the solution diffusion theory, and is originally expressed as a differential-algebraic equation (DAE) system, was integrated analytically before being incorporated in the optimization framework. This is in contrast to the common practice in the literature, where the DAE system is solved using various discretization techniques. Since many of the constraints have a non-convex nature, local solvers could get trapped in higher energy suboptimal solutions. While an option to overcome this limitation is to use a global solver such as BARON, it fails to solve the MINLP to the desired optimality in a reasonable amount of time for most of the cases. For this reason, we derive additional cuts to the problem by exploiting the mathematical properties of the governing equations and from physical insights. Through numerical examples, we demonstrate that the additional cuts aid BARON in expediting the convergence of branch-and-bound and solve the MINLP within 5%-optimality in all the cases tested in this work.


The proposed optimization model allows identifying membrane cascades with enhanced energy efficiency that could be potentially used for existing or new separations. In addition, it allows to compare the optimum energy consumption of a multistage membrane process against alternative separations methods and aid in the decision of whether or not to use a membrane system. Nevertheless, it should be noted that when a membrane process or any other non-thermal separation process is compared with a thermal process such as distillation, an additional complication often arises because these processes usually use different types of energies. Non-thermal processes, such as membranes, consume electrical energy as work, whereas thermal processes, such as distillations, usually consume heat, which is available in a wide range of temperatures. Furthermore, the amount of fuel consumed by a separation process strongly depends on how its supplied energy is produced, and how it is energy integrated with the rest of the plant. Unfortunately, common approaches employed to compare the energy required by thermal and non-thermal methods often lead to incorrect conclusions and have driven to the flawed perception that thermal methods are inherently more energy-intensive than non-thermal counterparts. In the second part of this work, we develop a consistent framework that enables a proper comparison of the energy consumption between processes that are driven by thermal and non-thermal energy (electrical energy). Using this framework, we refute the general perception that thermal separation processes are necessarily the most energy-intensive and conclusively show that in several industrially important separations, distillation processes consume remarkably lower fuel than non-thermal membrane alternatives, which have often been touted as more energy efficient.


In order to gain more understanding of the conditions where membranes or distillation are more energy-efficient, we carried out a comprehensive analysis of the energy consumed by these two processes under different operating conditions. The introduced energy comparison analysis was applied to two important separation examples; the separation of p-xylene/o-xylene, and propylene/propane. Our results showed that distillation is more energy favored than membranes when the target purity and recovery of the most volatile (resp. most permeable) component in the distillate (resp. permeate) are high, and particularly when the feed is not too concentrated in the most volatile (resp. most permeable) component. On the other hand, when both the recovery and purity of the most volatile (resp. most permeable) component are required at moderate levels, and particularly when the feed is highly enriched in the most volatile (resp. most permeable) component, membranes show potential to save energy as compared to distillation.

APA, Harvard, Vancouver, ISO, and other styles
6

(10506350), Amogh Agrawal. "Compute-in-Memory Primitives for Energy-Efficient Machine Learning." Thesis, 2021.

Find full text
Abstract:
Machine Learning (ML) workloads, being memory and compute-intensive, consume large amounts of power running on conventional computing systems, restricting their implementations to large-scale data centers. Thus, there is a need for building domain-specific hardware primitives for energy-efficient ML processing at the edge. One such approach is in-memory computing, which eliminates frequent and unnecessary data-transfers between the memory and the compute units, by directly computing the data where it is stored. Most of the chip area is consumed by on-chip SRAMs in both conventional von-Neumann systems (e.g. CPU/GPU) as well as application-specific ICs (e.g. TPU). Thus, we propose various circuit techniques to enable a range of computations such as bitwise Boolean and arithmetic computations, binary convolution operations, non-Boolean dot-product operations, lookup-table based computations, and spiking neural network implementation - all within standard SRAM memory arrays.

First, we propose X-SRAM, where, by using skewed sense amplifiers, bitwise Boolean operations such as NAND/NOR/XOR/IMP etc. can be enabled within 6T and 8T SRAM arrays. Moreover, exploiting the decoupled read/write ports in 8T SRAMs, we propose read-compute-store scheme where the computed data can directly be written back in the array simultaneously.

Second, we propose Xcel-RAM, where we show how binary convolutions can be enabled in 10T SRAM arrays for accelerating binary neural networks. We present charge sharing approach for performing XNOR operations followed by a population count (popcount) using both analog and digital techniques, highlighting the accuracy-energy tradeoff.

Third, we take this concept further and propose CASH-RAM, to accelerate non-Boolean operations, such as dot-products within standard 8T-SRAM arrays by utilizing the parasitic capacitances of bitlines and sourcelines. We analyze the non-idealities that arise due to analog computations and propose a self-compensation technique which reduces the effects of non-idealities, thereby reducing the errors.

Fourth, we propose ROM-embedded caches, RECache, using standard 8T SRAMs, useful for lookup-table (LUT) based computations. We show that just by adding an extra word-line (WL) or a source-line (SL), the same bit-cell can store a ROM bit, as well as the usual RAM bit, while maintaining the performance and area-efficiency, thereby doubling the memory density. Further we propose SPARE, an in-memory, distributed processing architecture built on RECache, for accelerating spiking neural networks (SNNs), which often require high-order polynomials and transcendental functions for solving complex neuro-synaptic models.

Finally, we propose IMPULSE, a 10T-SRAM compute-in-memory (CIM) macro, specifically designed for state-of-the-art SNN inference. The inherent dynamics of the neuron membrane potential in SNNs allows processing of sequential learning tasks, avoiding the complexity of recurrent neural networks. The highly-sparse spike-based computations in such spatio-temporal data can be leveraged for energy-efficiency. However, the membrane potential incurs additional memory access bottlenecks in current SNN hardware. IMPULSE triew to tackle the above challenges. It consists of a fused weight (WMEM) and membrane potential (VMEM) memory and inherently exploits sparsity in input spikes. We propose staggered data mapping and re-configurable peripherals for handling different bit-precision requirements of WMEM and VMEM, while supporting multiple neuron functionalities. The proposed macro was fabricated in 65nm CMOS technology. We demonstrate a sentiment classification task from the IMDB dataset of movie reviews and show that the SNN achieves competitive accuracy with only a fraction of trainable parameters and effective operations compared to an LSTM network.

These circuit explorations to embed computations in standard memory structures shows that on-chip SRAMs can do much more than just store data and can be re-purposed as on-demand accelerators for a variety of applications.
APA, Harvard, Vancouver, ISO, and other styles
7

(5930180), Ashish Ranjan. "Energy-efficient Memory System Design with Spintronics." Thesis, 2019.

Find full text
Abstract:

Modern computing platforms, from servers to mobile devices, demand ever-increasing amounts of memory to keep up with the growing amounts of data they process, and to bridge the widening processor-memory gap. A large and growing fraction of chip area and energy is expended in memories, which face challenges with technology scaling due to increased leakage, process variations, and unreliability. On the other hand, data intensive workloads such as machine learning and data analytics pose increasing demands on memory systems. Consequently, improving the energy-efficiency and performance of memory systems is an important challenge for computing system designers.

Spintronic memories, which offer several desirable characteristics - near-zero leakage, high density, non-volatility and high endurance - are of great interest for designing future memory systems. However, these memories are not drop-in replacements for current memory technologies, viz. Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM). They pose unique challenges such as variable access times, and require higher write latency and write energy. This dissertation explores new approaches to improving the energy efficiency of spintronic memory systems.

The dissertation first explores the design of approximate memories, in which the need to store and access data precisely is foregone in return for improvements in energy efficiency. This is of particular interest, since many emerging workloads exhibit an inherent ability to tolerate approximations to their underlying computations and data while still producing outputs of acceptable quality. The dissertation proposes that approximate spintronic memories can be realized either by reducing the amount of data that is written to/read from them, or by reducing the energy consumed per access. To reduce memory traffic, the dissertation proposes approximate memory compression, wherein a quality-aware memory controller transparently compresses/decompresses data written to or read from memory. For broader applicability, the quality-aware memory controller can be programmed to specify memory regions that can tolerate approximations, and conforms to a specified error constraint for each such region. To reduce the per-access energy, various mechanisms are identified at the circuit and architecture levels that yield substantial energy benefits at the cost of small probabilities of read, write or retention failures. Based on these mechanisms, a quality-configurable Spin Transfer Torque Magnetic RAM (STT-MRAM) array is designed in which read/write operations can be performed at varying levels of accuracy and energy at runtime, depending on the needs of applications. To illustrate the utility of the proposed quality-configurable memory array, it is evaluated as an L2 cache in the context of a general-purpose processor, and as a scratchpad memory for a domain-specific vector processor.

The dissertation also explores the design of caches with Domain Wall Memory (DWM), a more advanced spintronic memory technology that offers unparalleled density arising from a unique tape-like structure. However, this structure also leads to serialized access to the bits in each bit-cell, resulting in increased access latency, thereby degrading overall performance. To mitigate the performance overheads, the dissertation proposes a reconfigurable DWM-based cache architecture that modulates the active bits per tape with minimal overheads depending on the application's memory access characteristics. The proposed cache is evaluated in a general purpose processor and improvements in performance are demonstrated over both CMOS and previously proposed spintronic caches.

In summary, the dissertation suggests directions to improve the energy efficiency of spintronic memories and re-affirms their potential for the design of future memory systems.

APA, Harvard, Vancouver, ISO, and other styles
8

(6185759), Manish Nagaraj. "Energy Efficient Byzantine Agreement Protocols for Cyber Physical Resilience." Thesis, 2019.

Find full text
Abstract:

Cyber physical systems are deployed in a wide range of applications from sensor nodes in a factory setting to drones in defense applications. This distributed setting of nodes or processes often needs to reach agreement on a set of values. Byzantine Agreement protocols address this issue of reaching an agreement in an environment where a malicious entity can take control over a set of nodes and deviates the system from its normal operation. However these protocols do not consider the energy consumption of the nodes. We explore Byzantine Agreement protocols from an energy efficient perspective providing both energy resilience where the actions of the Byzantine nodes can not adversely effect the energy consumption of non-malicious nodes as well as fairness in energy consumption of nodes over multiple rounds of agreement.

APA, Harvard, Vancouver, ISO, and other styles
9

(8088431), Gopalakrishnan Srinivasan. "Training Spiking Neural Networks for Energy-Efficient Neuromorphic Computing." Thesis, 2019.

Find full text
Abstract:

Spiking Neural Networks (SNNs), widely known as the third generation of artificial neural networks, offer a promising solution to approaching the brains' processing capability for cognitive tasks. With more biologically realistic perspective on input processing, SNN performs neural computations using spikes in an event-driven manner. The asynchronous spike-based computing capability can be exploited to achieve improved energy efficiency in neuromorphic hardware. Furthermore, SNN, on account of spike-based processing, can be trained in an unsupervised manner using Spike Timing Dependent Plasticity (STDP). STDP-based learning rules modulate the strength of a multi-bit synapse based on the correlation between the spike times of the input and output neurons. In order to achieve plasticity with compressed synaptic memory, stochastic binary synapse is proposed where spike timing information is embedded in the synaptic switching probability. A bio-plausible probabilistic-STDP learning rule consistent with Hebbian learning theory is proposed to train a network of binary as well as quaternary synapses. In addition, hybrid probabilistic-STDP learning rule incorporating Hebbian and anti-Hebbian mechanisms is proposed to enhance the learnt representations of the stochastic SNN. The efficacy of the presented learning rules are demonstrated for feed-forward fully-connected and residual convolutional SNNs on the MNIST and the CIFAR-10 datasets.

STDP-based learning is limited to shallow SNNs (<5 layers) yielding lower than acceptable accuracy on complex datasets. This thesis proposes block-wise complexity-aware training algorithm, referred to as BlocTrain, for incrementally training deep SNNs with reduced memory requirements using spike-based backpropagation through time. The deep network is divided into blocks, where each block consists of few convolutional layers followed by an auxiliary classifier. The blocks are trained sequentially using local errors from the respective auxiliary classifiers. Also, the deeper blocks are trained only on the hard classes determined using the class-wise accuracy obtained from the classifier of previously trained blocks. Thus, BlocTrain improves the training time and computational efficiency with increasing block depth. In addition, higher computational efficiency is obtained during inference by exiting early for easy class instances and activating the deeper blocks only for hard class instances. The ability of BlocTrain to provide improved accuracy as well as higher training and inference efficiency compared to end-to-end approaches is demonstrated for deep SNNs (up to 11 layers) on the CIFAR-10 and the CIFAR-100 datasets.

Feed-forward SNNs are typically used for static image recognition while recurrent Liquid State Machines (LSMs) have been shown to encode time-varying speech data. Liquid-SNN, consisting of input neurons sparsely connected by plastic synapses to randomly interlinked reservoir of spiking neurons (or liquid), is proposed for unsupervised speech and image recognition. The strength of the synapses interconnecting the input and liquid are trained using STDP, which makes it possible to infer the class of a test pattern without a readout layer typical in standard LSMs. The Liquid-SNN suffers from scalability challenges due to the need to primarily increase the number of neurons to enhance the accuracy. SpiLinC, composed of an ensemble of multiple liquids, where each liquid is trained on a unique input segment, is proposed as a scalable model to achieve improved accuracy. SpiLinC recognizes a test pattern by combining the spiking activity of the individual liquids, each of which identifies unique input features. As a result, SpiLinC offers comparable accuracy to Liquid-SNN with added synaptic sparsity and faster training convergence, which is validated on the digit subset of TI46 speech corpus and the MNIST dataset.

APA, Harvard, Vancouver, ISO, and other styles
10

(8815964), Minsuk Koo. "Energy Efficient Neuromorphic Computing: Circuits, Interconnects and Architecture." Thesis, 2020.

Find full text
Abstract:
Neuromorphic computing has gained tremendous interest because of its ability to overcome the limitations of traditional signal processing algorithms in data intensive applications such as image recognition, video analytics, or language translation. The new computing paradigm is built with the goal of achieving high energy efficiency, comparable to biological systems.
To achieve such energy efficiency, there is a need to explore new neuro-mimetic devices, circuits, and architecture, along with new learning algorithms. To that effect, we propose two main approaches:

First, we explore an energy-efficient hardware implementation of a bio-plausible Spiking Neural Network (SNN). The key highlights of our proposed system for SNNs are 1) addressing connectivity issues arising from Network On Chip (NOC)-based SNNs, and 2) proposing stochastic CMOS binary SNNs using biased random number generator (BRNG). On-chip Power Line Communication (PLC) is proposed to address the connectivity issues in NOC-based SNNs. PLC can use the on-chip power lines augmented with low-overhead receiver and transmitter to communicate data between neurons that are spatially far apart. We also propose a CMOS 'stochastic-bit' with on-chip stochastic Spike Timing Dependent Plasticity (sSTDP) based learning for memory-compressed binary SNNs. A chip was fabricated in 90 nm CMOS process to demonstrate memory-efficient reconfigurable on-chip learning using sSTDP training.

Second, we explored coupled oscillatory systems for distance computation and convolution operation. Recent research on nano-oscillators has shown the possibility of using coupled oscillator networks as a core computing primitive for analog/non-Boolean computations. Spin-torque oscillator (STO) can be an attractive candidate for such oscillators because it is CMOS compatible, highly integratable, scalable, and frequency/phase tunable. Based on these promising features, we propose a new coupled-oscillator based architecture for hybrid spintronic/CMOS hardware that computes multi-dimensional norm. The hybrid system composed of an array of four injection-locked STOs and a CMOS detector is experimentally demonstrated. Energy and scaling analysis shows that the proposed STO-based coupled oscillatory system has higher energy efficiency compared to the CMOS-based system, and an order of magnitude faster computation speed in distance computation for high dimensional input vectors.
APA, Harvard, Vancouver, ISO, and other styles
11

(11180610), Indranil Chakraborty. "Toward Energy-Efficient Machine Learning: Algorithms and Analog Compute-In-Memory Hardware." Thesis, 2021.

Find full text
Abstract:
The ‘Internet of Things’ has increased the demand for artificial intelligence (AI)-based edge computing in applications ranging from healthcare monitoring systems to autonomous vehicles. However, the growing complexity of machine learning workloads requires rethinking to make AI amenable to resource constrained environments such as edge devices. To that effect, the entire stack of machine learning, from algorithms to hardware primitives, have been explored to enable energy-efficient intelligence at the edge.

From the algorithmic aspect, model compression techniques such as quantization are powerful tools to address the growing computational cost of ML workloads. However, quantization, particularly, can result in substantial loss of performance for complex image classification tasks. To address this, a principal component analysis (PCA)-driven methodology to identify the important layers of a binary network, and design mixed-precision networks. The proposed Hybrid-Net achieves a significant improvement in classification accuracy over binary networks such as XNOR-Net for ResNet and VGG architectures on CIFAR-100 and ImageNet datasets, while still achieving up remarkable energy-efficiency.

Having explored compressed neural networks, there is a need to investigate suitable computing systems to further the energy efficiency. Memristive crossbars have been extensively explored as an alternative to traditional CMOS based systems for deep learning accelerators due to their high on-chip storage density and efficient Matrix Vector Multiplication (MVM) compared to digital CMOS. However, the analog nature of computing poses significant issues due to various non-idealities such as: parasitic resistances, non-linear I-V characteristics of the memristor device etc. To address this, a simplified equation-based modelling of the non-ideal behavior of crossbars is performed and correspondingly, a modified technology aware training algorithm is proposed. Building on the drawbacks of equation-based modeling, a Generalized Approach to Emulating Non-Ideality in Memristive Crossbars using Neural Networks (GENIEx) is proposed where a neural network is trained on HSPICE simulation data to learn the transfer characteristics of the non-ideal crossbar. Next, a functional simulator was developed which includes key architectural facets such as tiling, and bit-slicing to analyze the impact of non-idealities on the classification accuracy of large-scale neural networks.

To truly realize the benefits of hardware primitives and the algorithms on top of the stack, it is necessary to build efficient devices that mimic the behavior of the fundamental units of a neural network, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, functional errors due to analog computing, etc. As an alternative, a purely photonic operation of an Integrate-and-Fire Spiking neuron is proposed, based on the phase change dynamics of Ge2Sb2Te5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. Further, the inherent parallelism of wavelength-division multiplexing (WDM) was leveraged to propose a photonic dot-product engine. The proposed computing platform was used to emulate a SNN inferencing engine for image-classification tasks. These explorations at different levels of the stack can enable energy-efficient machine learning for edge intelligence.

Having explored various domains to design efficient DNN models and studying various hardware primitives based on emerging technologies, we focus on Silicon implementation of compute-in-memory (CIM) primitives for machine learning acceleration based on the more available CMOS technology. CIM primitives enable efficient matrix-vector multiplications (MVM) through parallelized multiply-and-accumulate operations inside the memory array itself. As CIM primitives deploy bit-serial computing, the computations are exposed bit-level sparsity of inputs and weights in a ML model. To that effect, we present an energy-efficient sparsity-aware reconfigurable-precision compute-in-memory (CIM) 8T-SRAM macro for machine learning (ML) applications. Standard 8T-SRAM arrays are re-purposed to enable MAC operations using selective current flow through the read-port transistors. The proposed macro dynamically leverages workload sparsity by reconfiguring the output precision in the peripheral circuitry without degrading application accuracy. Specifically, we propose a new energy-efficient reconfigurable-precision SAR ADC design with the ability to form (n+m)-bit precision using n-bit and m-bit ADCs. Additionally, the transimpedance amplifier (TIA) –required to convert the summed current into voltage before conversion—is reconfigured based on sparsity to improve sense margin at lower output precision. The proposed macro, fabricated in 65 nm technology, provides 35.5-127.2 TOPS/W as the ADC precision varies from 6-bit to 2-bit, respectively. Building on top of the fabricated macro, we next design a hierarchical CIM core micro-architecture that addresses the existing CIM scaling challenges. The proposed CIM core micro-architecture consists of 32 proposed sparsity-aware CIM macros. The 32 macros are divided into 4 matrix-vector multiplication units (MVMUs) consisting of 8 macros each. The core has three unique features: i) it can adaptively reconfigure ADC precision to achieve energy-efficiency and lower latency based on input and weight sparsity, determined by a sparsity controller, ii) it deploys row-gating feature to maintain SNR requirements for accurate DNN computations, and iii) hardware support for load balancing to balance latency mismatches occurring due to different ADC precisions in different compute units. Besides the CIM macros, the core micro-architecture consists of input, weight, and output memories, along with instruction memory and control circuits. The instruction set architecture allows for flexible dataflows and mapping in the proposed core micro-architecture. The sparsity-aware processing core is scheduled to be taped out next month. The proposed CIM demonstrations complemented by our previous analysis on analog CIM systems progressed our understanding of this emerging paradigm in pertinence to ML acceleration.
APA, Harvard, Vancouver, ISO, and other styles
12

(6823670), Priyadarshini Panda. "Learning and Design Methodologies for Efficient, Robust Neural Networks." Thesis, 2019.

Find full text
Abstract:
"Can machines think?", the question brought up by Alan Turing, has led to the development of the eld of brain-inspired computing, wherein researchers have put substantial effort in building smarter devices and technology that have the potential of human-like understanding. However, there still remains a large (several orders-of-magnitude) power efficiency gap between the human brain and computers that attempt to emulate some facets of its functionality. In this thesis, we present design techniques that exploit the inherent variability in the difficulty of input data and the correlation of characteristic semantic information among inputs to scale down the computational requirements of a neural network with minimal impact on output quality. While large-scale artificial neural networks have achieved considerable success in a range of applications, there is growing interest in more biologically realistic models, such as, Spiking Neural Networks (SNNs), due to their energy-efficient spike based processing capability. We investigate neuroscientific principles to develop novel learning algorithms that can enable SNNs to conduct on-line learning. We developed an auto-encoder based unsupervised learning rule for training deep spiking convolutional networks that yields state-of-the-art results with computationally efficient learning. Further, we propose a novel "learning to forget" rule that addresses the catastrophic forgetting issue predominant with traditional neural computing paradigm and offers a promising solution for real-time lifelong learning without the expensive re-training procedure. Finally, while artificial intelligence grows in this digital age bringing large-scale social disruption, there is a growing security concern in the research community about the vulnerabilities of neural networks towards adversarial attacks. To that end, we describe discretization-based solutions, that are traditionally used for reducing the resource utilization of deep neural networks, for adversarial robustness. We also propose a novel noise-learning training strategy as an adversarial defense method. We show that implicit generative modeling of random noise with the same loss function used during posterior maximization, improves a model's understanding of the data manifold, furthering adversarial robustness. We evaluated and analyzed the behavior of the noise modeling technique using principal component analysis that yields metrics which can be generalized to all adversarial defenses.
APA, Harvard, Vancouver, ISO, and other styles
13

(11191896), Chamika M. Liyanagedera. "Intelligent Sensing and Energy Efficient Neuromorphic Computing using Magneto-Resistive Devices." Thesis, 2021.

Find full text
Abstract:

With the Moore’s Law era coming to an end, much attention has been given to novel nanoelectronic devices as a key driving force behind technological innovation. Utilizing the inherent device physics of nanoelectronic components, for sensory and computational tasks have proven to be useful in reducing the area and energy requirements of the underlying hardware fabrics. In this work we demonstrate how the intrinsic noise present in nano magnetic devices can pave the pathway for energy efficient neuromorphic hardware. Furthermore, we illustrate how the unique magnetic properties of such devices can be leveraged for accurate estimation of environmental magnetic fields. We focus on spintronic technologies in particular, due to the low current and energy requirements in contrast to traditional CMOS technologies.

Image segmentation is a crucial pre-processing stage used in many object identification tasks that involves simplifying the representation of an image so it can be conveniently analyzed in the later stages of a problem. This is achieved through partitioning a complicated image into specific groups based on color, intensity or texture of the pixels of that image. Locally Excitatory Globally Inhibitory Oscillator Network or LEGION is one such segmentation algorithm, where synchronization and desynchronization between coupled oscillators are used for segmenting an image. In this work we present an energy efficient and scalable hardware implementation of LEGION using stochastic Magnetic Tunnel Junctions that leverage the fast parallel

nature of the algorithm. We demonstrate that the proposed hardware is capable of segmenting binary and gray-scale images with multiple objects more efficiently than
existing hardware implementations.

It is understood that the underlying device physics of spin devices can be used for emulating the functionality of a spiking neuron. Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway of achieving brain-like compact and energy-efficient cognitive intelligence. Current computational models attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning and inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. Our work attempts to explore the design space and analyze the performance of nanomagnet based stochastic neuromorphic computing architectures, for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets as they are scaled into the superparamagnetic regime.

Next we investigate how the magnetic properties of spin devices can be utilized for real world sensory applications. Magnetic Tunnel Junctions can efficiently translate variations in external magnetic fields into variations in electrical resistance. We couple this property of Magnetic Tunnel Junctions with Amperes law to design a non-invasive sensor to measure the current flowing through a wire. We demonstrate how undesirable effects of thermal noise and process variations can be suppressed through novel analog and digital signal conditioning techniques to obtain reliable and accurate current measurements. Our results substantiate that the proposed noninvasive current sensor surpass other state-of-the-art technologies in terms of noise and accuracy.


APA, Harvard, Vancouver, ISO, and other styles
14

(9412388), Maryam Parsa. "Bayesian-based Multi-Objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neuromorphic System Designs." Thesis, 2020.

Find full text
Abstract:
Neuromorphic systems promise a novel alternative to the standard von-Neumann architectures that are computationally expensive for analyzing big data, and are not efficient for learning and inference. This novel generation of computing aims at ``mimicking" the human brain based on deploying neural networks on event-driven hardware architectures. A key bottleneck in designing such brain-inspired architectures is the complexity of co-optimizing the algorithm’s speed and accuracy along with the hardware’s performance and energy efficiency. This complexity stems from numerous intrinsic hyperparameters in both software and hardware that need to be optimized for an optimum design.

In this work, we present a versatile hierarchical pseudo agent-based multi-objective hyperparameter optimization approach for automatically tuning the hyperparameters of several training algorithms (such as traditional artificial neural networks (ANN), and evolutionary-based, binary, back-propagation-based, and conversion-based techniques in spiking neural networks (SNNs)) on digital and mixed-signal neural accelerators. By utilizing the proposed hyperparameter optimization approach we achieve improved performance over the previous state-of-the-art on those training algorithms and close some of the performance gaps that exist between SNNs and standard deep learning architectures.

We demonstrate >2% improvement in accuracy and more than 5X reduction in the training/inference time for a back-propagation-based SNN algorithm on the dynamic vision sensor (DVS) gesture dataset. In the case of ANN-SNN conversion-based techniques, we demonstrate 30% reduction in time-steps while surpassing the accuracy of state-of-the-art networks on an image classification dataset (CIFAR10) on a simpler and shallower architecture. Further, our analysis shows that in some cases even a seemingly minor change in hyperparameters may change the accuracy of these networks by 5‑6X. From the application perspective, we show that the optimum set of hyperparameters might drastically improve the performance (52% to 71% for Pole-Balance control application). In addition, we demonstrate resiliency of different input/output encoding, training neural network, or the underlying accelerator modules in a neuromorphic system to the changes of the hyperparameters.
APA, Harvard, Vancouver, ISO, and other styles
15

(6639257), Matthew Steven Wilfing. "Integration of Solar Microgrids." Thesis, 2019.

Find full text
Abstract:
The hydrocarbon combustion process used to generate electricity releases harmful levels of Carbon, Sulfur and Nitrogen Oxides into the atmosphere. The alternative to environmentally toxic hydrocarbon based fuel, is electricity generated from solar powered microgrids. Solar photovoltaic microgrids represent a clean, renewable and economically viable energy alternative to hydrocarbon based fuel. The microgrid project outlined the specifications required to the charge the battery powered material handling vehicles at General Stamping & Metalworks. The project was designed to replace utility supplied electrical power with a solar microgrid to charge three lead acid type batteries. The solar microgrid project specifies the system requirements, equipment selection and installation methodology. Operational strategies for additional photovoltaic applications within the organization are discussed. Outlined in the report are the costs of installation and return on investment. The project was designed to demonstrate a practical application of microgrids within a manufacturing environment. The goal of the project was to design and build a small scale installation to provide a proof of concept. The overarching goal was to reduce the toxic emissions produced by utility supplied electrical power by installing a solar powered microgrid. The end result of the analysis was that photovoltaic powered microgrids represent a viable energy generating system for battery powered applications. However, based on the regional utility price of .092 $/kWh, the solar installation did not meet the organizations investment acceptance criteria.
APA, Harvard, Vancouver, ISO, and other styles
16

(5930687), Jinglin Jiang. "Investigating How Energy Use Patterns Shape Indoor Nanoaerosol Dynamics in a Net-Zero Energy House." Thesis, 2019.

Find full text
Abstract:

Research on net-zero energy buildings (NZEBs) has been largely centered around improving building energy performance, while little attention has been given to indoor air quality. A critically important class of indoor air pollutants are nanoaerosols – airborne particulate matter smaller than 100 nm in size. Nanoaerosols penetrate deep into the human respiratory system and are associated with deleterious toxicological and human health outcomes. An important step towards improving indoor air quality in NZEBs is understanding how occupants, their activities, and building systems affect the emissions and fate of nanoaerosols. New developments in smart energy monitoring systems and smart thermostats offer a unique opportunity to track occupant activity patterns and the operational status of residential HVAC systems. In this study, we conducted a one-month field campaign in an occupied residential NZEB, the Purdue ReNEWW House, to explore how energy use profiles and smart thermostat data can be used to characterize indoor nanoaerosol dynamics. A Scanning Mobility Particle Sizer and Optical Particle Sizer were used to measure indoor aerosol concentrations and size distributions from 10 to 10,000 nm. AC current sensors were used to monitor electricity consumption of kitchen appliances (cooktop, oven, toaster, microwave, kitchen hood), the air handling unit (AHU), and the energy recovery ventilator (ERV). Two Ecobee smart thermostats informed the fractional amount of supply airflow directed to the basement and main floor. The nanoaerosol concentrations and energy use profiles were integrated with an aerosol physics-based material balance model to quantify nanoaerosol source and loss processes. Cooking activities were found to dominate the emissions of indoor nanoaerosols, often elevating indoor nanoaerosol concentrations beyond 104 cm-3. The emission rates for different cooking appliances varied from 1011 h-1 to 1014 h-1. Loss rates were found to be significantly different between AHU/ERV off and on conditions, with median loss rates of 1.43 h-1 to 3.68 h-1, respectively. Probability density functions of the source and loss rates for different scenarios will be used in Monte Carlo simulations to predict indoor nanoaerosol concentrations in NZEBs using only energy consumption and smart thermostat data.

APA, Harvard, Vancouver, ISO, and other styles
17

(10676388), Madeline Sheeley. "Regulation of Energy Metabolism in Extracellular Matrix Detached Breast Cancer Cells." Thesis, 2021.

Find full text
Abstract:

Breast cancer is the predominant cancer diagnosed among women, and the second most deadly cancer. The vast majority of cancer-related deaths is caused by the metastatic spread of cancer from the primary tumor to a distant site in the body. Therefore, new strategies which minimize breast cancer metastasis are imperative to improve patient survival. Cancer cells which acquire anchorage independence, or the ability to survive without extracellular matrix attachment, and metabolic flexibility have increased potential to metastasize. In the present studies, the ability to survive detachment and subsequent metabolic changes were determined in human Harvey-ras transformed MCF10A-ras breast cancer cells. Detachment resulted in reduced viability in a time-dependent manner with the lowest cell viability observed at forty hours. In addition, decreased cell viability was observed in both glutamine and glucose depleted detached conditions, suggesting a dependence on both nutrients for detached survival. Compared to attached cells, detached cells had reduced total pool sizes of pyruvate, lactate, α-ketoglutarate, fumarate, malate, alanine, serine, and glutamate, suggesting the metabolic stress which occurs under detached conditions. However, intracellular citrate and aspartate pools were unchanged, demonstrating a preference to maintain these pools in detached conditions. Compared to attached cells, detached cells had suppressed glutamine metabolism, as determined by decreased glutamine flux into the TCA cycle and reduced mRNA abundance of glutamine metabolizing enzymes. Further, detached glucose anaplerosis through pyruvate dehydrogenase activity was decreased, while pyruvate carboxylase (PC) expression and activity were increased. A switch in metabolism was observed away from glutamine anaplerosis to a preferential utilization of PC activity to replenish the TCA cycle, determined by reduced PC mRNA abundance in detached cells treated with a cell-permeable analog of α-ketoglutarate, the downstream metabolite of glutamine which enters the TCA cycle. These results suggest that detached cells elevate PC to increase flux of carbons into the TCA cycle when glutamine metabolism is reduced.

Vitamin D is recognized for its role in preventing breast cancer progression, and recent studies suggest that regulation of energy metabolism may contribute to its anticancer effects. Vitamin D primarily acts on target tissue through its most active metabolite, 1α,25-dihydroxyvitamin D (1,25(OH)2D). The present work investigated 1,25(OH)2D’s effects on viability of detached cells through regulation of energy metabolism. Treatment of MCF10A-ras cells with 1,25(OH)2D resulted in decreased viability of detached cells. While 1,25(OH)2D treatment did not affect many of the glucose metabolism outcomes measured, including intracellular pyruvate and lactate pool sizes, glucose flux to pyruvate and lactate, and mRNA abundance of enzymes involved in glucose metabolism, 1,25(OH)2D treatment reduced detached PC expression and glucose flux through PC. A reduction in glutamine metabolism was observed with 1,25(OH)2D treatment, although no 1,25(OH)2D target genes were identified. Further, PC depletion by shRNA decreased cell viability in detached conditions with no additional effect with 1,25(OH)2D treatment. Moreover, PC overexpression resulted in increased detached cell viability and inhibited 1,25(OH)2D’s negative effects on viability. These results suggest that 1,25(OH)2D reduces detached cell viability through regulation of PC. Collectively this work identifies a key metabolic adaptation where detached cells increase PC expression and activity to compensate for reduced glutamine metabolism and that 1,25(OH)2D may be utilized to reverse this effect and decrease detached cell viability. These results contribute to an increased understanding of metastatic processes and the regulation of these processes by vitamin D, which may be effective in preventing metastasis and improve breast cancer patient survival.

APA, Harvard, Vancouver, ISO, and other styles
18

(7480409), RISHIKESH MAHESH BAGWE. "MODELING AND ENERGY MANAGEMENT OF HYBRID ELECTRIC VEHICLES." Thesis, 2019.

Find full text
Abstract:
This thesis proposes an Adaptive Rule-Based Energy Management Strategy (ARBS EMS) for a parallel hybrid electric vehicle (P-HEV). The strategy can effciently be deployed online without the need for complete knowledge of the entire duty cycle in order to optimize fuel consumption. ARBS improves upon the established Preliminary Rule-Based Strategy (PRBS) which has been adopted in commercial vehicles. When compared to PRBS, the aim of ARBS is to maintain the battery State of Charge (SOC) which ensures the availability of the battery over extended distances. The proposed strategy prevents the engine from operating in highly ineffcient regions and reduces the total equivalent fuel consumption of the vehicle. Using an HEV model developed in Simulink, both the proposed ARBS and the established PRBS strategies are compared across eight short duty cycles and one long duty cycle with urban and highway characteristics. Compared to PRBS, the results show that, on average, a 1.19% improvement in the miles per gallon equivalent (MPGe) is obtained with ARBS when the battery initial SOC is 63% for short duty cycles. However, as opposed to PRBS, ARBS has the advantage of not requiring any prior knowledge of the engine efficiency maps in order to achieve optimal performance. This characteristics can help in the systematic aftermarket hybridization of heavy duty vehicles.
APA, Harvard, Vancouver, ISO, and other styles
19

(7878308), Robert E. Warburton. "Interfacial Reactivity Studies of Electrochemical Energy Storage Materials from First Principles." Thesis, 2019.

Find full text
Abstract:

Since their commercialization in the early 1990’s, rechargeable lithium ion batteries (LIBs) have become ever-present in consumer electronics, and the share of electric vehicles within the transportation sector has become much more significant. Ab initio modeling techniques - namely density functional theory (DFT) - have played a signifcant role in describing the atomic scale nature of Li+ insertion and removal chemistry in LIB electrode materials, and have been pivotal in accelerating the design of energy dense battery materials based on their bulk properties. Despite these advances, there remains a knowledge gap with respect to understanding the many complex reactions that occur at the surfaces and interfaces of rechargeable battery materials. This work considers several case studies of surface and interfacial reactions in energy storage materials, using DFT modeling techniques to develop strategies that can rationally control the interfacial chemistry for optimal electrochemical performance.


The first portion of this thesis aims to understand the role of interfacial modification strategies toward mitigating Mn dissolution from the spinel LiMn2O4 (LMO) surface. First, a thermodynamic characterization of LMO surface structures is performed in order to develop models of LMO substrates for subsequent computational surface science studies. A subset of these surface models are then used analyze interfacial degradation processes through delithiation-driven stress buildup and crack formation, as well as reaction mechanisms for ethylene carbonate and hydrofluoric acid to form surface Mn2+ ions that are susceptible to dissolution. Surface passivation mechanisms using protective oxide and metallic coatings are then analyzed, which elucidate an electronic structure-based descriptor for structure-sensitive atomic layer growth mechanisms and describe the changes in lithiation reactions of coated electrodes through electronic band alignment at the solid-solid interface. These studies of protective coatings describe previously overlooked physics at the electrode-coating interface that can aid in further development of coated electrode materials. Using the LMO substrate models, a thermodynamic framework for evaluating the solubility limits and surface segregation tendencies of cationic dopants is described in the context of stabilizing LMO surfaces against Mn loss.


Next, solid-solid interfacial models are developed to evaluate the role of nanostructure in catalyzing the lithiation of NiO to form reduced Ni and Li2O as concurrent discharge products. Applying a Ni/NiO multilayer morphology, interfacial energies are evaluated using DFT and implemented into a classical nucleation model at a heterogeneous interface. These calculations, alongside operando X-ray scattering measurements, are used to explain atomic scale mechanisms that reduce voltage hysteresis in metal oxide LIB conversion chemistry.


The structure between a Li metal anode and the lithium lanthanum titanate solid electrolyte are subsequently analyzed as a model system to understand potential inter- facial stabilization mechanisms in solid-state batteries. This analysis combines bulk, surface, and interfacial thermodynamics with ab initio molecular dynamics simulations to monitor the evolution of the interfacial structure over short time scales, which provides insights into the onset of degradation mechanisms. It is shown that the reductive instability of Ti4+ is the primary driving force for interfacial decomposition reactions, and that a lanthanum oxide interlayer coating is expected to stabilize the interface based on both thermodynamic and electronic band alignment arguments.


In the last part of this thesis, charge transfer kinetics are studied for several applications using constrained DFT (cDFT) to account for electronic coupling and reorganization energies between donor and acceptor states. Charge hopping mechanisms to and from dichalcogenide-based electrocatalysts during O2 and CO2 reduction/evolution reactions in Li-O2 and Li-CO2 battery systems are first evaluated. Then, the role of the spatial separation Li+ vacancies and interstitials on hole and electron polaron hopping in the prototypical LixCoO2 cathode is analzyed. The results demonstrate that Marcus rate theories using cDFT-derived parameters can reproduce experimentally observed anisotropies in electronic conductivity, whereas conventional transition state theory analyses of polaron hopping do not. Overall, this proof-of-concept study provides a framework to understand how charged species are transported in battery electrodes and are dependent on charge compensating defects.


Finally, the key insights from these studies are discussed in the context of future directions related to the understanding and design of materials for electrochemical energy conversion and storage.

APA, Harvard, Vancouver, ISO, and other styles
20

(8782256), Kyle Whittaker. "A Low Power FinFET Charge Pump For Energy Harvesting Applications." Thesis, 2020.

Find full text
Abstract:
With the growing popularity and use of devices under the great umbrella that is the Internet of Things (IoT), the need for devices that are smaller, faster, cheaper and require less power is at an all time high with no intentions of slowing down. This is why many current research efforts are very focused on energy harvesting. Energy harvesting is the process of storing energy from external and ambient sources and delivering a small amount of power to low power IoT devices such as wireless sensors or wearable electronics. A charge pumps is a circuit used to convert a power supply to a higher or lower voltage depending on the specific application. Charge pumps are generally seen in memory design as a verity of power supplies are required for the newer memory technologies. Charge pumps can be also be designed for low voltage operation and can convert a smaller energy harvesting voltage level output to one that may be needed for the IoT device to operate. In this work, an integrated FinFET (Field Effect Transistor) charge pump for low power energy harvesting applications is proposed.

The design and analysis of this system was conducted using Cadence Virtuoso Schematic L-Editing, Analog Design Environment and Spectre Circuit Simulator tools using the 7nm FinFETs from the ASAP7 7nm PDK. The research conducted here takes advantage of some inherent characteristics that are present in FinFET technologies, including low body effects, and faster switching speeds, lower threshold voltage and lower power consumption. The lower threshold voltage of the FinFET is key to get great performance at lower supply voltages.

The charge pump in this work is designed to pump a 150mV power supply, generated from an energy harvester, to a regulated 650mV, while supplying 1uA of load current, with a 20mV voltage ripple in steady state (SS) operation. At these conditions, the systems power consumption is 4.85uW and is 31.76% efficient. Under no loading conditions, the charge pump reaches SS operation in 50us, giving it the fastest rise time of the compared state of the art efforts mentioned in this work. The minimum power supply voltage for the system to function is 93mV where it gives a regulated output voltage of 425mV.

FinFET technology continues to be a very popular design choice and even though it has been in production since Intel's Ivy-Bridge processor in 2012, it seems that very few efforts have been made to use the advantages of FinFETs for charge pump design. This work shows though simulation that FinFET charge pumps can match the performance of charge pumps implemented in other technologies and should be considered for low power designs such as energy harvesting.
APA, Harvard, Vancouver, ISO, and other styles
21

(5931200), Francisco Rivera-Abreu. "Dual Band Octagonal Microstrip Patch Antenna Design Method for Energy Harvesting." 2020.

Find full text
Abstract:
A practical method to design dual-band octagonal patch antenna is introduced. The antenna consists of an octagonal patch with a proximity coupling feed designed to radiate at 900 MHz and 1.8 GHz, respectively. The octagonal dual band patch antenna that is designed using the method introduced is then simulated with 3D FEM based electromagnetic simulator. The proposed antenna design can be used to harvest radio frequency (RF) energy from Wi-Fi and widely spread mobile networks. The simulated and analytical results are compared and good agreement is observed.
APA, Harvard, Vancouver, ISO, and other styles
22

(10867179), Abigail Jubilee Kragt Finnell. "Wireless Power Transfer: Efficiency, Far Field, Directivity, and Phased Array Antennas." Thesis, 2021.

Find full text
Abstract:
This thesis is an examination of one of the main technologies to be developed on the path to Space Solar Power (SSP): Wireless Power Transfer (WPT), specifically power beaming. While SSP has been the main motivation for this body of work, other applications of power beaming include ground-to-ground energy transfer, ground to low-flying satellite wireless power transfer, mother-daughter satellite configurations, and even ground-to-car or ground-to-flying-car power transfer. More broadly, Wireless Power Transfer falls under the category of radio and microwave signals; with that in mind, some of the topics contained within can even be applied to 5G or other RF applications. The main components of WPT are signal transmission, propagation, and reception. This thesis focuses on the transmission and propagation of wireless power signals, including beamforming with Phased Array Antennas (PAAs) and evaluations of transmission and propagation efficiency. Signals used to transmit power long distances must be extremely directive in order to deliver the power at an acceptable efficiency and to prevent excess power from interfering with other RF technology. Phased array antennas offer one method of increasing the directivity of a transmitted beam through off-axis cancellation from the multi-antenna source. Besides beamforming, another focus of this work is on the equations used to describe the efficiency and far field distance of transmitting antennas. Most previously used equations, including the Friis equation and the Goubau equation, are formed by examining singleton antennas, and do not account for the unique properties of antenna arrays. Updated equations and evaluation methods are presented both for the far field and the efficiency of phased array antennas. Experimental results corroborate the far field model and efficiency equation presented, and the implications of these results regarding space solar power and other applications are discussed. The results of this thesis are important to the applications of WPT previously mentioned, and can also be used as a starting point for further WPT and SSP research, especially when looking at the foundations of PAA technology.
APA, Harvard, Vancouver, ISO, and other styles
23

(5930495), Zibo Zhao. "DECENTRALIZED PRICE-DRIVEN DEMAND RESPONSE IN SMART ENERGY GRID." Thesis, 2021.

Find full text
Abstract:

Real-time pricing (RTP) of electricity for consumers has long been argued to be crucial for realizing the many envisioned benefits of demand flexibility in a smart grid. However, many details of how to actually implement a RTP scheme are still under debate. Since most of the organized wholesale electricity markets in the US implement a two-settlement mechanism, with day-ahead electricity price forecasts guiding financial and physical transactions in the next day and real-time ex post prices settling any real-time imbalances, it is a natural idea to let consumers respond to the day-ahead prices in real-time. However, if such an idea is not controlled properly, the inherent closed-loop operation may lead consumers to all respond in the same fashion, causing large swings of real-time demand and prices, which may jeopardize system stability and increase consumers’ financial risks.


To overcome the potential uncertainties and undesired demand peak caused by “selfish” behaviors by individual consumers under RTP, in this research, we develop a fully decentralized price-driven demand response (DR) approach under game- theoretical frameworks. In game theory, agents usually make decisions based on their belief about competitors’ states, which needs to maintain a large amount of knowledge and thus can be intractable and implausible for a large population. Instead, we propose using regret-based learning in games by focusing on each agent’s own history and utility received. We study two learning mechanisms: bandit learning with incomplete information feedback, and low regret learning with full information feedback. With the learning in games, we establish performance guarantees for each individual agent (i.e., regret minimization) and the overall system (i.e., bounds on price of anarchy).


In addition to the game-theoretical framework for price-driven demand response, we also apply such a framework for peer-to-peer energy trading auctions. The market- based approach can better incentivize the development of distributed energy resources (DERs) on demand side. However, the complexity of double-sided auctions in an energy market and agents’ bounded rationality may invalidate many well-established theories in auction design, and consequently, hinder market development. To address these issues, we propose an automated bidding framework based on multi-armed bandit learning through repeated auctions, and is aimed to minimize each bidder’s cumulative regret. We also use such a framework to compare market outcomes of three different auction designs.

APA, Harvard, Vancouver, ISO, and other styles
24

(9033764), Aveek Dutta. "Plasmonics for Nanotechnology: Energy Harvesting and Memory Devices." Thesis, 2020.

Find full text
Abstract:
My dissertation research is in the field of plasmonics. Specifically, my focus is on the use of plasmonics for various applications such as solar energy harvesting and optically addressable magnetic memory devices. Plasmonics is the study of collective oscillations of free electrons in a metal coupled to an electromagnetic field. Such oscillations are characterized by large electromagnetic field intensities confined in nanoscale volumes and are called plasmons. Plasmons can be excited on a thin metal film, in which case they are called surface plasmon polaritons or in nanoscale metallic particles, in which case they are called localized surface plasmon resonances. Researchers have taken advantage of this electromagnetic field enhancement resulting from the excitation of plasmons in metallic structures and demonstrated phenomenon such as plasmon-assisted photocatalysis, plasmon-induced local heating, plasmon-enhanced chemical sensing, optical modulators, nanolasers, etc.
In the first half of my dissertation, I study the role of plasmonics in hydrogen production from water using solar energy. Hydrogen is believed to be a very viable source of alternative green fuel to meet the growing energy demands of the world. There are significant efforts in government and private sectors worldwide to implement hydrogen fuel cells as the future of the automotive and transportation industry. In this regard, water splitting using solar energy to produce hydrogen is a widely researched topic. It is believed that a Solar-to-Hydrogen (STH) conversion efficiency of 10% is good enough to be considered for practical applications. Iron oxide (alpha-Fe2O3) or hematite is one of the candidate materials for hydrogen generation by water splitting with a theoretical STH efficiency of about 15%. In this work, I experimentally show that through metallic gold nanostructures we can enhance the water oxidation photocurrent in hematite by two times for above bandgap wavelengths, thereby increasing hydrogen production. Moreover, I also show that gold nanostructures can result in a hematite photocurrent enhancement of six times for below bandgap wavelengths. The latter, I believe, is due to the excitation of plasmons in the gold nanostructures and their subsequent decay into hot holes which are harvested by hematite.
The second part of my dissertation involves data storage in magnetic media. Memory devices based on magnetic media have been widely investigated as a compact information storage platform with bit densities exceeding 1Tb/in2. As the size of nanomagnets continue to reduce to achieve higher bit densities, the magnetic fields required to write information in these bits increases. To counter this, the field of heat-assisted magnetic recording (HAMR) was developed where a laser is used to locally heat up a magnet and make it susceptible to smaller magnetic switching fields. About two decades ago, it was realized that a single femtosecond laser pulse can switch magnetic media and therefore could be used to write information in magnetic bits. This field is now known as All-Optical Magnetic Switching (AOMS). My research aims to bring together the two fields of HAMR and AOMS to create optically addressable nanomagnets for information storage. Specifically, I want to show that plasmonic resonators can couple the laser field to nanomagnets more efficiently. This can therefore be used not only to heat the nanomagnets but also switch them with lower optical energy compared to free-standing nanomagnets without any plasmonic resonator. The results of my research show that by coupling metallic resonators, supporting surface plasmons, to nanomagnets, one can reduce the light intensity required for laser induced magnetization reversal.
APA, Harvard, Vancouver, ISO, and other styles
25

(9745856), Min Wu. "Nanomanufacturing of Wearable Electronics for Energy Conversion and Human-integrated Monitoring." Thesis, 2020.

Find full text
Abstract:
Recently, energy crisis and environment pollution has become global issues and there is a great demand for developing green and renewable energy system. At the same time, advancements in materials production, device fabrication, and flexible circuit has led to the huge prosperity of wearable devices, which also requires facile and efficient approaches to power these ubiquitous electronics. Piezoelectric nanogenerators and triboelectric nanogenerators have attracted enormous interest in recent years due to their capacity of transferring the ambient mechanical energy into desired electricity, and also the potential of working as self-powered sensors. However, there still exists some obstacles in the aspect of materials synthesis, device fabrication, and also the sensor performance optimization as well as their application exploration.
Here in this research, several different materials possessing the piezoelectric and triboelectric properties (selenium nanowires, tellurium nanowires, natural polymer hydrogel) have been successfully synthesized, and also a few novel manufacturing techniques (additive manufacturing) have been implemented for the fabrication of wearable sensors. The piezoelectric and triboelectric nanogenerators developed could effectively convert the mechanical energy into electricity for an energy conversion purpose, and also their application as self-powered human-integrated sensors have also been demonstrated, like achieving a real-time monitoring of radial artery pulses. Other applications of the developed sensors, such as serving as electric heaters and infrared cloaking devices are also presented here. This research is expected to have a positive impact and immediate relevance to many societally pervasive areas, e.g. energy and environment, biomedical electronics, and human-machine interface.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography