To see the other types of publications on this topic, follow the link: Energy distributions of desorbates.

Journal articles on the topic 'Energy distributions of desorbates'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Energy distributions of desorbates.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Georgiou, S., A. Koubenakis, P. Kontoleta, and M. Syrrou. "A Comparative Study of the UV Laser Ablation of Van Der Waals Films of Benzene Derivatives." Laser Chemistry 17, no. 2 (January 1, 1997): 73–95. http://dx.doi.org/10.1155/1997/45930.

Full text
Abstract:
Ablation of thick (≈ 15 μm) films of C6H6, C6H5CH3 and C6H5CI at 248 nm and 193 nm is studied by means of time-of-flight quadrupole mass spectrometry. The dependence of the desorbate most probable translational energies on laser fluence is determined over the ≈20–200 mJ/cm2 range. In all cases, the corresponding diagrams are found to exhibit “plateaus”, in accord with the report by Braun and Hess [J. Chem. Phys. 99 (1993) 8330]. However, no specific correlation with the thermodynamic properties of the compounds is observed, thereby questioning the attribution of the “plateaus” to phase transformation of the films under ablation conditions. A high sensitivity of the distributions and intensities on the rate of deposition and the irradiation history of the films is observed, indicating the importance of the matrix “structure” for the distribution of the absorbed energy. On the other hand, the analysis of the total translational energies of the desorbates suggests that during ablation, efficient energy transfer occurs in the film. This possibility is further demonstrated by the observation of high translational energies and sputtering yields for C6H12(nonabsorbing at 248 nm) condensed in thickness of ≈ I μm on top of C6H5CH3 films. These observations can be qualitatively explained in terms of the collisional sequence model. Alternatively, a photothermal model may be applicable under the provision that energy distribution in the films is limited due to imperfections introducing barriers (bottlenecks) to its ‘flow’.
APA, Harvard, Vancouver, ISO, and other styles
2

KOŁASIŃSKI, KURT W. "DYNAMICS OF HYDROGEN INTERACTIONS WITH Si(100) AND Si(111) SURFACES." International Journal of Modern Physics B 09, no. 21 (September 30, 1995): 2753–809. http://dx.doi.org/10.1142/s0217979295001038.

Full text
Abstract:
Experimental and theoretical work probing the dynamics of dissociative adsorption and recombinative desorption of hydrogen at Si(100) and Si (111) surfaces is reviewed. Whereas molecular beam experiments demonstrate that molecular excitations do aid in overcoming a substantial activation barrier toward adsorption, desorbed molecules are found to have a total energy content only slightly above the equilibrium expectation at the surface temperature. A consistent interpretation of the ad/desorption dynamics is arrived at which requires neither a violation of microscopic reversibility nor defect-mediated processes. An essential element of this model is that surface atom relaxations play an essential role in the dynamics such that different portions of the potential energy hypersurface govern the results of adsorption and desorption experiments. The ‘lost’ energy, i.e. that portion of the activation energy not evident in the total energy of the desorbed molecules, is deposited in the surface coordinates where it is inaccessible to experiments that probe the desorbates final state.
APA, Harvard, Vancouver, ISO, and other styles
3

Impey, C. D., and G. Neugebauer. "Energy distributions of blazars." Astronomical Journal 95 (February 1988): 307. http://dx.doi.org/10.1086/114638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stankovic, Ljubisa, Ervin Sejdic, and Milos Dakovic. "Vertex-Frequency Energy Distributions." IEEE Signal Processing Letters 25, no. 3 (March 2018): 358–62. http://dx.doi.org/10.1109/lsp.2017.2764884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kurucz, Robert L. "Theoretical Stellar Energy Distributions." Highlights of Astronomy 7 (1986): 827–31. http://dx.doi.org/10.1017/s1539299600007358.

Full text
Abstract:
SummaryWe are working hard to improve model atmospheres because existing models have numerical errors, an unphysical treatment of convection, an inadequate or non-existant treatment of statistical equilibrium, an arbitrarily chosen microturbulent velocity, an arbitrarily chosen helium abundance, and a greatly underestimated line opacity for iron group elements.
APA, Harvard, Vancouver, ISO, and other styles
6

González-Dávila, J. C. "Energy of generalized distributions." Differential Geometry and its Applications 49 (December 2016): 510–28. http://dx.doi.org/10.1016/j.difgeo.2016.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poland, Douglas. "Energy distributions of gallium nanoclusters." Journal of Chemical Physics 123, no. 2 (July 8, 2005): 024707. http://dx.doi.org/10.1063/1.1992479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berta, S., D. Lutz, P. Santini, S. Wuyts, D. Rosario, D. Brisbin, A. Cooray, et al. "Panchromatic spectral energy distributions ofHerschelsources." Astronomy & Astrophysics 551 (March 2013): A100. http://dx.doi.org/10.1051/0004-6361/201220859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Impey, Chris, and Loretta Gregorini. "Energy distributions of radio galaxies." Astronomical Journal 105 (March 1993): 853. http://dx.doi.org/10.1086/116477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elvis, Martin, Belinda J. Wilkes, Jonathan C. McDowell, Richard F. Green, Jill Bechtold, S. P. Willner, M. S. Oey, Elisha Polomski, and Roc Cutri. "Atlas of quasar energy distributions." Astrophysical Journal Supplement Series 95 (November 1994): 1. http://dx.doi.org/10.1086/192093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

U, Vivian, and D. B. Sanders. "Spectral Energy Distributions of LIRGs." Proceedings of the International Astronomical Union 5, S267 (August 2009): 143. http://dx.doi.org/10.1017/s1743921310006046.

Full text
Abstract:
AbstractWe present preliminary results from a study of the SEDs of a complete sample of 65 LIRGs from GOALS. The spectral shapes at λ > 10μm are similar, while the largest variations occur in the NIR (L1μm5μm/L⊙ ~ 1.0–0.01) and UV (L1μm0.12μm/L⊙ ~ 2.0–0.005). Using stellar population synthesis models to fit the UV–NIR continuum data, we derive stellar masses for the host galaxies of log (M*/M⊙) ~ 10.2–11.4 with a mean of ~ 10.8.
APA, Harvard, Vancouver, ISO, and other styles
12

Eckstein, W. "Energy distributions of sputtered particles." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 18, no. 1-6 (January 1986): 344–48. http://dx.doi.org/10.1016/s0168-583x(86)80056-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bryan, Greg L., and Sun Kwok. "Energy distributions of symbiotic novae." Astrophysical Journal 368 (February 1991): 252. http://dx.doi.org/10.1086/169688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jenkovszky, L. L., and B. V. Struminsky. "Very high energy multiplicity distributions." Physics of Atomic Nuclei 67, no. 1 (January 2004): 47–49. http://dx.doi.org/10.1134/1.1644006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Poland, Douglas. "Free energy distributions in proteins." Proteins: Structure, Function, and Genetics 45, no. 4 (2001): 325–36. http://dx.doi.org/10.1002/prot.1153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Eisner, J. A. "SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS." Astrophysical Journal 803, no. 1 (April 6, 2015): L4. http://dx.doi.org/10.1088/2041-8205/803/1/l4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Takagi, Toshinobu, Vladas Vansevičius, and Nobuo Arimoto. "Spectral Energy Distributions of Dusty Galaxies." Publications of the Astronomical Society of Japan 55, no. 2 (April 25, 2003): 385–407. http://dx.doi.org/10.1093/pasj/55.2.385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Romanus, E., T. Koettig, G. Glöckl, S. Prass, F. Schmidl, J. Heinrich, M. Gopinadhan, et al. "Energy barrier distributions of maghemite nanoparticles." Nanotechnology 18, no. 11 (February 14, 2007): 115709. http://dx.doi.org/10.1088/0957-4484/18/11/115709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Poland, Douglas. "Maximum-entropy calculation of energy distributions." Journal of Chemical Physics 112, no. 15 (April 15, 2000): 6554–62. http://dx.doi.org/10.1063/1.481226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

d'Errico, F., D. T. Bartlett, P. Ambrosi, and P. Burgess. "Determination of direction and energy distributions." Radiation Protection Dosimetry 107, no. 1-3 (November 1, 2003): 133–53. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Singh, Narendra, and Thomas Schwartzentruber. "Nonequilibrium internal energy distributions during dissociation." Proceedings of the National Academy of Sciences 115, no. 1 (December 18, 2017): 47–52. http://dx.doi.org/10.1073/pnas.1713840115.

Full text
Abstract:
In this work, we propose a model for nonequilibrium vibrational and rotational energy distributions in nitrogen using surprisal analysis. The model is constructed by using data from direct molecular simulations (DMSs) of rapidly heated nitrogen gas using an ab initio potential energy surface (PES). The surprisal-based model is able to capture the overpopulation of high internal energy levels during the excitation phase and also the depletion of high internal energy levels during the quasi-steady-state (QSS) dissociation phase. Due to strong coupling between internal energy and dissociation chemistry, such non-Boltzmann effects can influence the overall dissociation rate in the gas. Conditions representative of the flow behind strong shockwaves, relevant to hypersonic flight, are analyzed. The surprisal-based model captures important molecular-level nonequilibrium physics, yet the simple functional form leads to a continuum-level expression that now accounts for the underlying energy distributions and their coupling to dissociation.
APA, Harvard, Vancouver, ISO, and other styles
22

Hedstrom, Gerald W. "Interpolation of nuclear reaction energy distributions." Journal of Nuclear Science and Technology 54, no. 10 (July 13, 2017): 1095–117. http://dx.doi.org/10.1080/00223131.2017.1345335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mcdowell, J. "The QED (Quasar Energy Distributions) Atlas." Symposium - International Astronomical Union 159 (1994): 516. http://dx.doi.org/10.1017/s0074180900176879.

Full text
Abstract:
While the energy distributions of optically and radio selected quasars have the same, reproducible, mean shape in the infrared to ultraviolet region, the strength of the infrared and ultraviolet components can vary by over a decade from object to object.
APA, Harvard, Vancouver, ISO, and other styles
24

Doyle, J. M., J. C. Sandberg, N. Masuhara, I. A. Yu, D. Kleppner, and T. J. Greytak. "Energy distributions of trapped atomic hydrogen." Journal of the Optical Society of America B 6, no. 11 (November 1, 1989): 2244. http://dx.doi.org/10.1364/josab.6.002244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Teays, T. J., and E. G. Schmidt. "Cepheid Temperatures Derived from Energy Distributions." International Astronomical Union Colloquium 82 (1985): 30–31. http://dx.doi.org/10.1017/s0252921100108991.

Full text
Abstract:
A number of previous studies of the relation between observed colors and temperatures of Cephelds have been done (Kraft 1961; Johnson 1966; Parsons 1971; Bohm-Vitense 1972; Schmidt 1972; Pel 1978). It was the discrepancies between these various temperature scales, especially at the cooler end, that led us to undertake the present recalibration. We felt some improvement on the previous work would result from our access to better scan data, reddening information, and model atmospheres. The results presented here are preliminary, as they represent only a sample of the data we have obtained.
APA, Harvard, Vancouver, ISO, and other styles
26

Hauschildt, P. H., W. Spies, R. Wehrse, and G. Shaviv. "Calculated Energy Distributions for SN II." International Astronomical Union Colloquium 108 (1988): 412–14. http://dx.doi.org/10.1017/s0252921100094197.

Full text
Abstract:
AbstractWe have calculated a large grid of hydrogen-rich supernova photospheres, in which radii, effective temperatures, density profiles, and expansion velocities have been varied. Spherical geometry, radiative equilibrium and LTE level populations are assumed. In the quasi-exact radiative transfer, the dilution of the radiation field, and scattering as well as absorption (by all relevant continuous processes and up to 150 000 lines in some models) are accurately considered. Good agreement can be obtained with the UV and IR spectra of supernovae 1979C, 1980K, and 1987A as observed during the coasting phase. Potential methods of parameter determinations for SN II are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
27

Neugebauer, G., D. B. Sanders, B. T. Soifer, S. Phinney, and R. F. Green. "Spectral Energy Distributions of PG Quasars." Symposium - International Astronomical Union 134 (1989): 390–92. http://dx.doi.org/10.1017/s0074180900141427.

Full text
Abstract:
Between 1013 - 1017 Hz the continua of all PG quasars can be described in the most general terms by a model consisting of two broad peaks of thermal radiation. There is no evidence for energetically significant nonthermal radiation in this frequency range in the continua of the PG quasars. We have compiled continuum observations for PG quasars from 6 cm to 2 KeV, including IRAS data for all these objects and new ground-based infrared data at 10 μm for many of these quasars. Sixty-three of the PG quasars were detected by IRAS in at least one band. The overall energy distributions for these sixty-three PG quasars are shown in Figure 1.
APA, Harvard, Vancouver, ISO, and other styles
28

Aygün, Melis, and İhsan Yilmaz. "Energy-Momentum Distributions of Hawking Wormholes." International Journal of Theoretical Physics 47, no. 3 (August 15, 2007): 707–21. http://dx.doi.org/10.1007/s10773-007-9495-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Corriveau, F., T. Åkesson, S. Almehed, A. L. S. Angelis, N. Armenise, H. Atherton, P. Aubry, et al. "Transverse energy distributions in16O-nucleus collisions." Zeitschrift für Physik C Particles and Fields 38, no. 1-2 (March 1988): 15–18. http://dx.doi.org/10.1007/bf01574510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cioslowski, Jerzy, and Joanna Albin. "Electrostatic energy of polygonal charge distributions." Journal of Mathematical Chemistry 50, no. 6 (January 22, 2012): 1378–85. http://dx.doi.org/10.1007/s10910-012-9975-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rubio, F., J. Rubio, and J. L. Oteo. "Surface energy distributions on silicoborate glasses." Colloids and Surfaces A: Physicochemical and Engineering Aspects 139, no. 2 (August 1998): 227–39. http://dx.doi.org/10.1016/s0927-7757(98)00319-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alonso-Herrero, Almudena, Alice C. Quillen, George H. Rieke, Valentin D. Ivanov, and Andreas Efstathiou. "Spectral Energy Distributions of Seyfert Nuclei." Astronomical Journal 126, no. 1 (July 2003): 81–100. http://dx.doi.org/10.1086/375545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lin, Chao, and Jun-Hui Fan. "Spectral energy distributions for TeV blazars." Research in Astronomy and Astrophysics 18, no. 10 (October 2018): 120. http://dx.doi.org/10.1088/1674-4527/18/10/120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Giovannini, A., S. Lupia, and R. Ugoccioni. "Multiplicity distributions in high energy collisions." Nuclear Physics B - Proceedings Supplements 25 (March 1992): 115–23. http://dx.doi.org/10.1016/s0920-5632(05)80067-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gl�ck, M., E. Reya, and A. Vogt. "Parton distributions for high energy collisions." Zeitschrift f�r Physik C Particles and Fields 53, no. 1 (March 1992): 127–34. http://dx.doi.org/10.1007/bf01483880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jensen, T. S. "Kinetic energy distributions in pionic hydrogen." European Physical Journal D 31, no. 1 (October 2004): 11–19. http://dx.doi.org/10.1140/epjd/e2004-00125-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Plümer, M., and R. M. Weiner. "Multiparticle correlations from transverse-energy distributions." Physical Review D 37, no. 11 (June 1, 1988): 3136–39. http://dx.doi.org/10.1103/physrevd.37.3136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Giovannini, A., S. Lupia, and R. Ugoccioni. "Multiplicity distributions in high energy collisions." Nuclear Physics B - Proceedings Supplements 25 (March 1992): 115–23. http://dx.doi.org/10.1016/0920-5632(92)90385-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Craig, J. H. "ESD energy distributions for COandO2onRh(111)." Applied Surface Science 28, no. 3 (May 1987): 323–29. http://dx.doi.org/10.1016/0169-4332(87)90133-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, H. Z., and L. E. Chen. "Spectral Energy Distributions of SDSS Blazars." Journal of Astrophysics and Astronomy 35, no. 3 (September 2014): 387–89. http://dx.doi.org/10.1007/s12036-014-9237-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Washabaugh, P. D., and D. J. Scheeres. "Energy and Stress Distributions in Ellipsoids." Icarus 159, no. 2 (October 2002): 314–21. http://dx.doi.org/10.1006/icar.2002.6926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

LU, CHIA-CHUN, and GUEY-LIN LIN. "ENERGY SPECTRUM AND SOURCE DISTRIBUTIONS OF ULTRAHIGH ENERGY COSMIC RAYS." International Journal of Modern Physics: Conference Series 01 (January 2011): 163–70. http://dx.doi.org/10.1142/s2010194511000225.

Full text
Abstract:
Motivated by Pierre Auger results on the energy spectrum and the anisotropy of ultrahigh energy cosmic rays (UHECR), we study the spatial distributions of UHECR sources by fitting to the measured UHECR spectrum. We consider possible energy calibration effects in the Pierre Auger data for our analysis. We propose a local overdensity of UHECR sources which is testable in the future cosmic ray astronomy.
APA, Harvard, Vancouver, ISO, and other styles
43

Mayer, M., K. Arstila, and U. von Toussaint. "Skewness of energy-loss straggling and multiple-scattering energy distributions." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, no. 11-12 (June 2010): 1744–48. http://dx.doi.org/10.1016/j.nimb.2010.02.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fan, J. H., J. H. Yang, Y. Liu, G. Y. Luo, C. Lin, Y. H. Yuan, H. B. Xiao, A. Y. Zhou, T. X. Hua, and Z. Y. Pei. "THE SPECTRAL ENERGY DISTRIBUTIONS OF FERMI BLAZARS." Astrophysical Journal Supplement Series 226, no. 2 (October 13, 2016): 20. http://dx.doi.org/10.3847/0067-0049/226/2/20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Root, Terry. "Energy Constraints on Avian Distributions and Abundances." Ecology 69, no. 2 (April 1988): 330–39. http://dx.doi.org/10.2307/1940431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yang, J. H., J. H. Fan, Y. Liu, M. X. Tuo, Z. Y. Pei, W. X. Yang, Y. H. Yuan, et al. "The Spectral Energy Distributions for 4FGL Blazars." Astrophysical Journal Supplement Series 262, no. 1 (August 24, 2022): 18. http://dx.doi.org/10.3847/1538-4365/ac7deb.

Full text
Abstract:
Abstract In this paper, the multiwavelength data from radio to X-ray bands for 2709 blazars in the 4FGL-DR3 catalog are compiled to calculate their spectral energy distributions using a parabolic equation log ( ν f ν ) = P 1 log ν − P 2 2 + P 3 . Some important parameters including spectral curvature (P 1), synchrotron peak frequency (P 2, log ν p ), and peak luminosity ( log L p ) are obtained. Based on those parameters, we discussed the classification of blazars using the “Bayesian classification” and investigated some mutual correlations. We came to the following results. (1) Based on the Bayesian classification of synchrotron peak frequencies, the 2709 blazars can be classified into three subclasses, i.e., log ( ν p / Hz ) < 13.7 for low synchrotron peak blazars (LSPs), 13.7 < log ( ν p / Hz ) < 14.9 for intermediate synchrotron peak blazars (ISPs), and log ( ν p / Hz ) > 14.9 for high synchrotron peak blazars (HSPs), and there are 820 HSPs, 750 ISPs, and 1139 LSPs. (2) The γ-ray emission has the closest relationship with radio emission, followed by optical emission, while the weakest relationship is that with X-ray emission. The γ-ray luminosity is also correlated with the synchrotron peak luminosity. (3) There are strong positive correlations between the curvature (1/∣P 1∣) and the peak frequency ( log ν p ) for all subclasses (FSRQs, (high, intermediate, and low) BL Lacertae objects). For different subclasses, the correlation slopes are different, which implies that there are different acceleration mechanisms and emission processes for different subclasses of blazars.
APA, Harvard, Vancouver, ISO, and other styles
47

Biersack, J. P. "Rapid calculations of high energy range distributions." Radiation Effects and Defects in Solids 110, no. 1-2 (October 1989): 161–62. http://dx.doi.org/10.1080/10420158908214186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mehlig, K., K. Hansen, M. Hedén, A. Lassesson, A. V. Bulgakov, and E. E. B. Campbell. "Energy distributions in multiple photon absorption experiments." Journal of Chemical Physics 120, no. 9 (March 2004): 4281–88. http://dx.doi.org/10.1063/1.1643896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Economou, Demetre J. "Tailored ion energy distributions on plasma electrodes." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31, no. 5 (September 2013): 050823. http://dx.doi.org/10.1116/1.4819315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Filippov, G. F., and Yu A. Lashko. "Energy and angular distributions in 6He photodisintegration." Physics of Atomic Nuclei 65, no. 1 (January 2002): 69–74. http://dx.doi.org/10.1134/1.1446556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography