Academic literature on the topic 'Energy efficiency'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy efficiency.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Energy efficiency"

1

Jin, Taeyoung. "Improving Korean Energy Efficiency Resource Standards to Vitalize Energy Efficiency Investment." Journal of Energy Engineering 31, no. 2 (June 30, 2022): 87–97. http://dx.doi.org/10.5855/energy.2022.31.2.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khudolei, Veronika Yuriyivna, Tetiana Vadymivna Ponomarenko, and Olha Volodymyrivna Prokopenko. "ENERGY EFFICIENCY AS A PART OF ENERGY TRILEMMА." SCIENTIFIC BULLETIN OF POLISSIA 1, no. 1(13) (2018): 201–8. http://dx.doi.org/10.25140/2410-9576-2018-1-1(13)-201-208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Farangiz, Muxamadiyeva, and Xolmurodov Maxmatkarim Pattayevich. "INCREASING THE ENERGY EFFICIENCY OF BUILDINGS USING SOLAR ENERGY." International Journal of Advance Scientific Research 03, no. 06 (June 1, 2023): 342–45. http://dx.doi.org/10.37547/ijasr-03-06-55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sutherland, Ken. "Energy efficiency: Filter media and energy efficiency." Filtration & Separation 46, no. 1 (January 2009): 16–19. http://dx.doi.org/10.1016/s0015-1882(09)70086-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Birangal, Gitanjali, Dr S. V. Admane, and S. S. Shinde. "Energy Efficiency Approach to Intelligent Building." International Journal of Engineering Research 4, no. 7 (July 1, 2015): 389–93. http://dx.doi.org/10.17950/ijer/v4s7/711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wysokiński, Marcin, Joanna Domagała, Arkadiusz Gromada, Magdalena Golonko, and Paulina Trębska. "Economic and energy efficiency of agriculture." Agricultural Economics (Zemědělská ekonomika) 66, No. 8 (August 24, 2020): 355–64. http://dx.doi.org/10.17221/170/2020-agricecon.

Full text
Abstract:
Article concerns economic and energy efficiency of agriculture in European Union countries. The study period concerned 2016. For analysis and presentation of materials, descriptive, tabular and graphic methods and the Data Envelopment Analysis (DEA) method – CCR (Charnes, Cooper and Rhodes) model focused on input-oriented minimisation were used. An assessment of the socio-economic development of the EU countries was made using the following measures: Human Development Index (HDI) and Gross Domestic Product (GDP) per capita (USD per inhabitant). Modern agriculture depends on industrial energy sources and as the socio-economic development changes into more and more energy-intensive production technologies. After presenting the introduction and review of the literature, the economic and energy efficiency of agriculture in the EU countries in 2016 was examined, which was at a high level – the DEA reached 0.67. Then, the correlation between the socio-economic development of countries and their economic and energy efficiency was analysed. It was also found that along with socio-economic development in the EU countries, the economic and energy efficiency of agriculture is increasing.
APA, Harvard, Vancouver, ISO, and other styles
7

R, Vaishnavi, Athira C, Pradeep C, Sankalpkumar Sankalpkumar, Eashwara Prasanna, and Dr Srikanth V. "Energy Efficiency in Blockchain Social Networks." International Journal of Research Publication and Reviews 5, no. 3 (March 2, 2024): 819–25. http://dx.doi.org/10.55248/gengpi.5.0324.0632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Polyanska, Alla, Yuliya Pazynich, Khrystyna Mykhailyshyn, Dmytro Babets, and Piotr Toś. "ASPECTS OF ENERGY EFFICIENCY MANAGEMENT FOR RATIONAL ENERGY RESOURCE UTILIZATION." Rudarsko-geološko-naftni zbornik 39, no. 3 (2024): 13–26. http://dx.doi.org/10.17794/rgn.2024.3.2.

Full text
Abstract:
This study delves into the multifaceted landscape of energy efficiency management with the objective of rationalizing the utilization of energy resources. The article considers a methodical approach to the study of the level of energy intensity of economic activity, covering levels of management, from the macro level to the level of an individual enterprise. In general, it is advisable to supplement the proposed approach with existing methods that extend the content to the results of energy efficiency research. Using the Life Cycle Assessment (LCA) method and other methodologies, we explore various dimensions of energy resource utilization and the scale of energy efficiency management across different stages of the lifecycle. Additionally, the study introduces levels of energy efficiency management developed by the authors, providing a structured framework for optimizing energy use. Through rigorous analysis, we evaluate the environmental impacts, energy consumption patterns, and efficiency levels associated with diverse energy management strategies. Our findings illuminate key areas for improvement and optimization in energy utilization practices, offering insight beneficial for policymakers, industry stakeholders, and environmental advocates alike. By leveraging the comprehensive framework of LCA alongside the developed levels of energy efficiency management, this research contributes to a nuanced understanding of energy efficiency management, thereby facilitating informed decision-making towards sustainable energy utilization pathways. Examining the example of building the life cycle of gas production and highlighting the main stages of its transformation from a raw resource to a finished product for consumption allows for the consideration of the entire chain of creation of the added value of this energy resource and enables control of the level of its influence on the results of the activities of economic units involved in this chain, as well as the consequences of their impact on the environment. This allows us to conclude that the approach discussed in the article can be used both for researching the energy efficiency of individual enterprises, as well as their associations, industries, and the economy in general.
APA, Harvard, Vancouver, ISO, and other styles
9

Drosos, Dimitrios, Grigorios L. Kyriakopoulos, Stamatios Ntanos, and Androniki Parissi. "School Managers Perceptions towards Energy Efficiency and Renewable Energy Sources." International Journal of Renewable Energy Development 10, no. 3 (March 12, 2021): 573–84. http://dx.doi.org/10.14710/ijred.2021.36704.

Full text
Abstract:
Global economic growth is accompanied by increased energy demand, thus conventional fuels such as coal, oil and gas, which are the primary energy sources, are gradually being depleted. At the same time, the combustion of conventional fuel for energy production causes serious adverse effects on the environment and contributes to climate change due to the emitted greenhouse gases. For the above reasons, most of the developed and developing countries especially during the last decades, have introduced various incentives for the greater penetration of renewable energy sources (RES) in all sectors of the economy. Concerning the building sector, several measures have been adopted, including the promotion of energy efficiency and energy saving. A significant proportion of the building stock are the school buildings where students and teachers spend a significant proportion of their daily time. Teachers' attitudes and views, especially the school unit managers concerning the use of RES in schools, are important in the effort to rationalize and control energy use. This study was conducted through a structured questionnaire applied to a sample of 510 school managers in Greece's primary and secondary education. The school unit managerial role for the case of Greek schools is performed by the school principal who has both administrative and educational duties. Statistical analysis included the application of Friedman's test and hypothesis test on questions concerning school manager environmental perceptions and energy-saving habits. According to the results, Greek school managers have a high degree of environmental sensitivity, since 97.6 % agreed or strongly agreed that the main concern should focus on energy saving. Furthermore, 71% of the respondent reported to have good knowledge on solar energy, followed by 64% on wind energy while only 34% are knowledgeable on biomass. Almost all the respondents (99%) agreed that it is important to provide more RES-orientated education through the taught curricula. Concerning energy saving behaviour, around 90% reported that they switch off the lights when leaving the classroom and they close the windows when the air-condition is operating. Hypothesis tests revealed a relationship between the school managers' ecological beliefs, the energy saving habits in the school environment, and the recognition of the importance of environmental education. Conclusions highlighted the need to intensify environmental education programs in the school environment concerning RES in schools. This will lead to a higher level of environmental awareness of both teachers and students and therefore to a more dynamic behaviour towards the effort to “greenify” the school environment.
APA, Harvard, Vancouver, ISO, and other styles
10

CHEREP, Oleksandr, Ksenia OSMAKOVSKA, Olena LYSHCHENKO, and Ostap BOYKO. "PROBLEMS OF ENERGY EFFICIENCY IN UKRAINE AND INTERNATIONAL EXPERIENCE OF IMPLEMENTATION OF ENERGY EFFICIENCY IN EU COUNTRIES." Herald of Khmelnytskyi National University. Economic sciences 322, no. 5 (September 2023): 216–19. http://dx.doi.org/10.31891/2307-5740-2023-322-5-36.

Full text
Abstract:
The article is devoted to the issue of energy efficiency in Ukraine and the international experience of implementing energy efficiency in the countries of the European Union. In the context of growing problems related to the reduction of energy consumption and the use of renewable energy sources, attention to energy efficiency issues is becoming more and more relevant. The issue of energy efficiency in Ukraine is considered, attention is focused on insufficient awareness and education of the population, insufficient funding and limited access to resources, and the international experience of implementing energy efficiency in EU countries is considered as a potential solution for solving energy efficiency problems in Ukraine. The article will analyze EU legislation and programs aimed at stimulating energy efficiency, as well as highlight successful practices and initiatives that contribute to energy-efficient development. Special attention is paid to ways of implementing energy efficiency in EU countries, in particular, the use of energy-efficient technologies in construction and reconstruction, stimulation of the use of renewable energy sources, implementation of energy-efficient heating and cooling systems, as well as financing mechanisms for energy efficiency projects. The current state of energy efficiency in Ukraine is analyzed, including the main challenges and obstacles the country faces. Special attention is paid to the legislative and regulatory framework governing energy efficiency in Ukraine, as well as existing programs and initiatives. Attention is focused on the international experience of implementing energy efficiency in the EU countries.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Energy efficiency"

1

Mandryka, V. "Energy efficiency in energy consumption systems." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/40670.

Full text
Abstract:
There has been used four times more energy in the world compared to 1950 year. The main share falls primarily on households and the growing industry. The economic downturn in Ukraine and the countries of former USSR does not influence the consumption of energy – it remains high.
APA, Harvard, Vancouver, ISO, and other styles
2

Skogfeldt, Alexander. "Energy efficiency measures and energy pricing : The effect of different price schemes on energy efficiency measures." Thesis, Uppsala universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325895.

Full text
Abstract:
This project investigates the relationship between energy efficiency measures in the Swedish building stock and different price schemes based on energy prices. Data from different categories was gathered and used in a regression model. They were based on what type of pricing and fees that are behind the energy prices for electricity and district heating. These predictors were used to get an equation of the temperature corrected energy use which can be linked to how much energy efficiency measures have been implemented over the investigated time period. The result for the main equation, that includes all the studied building types, indicated that it is possible to predict energy efficiency measures with different price schemes,and therefore it is possible to increase the rate at which measures are implemented. It showed that there is a negative relationship between energy consumption and theprice of energy from district heating. If the price of district heating increases the temperature corrected energy use decreases. The other relationships between predictors and the dependent variable were positive. It also described the geographical location as a statistically significant variable, regarding all climate zones in Sweden.
APA, Harvard, Vancouver, ISO, and other styles
3

Beita-Kiser, Gabriel. "Energy Efficient Homes in Tucson: How to Make Cost-Effective Energy Efficiency Retrofits." The University of Arizona, 2015. http://hdl.handle.net/10150/552896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Max, Talbak. "Efficient Households : Energy efficiency in small apartments in Stockholm." Thesis, KTH, Energiteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175161.

Full text
Abstract:
The energy consumption of the first world has reached unexpected heights, and is increasing every day. Because of this, energy efficiency has become a hot subject, both on a small and large scale. Every individual has a possibility to improve their energy efficiency and energy use alike by substantial amounts, and should act on this for the sake of the environment. The report begins with a study of different regulations and standards regarding energy efficiency. After this, a literature study is conducted regarding the latest available technology in all areas of home appliances. Finally, a field study is conducted on an apartment in Stockholm to find out how much energy that actually can be saved, and what the economic results are from this. The result shows that in general, it isn’t economically viable to upgrade to the latest energy efficient technology within home appliances, but that one has to consider the environmental gains as incitement for action. Approximately 10% of the total annual energy consumption could be saved by changing all machinery and functions in the house, except the heating, ventilation and air conditioning part.
Västvärldens energianvändning har nått oanade höjder, och ökar varje dag. Därför har energieffektivitet blivit ett hett ämne, både på liten och stor skala. Varje enskild individ har möjlighet att förbättra sin energieffektivitet och därmed sin energianvändning med märkbara skillnader, och bör agera därefter för miljöns skull. Rapporten börjar med en studie av olika regleringar och bestämmelser om energieffektivitet. Efter det kommer en litteraturstudie om vilken teknik som finns tillgänglig inom alla delar av hemmets energianvändning. Slutligen utförs en fältstudie på en lägenhet i Stockholm för att avgöra hur mycket energi som kan sparas, och vilka ekonomiska följder detta har. Resultatet visar att det i allmänhet inte är ekonomiskt hållbart att byta till den senaste energieffektiva tekniken inom hemmets apparater, utan att man får avse de miljömässiga vinsterna som incitament för dessa uppgraderingar. Ungefär 10% av den totala årliga energianvändningen kunde sparas genom att åtgärda alla apparater och funktioner i huset, utan avseende på uppvärmning och isolering.
APA, Harvard, Vancouver, ISO, and other styles
5

Jasonarson, Ivar Kristinn. "Digitalization for Energy Efficiency in Energy Intensive Industries." Thesis, KTH, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276987.

Full text
Abstract:
A fourth industrial revolution (Industry 4.0) is on the horizon. It is enabled by advancements in information and communication technologies (i.e. digitalization) and concepts such as the Internet of Things and cyber-physical systems. Industry 4.0 is expected to have great impact on the manufacturing and process industries, changing how products are developed, produced and sold. However, Industry 4.0 is a novel concept and its impacts are still uncertain. An increasingly strict climate and energy agenda in Sweden is putting pressure on the industrial sector and it is, therefore, important that the sector exploits the full potential Industry 4.0 can provide for increased sustainability. This thesis examines the status of digitalization in the Swedish energy intensive industries (i.e. pulp and paper, steel, and chemical industries) and how it could impact energy efficiency in the sector. Qualitative research methods were used to carry out the study. A literature review and in-depth interviews with employees within the industries were conducted. The results show that, while digitalization is considered important for the future competitiveness of the Swedish energy intensive industries, the digital maturity of the sector is not considered high. Digital technologies can increase energy efficiency in a number of different ways (e.g. through better optimization tools, increased availability of processes and more efficient maintenance management). However, there is not a clear link between digital strategies and energy efficiency measures in the energy intensive industries in Sweden. Moreover, energy efficiency is not considered the main driver for implementing digital technologies, it is rather considered a positive side effect. To accelerate the implementation of digital technologies it is important to support further research in this area and encourage a closer cooperation between stakeholders as well as mitigating challenges such as uncertainty regarding return on investment and issues related to data security and ownership.
Industrin är på väg in i en fjärde industriell revolution (Industri 4.0). Revolutionen möjliggörs av framsteg inom informations- och kommunikationsteknologier (digitalisering) och koncept som internet av saker och cyberfysiska system. Industri 4.0 förväntas ha en stor påverkan på tillverknings- och processindustrin, vilket kommer att förändra hur produkter utvecklas, produceras och säljs. Industri 4.0 är dock ett nytt koncept och dess effekter är fortfarande osäkra. I samband med att en allt strängare klimat- och energiagenda i Sverige sätter press på industrisektorn, är det viktigt att sektorn utnyttjar den fulla potentialen som Industri 4.0 kan bidrag med för en ökad hållbarhet. Det här examensarbetet analyserar det nuvarande läget för digitalisering inom de svenska energiintensiva industrierna (dvs. massa och pappers-, stål- och kemisk industrin) och hur det kan påverka energieffektiviteten i sektorn. Studien genomfördes med hjälp av kvalitativa forksningsmetoder. En litteraturstudie och fördjupade intervjuer med anställda inom branscherna genomfördes. Resultaten visar att trots att digitalisering anses vara viktig för de svenska energiintensiva industriernas framtida konkurrenskraft, anses sektorns digitala mognad inte vara hög. Digital teknik kan öka energieffektiviteten på ett antal olika sätt (t.ex. genom bättre optimeringsverktyg, ökad tillgänglighet av processer och effektivare underhållshantering). Det finns dock ingen tydlig koppling mellan digitala strategier och energieffektivitetsåtgärder i de energiintensiva industrierna i Sverige. Dessutom anses energieffektivitet inte vara den främsta drivkraften för att implementera digitala teknologier, utan anses snarare vara en positiv bieffekt. För att påskynda implementeringen av digital teknik är det viktigt att fortsätta stötta forskningen inom området och uppmuntra till ett närmare samarbete mellan olika aktörer samt bemöta utmaningar som osäkerheten kring framtida avkastningar på investeringar och frågor relaterade till datasäkerhet och ägande.
APA, Harvard, Vancouver, ISO, and other styles
6

Gibbs, Vance Scott. "State building energy efficiency determination using energy audits." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009m/gibbs.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Ya. "Energy efficiency and financing mechanisms : the case of energy efficient lighting retrofit in hotels." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Örn, Tomas. "Energy efficiency in heritage buildings : Conservation approaches and their impact on energy efficiency measures." Licentiate thesis, Luleå tekniska universitet, Arkitektur och vatten, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-68405.

Full text
Abstract:
The impeding climate change challenge urges for a reduction of energy use in the built environment. Buildings account for nearly 40% of the total energy use and about 35% of the greenhouse gas emissions in Europe. EU member states are required to improve the energy efficiency of the existing building stock, for example by sharpening building regulations and developing enforcement schemes. Since energy efficiency retrofits can affect irreplaceable values in heritage buildings, heritage buildings are often excluded from mandatory demands aiming at reducing the energy use in buildings. However, saving energy have gradually become embraced by the conservation community and heritage buildings with are seen as part of the solution. This licentiate thesis discusses the methods to identify heritage significance in a building and how the underlying theory determines different scenarios in a energy retrofitting process. The choice of conservation theory and conservation approach will affect the success the energy retrofitting process and determine how much the energy use that can be reduced. This thesis therefore suggests a framework to understand the different interpretation of the impacts that one could exert either by having an Objectivistic or Relative conservation value approach.. Based on this framework, a decision-support tool is developed to further detail the impacts of such approaches for different energy measures. Other results show that a majority of reviewed research publications focused on the operational energy in a building and only a few were concerned with energy use over the entire life- cycle of a building. These analyses are used to evaluate where most energy savings can be made, and often pinpoint weak spots in the building’s envelope or technical system. If it was mentioned at all, the influence of cultural and historical factors on energy efficiency measures as applied to heritage buildings tended to be assessed only briefly. Indeed, the majority does not describe conservation principles or even mention the methodology used – if any – for assessing or defining heritage values. Instead, researchers often show an explicit (sometimes an implicit) understanding of conservation as essentially something that is not destructive of original construction material and hence the authenticity of a building. This licentiate thesis is a compilation thesis, consisting of one separate sub-study, one literature review and an extended cover essay. The study is oriented towards a Swedish and European context, especially when it comes to climate conditions and discussions on building regulations and the theory and practice of architectural conservation. It addresses the growing research field of energy efficiency in heritage buildings and the thesis aims to contribute to an increased understanding on how the process of assessment and evaluation of heritage significance in buildings affects the making of heritage buildings more energy efficient. The main research question is: How do different approaches for assessing and evaluating heritage significance in buildings affect possible technical energy saving measures in heritage buildings?
Klimatförändringarna driver utvecklingen mot att energianvändningen i den byggda miljön behöver minska. Byggnader står för nästan 40% av den totala energianvändningen och cirka 35% av utsläppen av växthusgaser i Europa. EUs medlemsländer är bundna att förbättra energieffektiviteten hos befintliga byggnader, till exempel genom att skärpa byggreglerna och utveckla handlingsplaner. Eftersom energieffektiviseringar kan påverka värden i kulturhurhistoriska byggnader, är dessa ofta undantagna från krav som syftar till att minska energianvändningen i byggnader. Energibesparing och resurshushållning har gradvis blivit omfamnad av kulturmiljösektorn och kulturhistoriska byggnader betraktas allt mer som en del av lösningen på klimatförändringarna. I licentiatavhandlingen diskuteras metoderna för att identifiera kulturhistoriska värden i en byggnad och hur den underliggande teorin påverkar olika scenarier i en energieffektiviseringprocess. Valet av bevarandeteori och bevarandestrategi påverkar framgångsfaktorn i energieffektivseringen och hur mycket energianvändningen i en kulturhistorisk byggnad kan minskas. I denna avhandling föreslås därför ett teoretiskt ramverk för att förstå effekterna av de olika kulturhistoriska bedömningar som kan göras, antingen genom att använda ett objektivistiskt eller en relativ syn på hur en en byggnads kulturhistoriska värden skapas och bäst bevaras. Utifrån detta teoretiska ramverk har ett stöd för beslutsfattande utvecklats för att ytterligare beskriva effekterna av de olika bevarandestrategiernas påverkan på implementeringen av olika energieffektiviserande åtgärder. Andra resultat visar att en majoritet av de granskade forskningspublikationerna fokuserade på den operativa energin i en byggnad och bara ett fåtal gällde energianvändning under hela livscykeln i en byggnad. Dessa analyser används för att utvärdera var de flesta energibesparingar kan göras och ofta identifiera svaga punkter i byggnadens klimatskal eller tekniska system. Om det nämndes alls tenderade inflytandet av kulturella och historiska faktorer på energieffektivitetsåtgärder som tillämpas på arvsbyggnader endast att bedömas kortfattat. Faktum är att majoriteten av de genomgångna publikationerna inte beskriver bevarandeprinciper och inte nämner den metod som används för att bedöma eller definiera kulturhistoriska värden. Istället används ofta en explicit (ibland en implicit) förståelse för bevarande som i huvudsak något som inte förstör ursprungligt material och därmed autenticitet i en byggnad. Denna licentiatavhandling består av en separat undersökning, en litteraturöversikt och en utökad kappa. Studien är inriktad på ett svenskt och europeiskt sammanhang, särskilt när det gäller klimatförhållanden och diskussioner om byggregler och teori och praktik för kulturhistoriskt bevarande av byggnader. Den är en del av det växande forskningsområdet energieffektivisering i kulturhistoriska byggnader och avhandlingen syftar till att bidra till en ökad förståelse för hur utvärderingen av kulturhistoriska värden i byggnader påverkar arbetet med att göra dem mer energieffektiva. Huvudforskningsfrågan är: Hur påverkar olika metoder för bedömning och utvärdering av kulturhistoriska värden energibesparande åtgärder i kulturhistoriska byggnader?
APA, Harvard, Vancouver, ISO, and other styles
9

Jung, Eun-Sun. "Energy efficiency in wireless networks." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2718.

Full text
Abstract:
Energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Battery capacity is finite and the progress of battery technology is very slow, with capacity expected to make little improvement in the near future. Under these conditions, many techniques for conserving power have been proposed to increase battery life. In this dissertation we consider two approaches to conserving the energy consumed by a wireless network interface. One technique is to use power saving mode, which allows a node to power off its wireless network interface (or enter a doze state) to reduce energy consumption. The other is to use a technique that suitably varies transmission power to reduce energy consumption. These two techniques are closely related to theMAC (Medium Access Control) layer. With respect to power saving mode, we study IEEE 802.11 PSM (Power Saving Mechanism) and propose a scheme that improves its energy efficiency. We also investigate the interaction between power saving mode and TCP (Transport Control Protocol). As a second approach to conserving energy, we investigate a simple power control protocol, called BASIC, which uses the maximum transmission power for RTS-CTS and the minimum necessary power for DATA-ACK. We identify the deficiency of BASIC, which increases collisions and degrades network throughput, and propose a power control protocol that addresses these problems and achieves energy savings. Since energy conservation is not an issue limited to one layer of the protocol stack, we study a cross layer design that combines power control at the MAC layer and power aware routing at the network layer. One poweraware routing metric is minimizing the aggregate transmission power on a path from source to destination. This metric has been used along with BASIC-like power control under the assumption that it can save energy, which we show to be false. Also, we show that the power aware routing metric leads to a lower throughput. We show that using the shortest number of hops in conjunction with BASIC-like power control conserves more energy than power aware routing with BASIC-like power control.
APA, Harvard, Vancouver, ISO, and other styles
10

Frimodig, Love. "Energy efficiency in rotating equipment." Thesis, KTH, Marina system, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101905.

Full text
Abstract:
This paper reports the findings of the first stage of a study on how the efficiency of a centrifugal pump depends on the eccentricity of the impeller (rotor). The geometry of the pump is based on the ERCOFTAC centrifugal pump that has been used to validate computational fluid dynamics software with laboratory measurements. The pump is modelled using the CFD-code Comsol multi physics (tm) in order to get the pressure and velocity field. From the pressure and velocity field the efficiency and output power for the pump is calculated. The energy efficiency of the same pump with different static eccentricities is then compared, showing the effect of eccentricity To validate the CFD-model the velocity and pressure field for the pump is compared to results from another simulation of the same pump and an experiment. The comparison shows that the results are comparable and shows good agreement with experimental data. It is showed that the energy losses of the pump increase with increased static eccentricity of the impeller. The losses at 10% eccentricity are about 0.5% of the produced energy. The main contribution to the losses is the introduced asymmetry, eccentricity, of the pump, which causes an unsteady flow and also increases the total unbalance force on the rotor. It is further noted that rotor-stator interactions of the impeller and the stator blades have small influence on the energy losses. It is concluded that rotordynamic design can improve the energy efficiency of the process that the rotating equipment is involved in. Further research is suggested on whirling eccentric motion, experimental verification and more detailed simulation models.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Energy efficiency"

1

Northwest Power Planning Council (U.S.). Acquiring energy efficiency more efficiently. Portland, Or: Northwest Power Planning Council, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Northwest Power Planning Council (U.S.). Acquiring energy efficiency more efficiently. Portland, Or: Northwest Power Planning Council, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Office, Energy Efficiency. Energy efficiency. London: Dept. of the Environment, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Solmes, Leslie A., ed. Energy Efficiency. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3321-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Ming, and Xin Yu. Energy Efficiency. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ian, Walker. Energy efficiency. Edinburgh: Scottish Homes, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Solmes, Leslie A. Energy Efficiency. Dordrecht: Springer Netherlands, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mantel, Barbara. Energy Efficiency. 2455 Teller Road, Thousand Oaks California 91320 United States: CQ Press, 2006. http://dx.doi.org/10.4135/cqresrre20060519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Canada. Office of Energy Efficiency. and Canada Natural Resources Canada, eds. Office of Energy Efficiency programs: Energy efficiency. [Ottawa]: Office of Energy Efficiency, Natural Resources Canada, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bizon, Nicu, Naser Mahdavi Tabatabaei, Frede Blaabjerg, and Erol Kurt, eds. Energy Harvesting and Energy Efficiency. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49875-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Energy efficiency"

1

Yang, Ming, and Xin Yu. "Introduction." In Energy Efficiency, 1–9. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Ming, and Xin Yu. "Energy-Efficient Technologies." In Energy Efficiency, 113–26. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Ming, and Xin Yu. "Energy-Efficient Urban Transport." In Energy Efficiency, 127–39. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Ming, and Xin Yu. "Case Studies." In Energy Efficiency, 141–74. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Ming, and Xin Yu. "Conclusions and Further Studies." In Energy Efficiency, 175–77. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Ming, and Xin Yu. "Erratum to: Energy Efficiency." In Energy Efficiency, E1. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Ming, and Xin Yu. "Energy Efficiency Becomes First Fuel." In Energy Efficiency, 11–18. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Ming, and Xin Yu. "Energy Efficiency Becomes First Tool for Climate Change Mitigation." In Energy Efficiency, 19–32. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Ming, and Xin Yu. "Market Barriers to Energy Efficiency." In Energy Efficiency, 33–42. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Ming, and Xin Yu. "Overall Methodology in This Study." In Energy Efficiency, 43–48. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6666-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Energy efficiency"

1

Cimen, H., S. M. Cinar, M. Nartkaya, and I. Yabanova. "Energy Efficiency in Natural Stone Cutting Process." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scheuger, Bob, Ian Levine, and Ryan Sheinbein. "Review of the Impact of Improved Efficiency on Reliability." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steimer, Peter K. "Power Electronics, a Key Technology for Energy Efficiency and Renewables." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baidoo, Ransford R., F. Ferguson, and H. Singh. "A Closed Loop High Efficiency Plasma Waste-to-Power Generation Model." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4780990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Energy Efficiency." In Proceedings. 2006 31st IEEE Conference on Local Computer Networks. IEEE, 2006. http://dx.doi.org/10.1109/lcn.2006.322091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Energy efficiency." In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE, 2016. http://dx.doi.org/10.1109/indin.2016.7819168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zahnstecher, Brian, Earl McCune, Doug Kirkpatrick, Rick Booth, Kirk Bresniker, Lin Nease, Anirban Bandyopadhyay, et al. "Energy Efficiency." In 2022 IEEE Future Networks World Forum (FNWF). IEEE, 2022. http://dx.doi.org/10.1109/fnwf55208.2022.00137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zahnstecher, Brian, Francesco Carobolante, Earl McCune, Daniel Gerber, Doug Kirkpatrick, Magnus Olsson, Rick Booth, et al. "Energy Efficiency." In 2023 IEEE Future Networks World Forum (FNWF). IEEE, 2023. http://dx.doi.org/10.1109/fnwf58287.2023.10520551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gryzlova, Elizaveta Gennadevna. "Energy Efficiency of Alternative Energy." In All-Russian Scientific Conference, Chair Tatiana Leonidovna Fomicheva. Publishing house Sreda, 2021. http://dx.doi.org/10.31483/r-98678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bezrukikh, Pavel P., Sergey M. Karabanov, and Pavel P. Bezrukikh. "Renewable energy efficiency." In 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2016. http://dx.doi.org/10.1109/eeeic.2016.7555545.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Energy efficiency"

1

Keay, Malcolm. Energy Efficiency. Oxford Institute for Energy Studies, December 2011. http://dx.doi.org/10.26889/9781907555404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Michael, and Joe Bryson. Energy Efficiency Collaboratives. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1331041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Williams, Roby. Energy Efficiency Upgrades. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1048090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de la Rue du Can, Stephane, David Pudleiner, David Jones, and Aleisha Khan. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1398496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Janssen, Rod. Harmonising Energy Efficiency Requirements. Geneva, Switzerland: International Centre for Trade and Sustainable Development, 2010. http://dx.doi.org/10.7215/nr_ip_20100916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deason, Jeff, Greg Leventis, Charles A. Goldman, and Juan Pablo Carvallo. Energy Efficiency Program Financing. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1371723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

IUEP. Energy Efficiency Project Development. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/828182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berretta, Miriam, Collins Zamawe, Paul J. Ferraro, Neal Haddaway, Jan Minx, Birte Snilstveit, and John Eyers. Mapping energy efficiency interventions. International Initiative for Impact Evaluation (3ie), April 2021. http://dx.doi.org/10.23846/egm017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kellett, R., R. Berg, A. Paz, and G. Z. Brown. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/196492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Parker, G., and J. Currie. Mobile Energy Laboratory energy-efficiency testing programs. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/5557265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography