Academic literature on the topic 'Energy conversion systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy conversion systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Energy conversion systems"

1

Sówka, Izabela, Sławomir Pietrowicz, and Piotr Kolasiński. "Energy Processes, Systems and Equipment." Energies 14, no. 6 (March 18, 2021): 1701. http://dx.doi.org/10.3390/en14061701.

Full text
Abstract:
The scientific and technical issues related to energy harvesting and conversion are inseparably bound to the issues of environmental protection. Energy conversion systems and devices that are applied for converting the chemical energy contained in different fuels into heat, electricity, and cold in industry and housing are sources of different gases and solid particle emissions. Thus, the development of different technologies for energy conversion and environmental protection that can be jointly applied to cover growing energy needs has become a crucial challenge for scientists and engineers around the world. Progress in the precise description, modeling, and optimization of physical and chemical phenomena related to these energy conversion systems is a key research and development field for the economy. Legal and social issues that are affecting key aspects and problems related to the energy conversion and power sector are also significant and worth investigating. The aim of Energy Processes, Systems and Equipment Special Issue is to publish selected high-quality papers from the XV Scientific Conference POL-EMIS 2020: Current Trends in Air and Climate Protection—Control Monitoring, Forecasting, and Reduction of Emissions (29–31 March 2021, Wrocław) and other papers related to the field of energy conversion.
APA, Harvard, Vancouver, ISO, and other styles
2

Papadopoulos, M. "Book Review: Wind Energy Conversion Systems." International Journal of Electrical Engineering & Education 29, no. 3 (July 1992): 264. http://dx.doi.org/10.1177/002072099202900309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vocadlo, Jaro J., Brian Richards, and Michael King. "Hydraulic Kinetic Energy Conversion (HKEC) Systems." Journal of Energy Engineering 116, no. 1 (April 1990): 17–38. http://dx.doi.org/10.1061/(asce)0733-9402(1990)116:1(17).

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yates, D. A. "Book Review: Wind Energy Conversion Systems." International Journal of Mechanical Engineering Education 22, no. 1 (January 1994): 76–77. http://dx.doi.org/10.1177/030641909402200112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miguel, A. F., and M. Aydin. "Ocean exergy and energy conversion systems." International Journal of Exergy 10, no. 4 (2012): 454. http://dx.doi.org/10.1504/ijex.2012.047507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Demirbas, Ayhan. "Biofuel Based Cogenerative Energy Conversion Systems." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 28, no. 16 (December 2006): 1509–18. http://dx.doi.org/10.1080/009083190932187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jansen, D., and M. Mozaffarian. "Advanced fuel cell energy conversion systems." Energy Conversion and Management 38, no. 10-13 (July 1997): 957–67. http://dx.doi.org/10.1016/s0196-8904(96)00126-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suda, S. "Energy Conversion Systems Using Metal Hydrides*." Zeitschrift für Physikalische Chemie 164, Part_2 (January 1989): 1463–74. http://dx.doi.org/10.1524/zpch.1989.164.part_2.1463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deubener, J., G. Helsch, A. Moiseev, and H. Bornhöft. "Glasses for solar energy conversion systems." Journal of the European Ceramic Society 29, no. 7 (April 2009): 1203–10. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Subahan, G. M., G. Surendra Reddy, Y. Veera Reddy, G. Sudheer Reddy, G. Vishnu, and M. Srinivasulu. "PMSG Wind Energy Conversion Systems ZSI." International Journal for Research in Applied Science and Engineering Technology 11, no. 3 (March 31, 2023): 1708–17. http://dx.doi.org/10.22214/ijraset.2023.49534.

Full text
Abstract:
Abstract: Recently Permanent Magnet Synchronous Generator are mostly used in the Wind Energy Conversion System applications This work is clearly deal with the study of Wind Energy Conversion System WECS by way of Permanent Magnet Synchronous Generator PMSG with Z Source Inverters. The PMSGs and wind turbines are gradually entered in the field of power generation huge wind farms are used at constant voltage and frequency to increase capacity power supply Particularly Permanent Magnet Synchronous Generators is used in this machinery due to special characteristics such as low weight volume and high. PMSG never required the power supply at the starting time of power production PMSGs run at synchronous speed. These type of inverter are classified has Z-Source Inverter ZSI, Quasi Z Source Inverter QZSI, Trans Z Source Trans ZSI and Cascaded Multi Cell Z Source Inverter CMCTZSI etc. This inverter is operated such as shoot through state and on shoot through state previously to convert DC supply to AC supply where the DC supply side have been boosted up to required AC supply level are executed. The above mention shoot through state is not applicable to implementing in the conventional Voltage Source Inverter VSI and Current Source Inverter CSI. The PMSG and types of Z Source inverter systems are simulated in MATLAB Simulation platform.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Energy conversion systems"

1

Thorburn, Karin. "Electric Energy Conversion Systems : Wave Energy and Hydropower." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muralidharan, Shylesh. "Assessment of ocean thermal energy conversion." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76927.

Full text
Abstract:
Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 103-109).
Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil agriculture. Previous studies on the technology have focused on promoting it to generate electricity and produce energy-intensive products such as ammonia and hydrogen. Though the technology has been understood in the past couple of decades through academic studies and limited demonstration projects, the uncertainty around the financial viability of a large-scale plant and the lack of an operational demonstration project have delayed large investments in the technology. This study brings together a broad overview of the technology, market locations, technical and economic assessment of the technology, environmental impact of the technology and a comparison of the levelized costs of energy of this technology with competing ones. It also provides an analysis and discussion on application of this technology in water scarce regions of the world, emphasized with a case study of the economic feasibility of this technology for the Bahamas. It was found that current technology exists to build OTEC plants except for some components such as the cold water pipe which presents an engineering challenge when scaled for large-scale power output. The technology is capital intensive and unviable at small scale of power output but can become viable when approached as a sustainable integrated solution to co-generate electricity and freshwater, especially for island nations in the OTEC resource zones with supply constraints on both these commodities. To succeed, this technology requires the support of appropriate government regulation and innovative financing models to mitigate risks associated with the huge upfront investment costs. If the viability of this technology can be improved by integrating the production of by-products, OTEC can be an important means of producing more electricity, freshwater and food for the planet's increasing population.
by Shylesh Muralidharan.
S.M.in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmed, Shehab. "Compact harsh environment energy conversion systems." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boström, Cecilia. "Electrical Systems for Wave Energy Conversion." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-140116.

Full text
Abstract:
Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system.

Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 727

APA, Harvard, Vancouver, ISO, and other styles
5

Michas, Marios. "Control of turbine-based energy conversion systems." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/117586/.

Full text
Abstract:
This thesis investigated the modelling and control of wind and hydrokinetic turbine-based energy conversion systems. Wind turbines are a mature technology and the technical challenges are associated with their connection to the grid. However, hydrokinetic energy conversion systems are fairly new and their design is usually based on knowledge transferred from the wind industry. Variable-speed wind turbines are either fully or partially decoupled from the frequency of the grid. Therefore, as conventional plants are decommissioned, wind turbines have to comply with requirements issued by the transmission system operator of each country. To investigate this, vector control schemes of a doubly fed induction generator (DFIG) and of a fully rated converter (FRC)-based wind turbine were modelled using MATLAB/Simulink. Simulations showed that in case of a fault at the point of connection to the grid there is a larger impact on the torque of a DFIG than a FRC-based wind turbine. In addition, the FRC-based wind turbines can increase their output to contribute to the restoration of the grid frequency. Technical knowledge from the design, control and the modelling of variable-speed wind turbines was used for the design of an electrical subsystem for a hydrokinetic energy conversion system for man-made waterways. An FRC-based configuration based on a dc-dc converter was used for the control of the laboratory prototype of a hydrokinetic energy conversion system and the derivation of its characteristic power curves. Very high efficiencies of the system were observed due to the restricted flow conditions. Similarly to wind turbines, the variable-speed operation of the hydrokinetic energy conversion system enabled its maximum power point tracking (MPPT). A gradient-based method was analysed and a ‘perturb and observe’ algorithm-based control scheme was used for the maximum power extraction. The technical challenges are associated with the selection of the sampling time of the algorithm according to the inertia of the system and the convergence speed coefficient according to the voltage constant of the generator. The laboratory prototype and the projected full-scale system were modelled and simulated. Simulation and experimental results show good agreement on achieving the MPPT of the hydrokinetic energy conversion system. These findings are very important for the future design of heuristic MPPT control schemes for hydrokinetic energy conversion systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Oh, Sang Joon. "Electromagnetics of inertial energy storage systems with fast electromechanical energy conversion /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McEnaney, Kenneth. "Thermoelectrics and aerogels for solar energy conversion systems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97770.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-124).
Concerns about climate change, the world's growing energy needs, and energy independence are driving demand for solar energy conversion technologies. Solar thermal electricity generation has the potential to ll this demand. Solar thermal technology could also be used to displace fossil fuels in applications which require heat as an input. This thesis addresses the potential of two solar thermal technologies: solar thermoelectric generators and aerogel-based solar thermal receivers. Thermoelectrics are materials which produce a voltage when subjected to a temperature gradient. In a solar thermoelectric generator (STEG), sunlight heats one end of the thermoelectric materials, generating a voltage across the device. The voltage can be connected to a load and useful work can be extracted. By adding optical concentration and using higher-temperature materials, the power output and energy conversion eciency of STEGs can be increased. In this work, segmented thermoelectric generators (TEGs) made of bismuth telluride and skutterudite alloys are modeled, optimized, built, and tested. These TEGs achieve a heat-to-electricity conversion efficiency of 10.7% at a hot side of 550° C, the highest TEG eciency reported in this temperature range. From these TEGs, STEGs are built which achieve a sunlight-to-electricity conversion eciency of 5.7% at less than 60 suns, higher than the best reported literature values in this concentration range. With further improvements, it is projected that these STEGs will achieve 10% eciency at 100 suns. In any type of solar thermal system, heat losses from the system must be suppressed to achieve high eciency. Aerogels, which are stable ultra-low density foams, can suppress radiative and convective losses. It is shown that aerogel-based solar thermal receivers can increase the eciency of traditional solar thermal electricity and hot water generation. These results can help advance the field and expand the scope of solar thermal technologies.
by Kenneth McEnaney.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
8

Yassin, Ali M. "Functional conjugated systems for energy conversion and storage." Angers, 2011. http://www.theses.fr/2011ANGE0080.

Full text
Abstract:
Ce travail intitulé « Systèmes Conjugués Fonctionnelle pour la Conversion et le Stockage de l'Energie » porte sur la conception et la synthèse de nouvelles classes de systems π-conjugués fonctionnels pour la conversion photovoltaïque et le développement de nouveaux matériaux microporeux. Après une présentation générales de la structure et des propriétés électroniques des principales classes de systèmes conjugués et plus particulièrement des molécules conjuguées utilisées comme matériaux donneur dans les cellules solaires organiques (CSO), le second chapitre décrit la synthèse et l'étude d'une série de donneurs moléculaires obtenus par greffage de groupes dicyanovinle sur trois types de blocs conjugués rigides : carbazole cyclopentadithiophène et dithiénopyrrole (DTP). L'évaluation de ce systèmes dans des CSOs de type hétérojonction donneur-accepteur bicouche montre que le DTP conduit aux meilleurs résultats. Une étude de l'évolution des propriétés électroniques d'une série d'oligo-DTPs avec la longueur de la chaîne confirme par ailleurs l'intérêt de ce bloc donneur pour la conception de systèmes conjugués à faible bande interdite. Le chapitre suivant traite de la synthèse d'une série de molécules conjuguées de type donneur-accepteur-donneur (D-A-D) construites autour d'un cœur isoindigo ou alcoxy-cyanobithiophène et décrit une première anlyse de leurs potentialités comme matériaux donneurs dans les CSOs. Le quatrième chapitre porte sur la synhtèse d'une séries de molécules 3D issues du greffage de groupes donneurs sur une cœur quaterthiophène de géométrie quasi-tétraédrique engendrée par effet stérique et étudie les relations entre la structure des molécules la mobilité des charges positives dans les matériaux correspondants et les performances dans des CSOs. Enfin le cinquième et dernier chapitre décrit les premières étapes vers la conception et l'utilisation de molécules conjuguées 3D en vue de développer de nouvelles classes de matériaux électroactifs microporeux par polymérisation de systèmes moléculaires 3D munis de groupes terminaux réactifs
This work entitled « Functional Conjugated Systems for Energy Conversion and Storage » involves the design and synthesis of new classes of functional π-conjugated systems for photovoltaic conversion and the development of new microporous materials. After a general introduction to the structure and electronic properties of the major classes of conjugated systems and more particularly conjugated molecules used as donor material in organic solar cells (OSC), the second chapter describes the synthesis and study of a series of molecular donors obtained by grafting dicyanovinylene on three types of conjugated rigid blocks : carbazole, cyclopentadithiophene and dithienopyrrole (DTP). The evaluation of these systems in donor-acceptor bilayer heterojunction OSCs shows that the DTP leads to best results. A study of the evolution of the electronic properties, of a series of oligo-DTPs, with the chain length further confirms the interest of the donor block for low band gap conjugated systems. The next chapter deals with the synthesis of a series of conjugated molecules of donor-acceptor-donor (D-A-D) type, built around a core of isoindigo, and describes a first evaluation of their potential as donor materials in OSCs. The fourth chapter deals with the synthesis of a series of 3D molecules derived from the grafting of donor groupas on a quaterthiophene core with a quasi-tetrehedral geometry caused by steric effect, and examine the relationship between the structure of the molecules, the mobility of positive charges in these materials and their performance in OSCs. Finally the fift and last chapter describes the first steps towards the design and use of 3D conjugated molecules in order to develop new classes of electro-active materials by polymerization of microporous 3D molecular systems provided with reactive end groups
APA, Harvard, Vancouver, ISO, and other styles
9

Buehrle, Bridget Erin. "Modeling of Small-Scale Wind Energy Conversion Systems." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/50920.

Full text
Abstract:
As wind turbines are increasingly being adopted for meeting growing energy needs, their implementation for personal home use in the near future is imminent. There are very few studies conducted on small-scale turbines in the one to two meter diameter range because the power generated at this scale is currently not sufficient to justify the cost of installation and maintenance. The problem is further complicated by the fact that these turbines are normally mounted at low altitudes and thus there is necessity to have the optimum operating regime in the wind speed range of 3-10 mph (1.34 -- 4.47 m/s). This thesis discusses two methods for increasing the efficiency of horizontal axis small-scale wind energy conversion systems, 1) adding a diffuser to increase the wind speed at the rotor and 2) designing tubercles to enhance the flow characteristics over blades. Further, it was identified during the course of thesis that for simple installation and maintenance in the residential areas vertical axis turbines are advantageous. Thus, the second chapter of this thesis addresses the design of vertical axis turbines with power generation capability suitable for that of a typical US household.
    The study of the diffuser augmented wind turbine provides optimum dimensions for achieving high power density that can address the challenges associated with small scale wind energy systems; these challenges are to achieve a lower start-up speed and low wind speed operation. The diffuser design was modeled using commercial computational fluid dynamics code. Two-dimensional modeling using actuator disk theory was used to optimize the diffuser design. A statistical study was then conducted to reduce the computational time by selecting a descriptive set of models to simulate and characterize relevant parameters\' effects instead of checking all the possible combinations of input parameters. Individual dimensions were incorporated into JMP® software and randomized to design the experiment. The results of the JMP® analysis are discussed in this paper. Consistent with the literature, a long outlet section with length one to three times the diameter coupled with a sharp angled inlet was found to provide the highest amplification for a wind turbine diffuser.
    The second study consisted of analyzing the capabilities of a small-scale vertical axis wind turbine. The turbine consisted of six blades of extruded aluminum NACA 0018 airfoils of 0.08732 m (3.44 in) in chord length. Small-scale wind turbines often operate at Reynolds numbers less than 200,000, and issues in modeling their flow characteristics are discussed throughout this thesis. After finding an appropriate modeling technique, it was found that the vertical axis wind turbine requires more accurate turbulence models to appropriately discover its performance capabilities.
    The use of tubercles on aerodynamic blades has been found to delay stall angle and increase the aerodynamic efficiency. Models of 440 mm (17.33 in) blades with and without tubercles were fabricated in Virginia Tech\'s Center for Energy Harvesting Materials and Systems (CEHMS) laboratory. Comparative analysis using three dimensional models of the blades with and without the tubercles will be required to determine whether the tubercle technology does, in fact, delays the stall. Further computational and experimental testing is necessary, but preliminary results indicate a 2% increase in power coefficient when tubercles are present on the blades.

Master of Science
APA, Harvard, Vancouver, ISO, and other styles
10

Trilla, Romero Lluís. "Power converter optimal control for wind energy conversion systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134602.

Full text
Abstract:
L'energia eòlica ha incrementat la seva presència a molts països i s'espera que tingui encara un pes més gran en la generació elèctrica amb la implantació de la tecnologia eòlica marina. En aquest context el desenvolupament de models dels Sistemes de Generació per Turbina de Vent (SGTV) precisos és important pels operadors de xarxa per tal d'avaluar-ne el comportament. Els codis de xarxa ofereixen un seguit de normes per validar models amb dades obtingudes de proves de camp. A la primera part d'aquesta tesi un model de SGTV amb màquina d'inducció doblement alimentada (DFIG) és validat d'acord amb les normatives espanyola i alemanya. Avui dia molts parc eòlics utilitzen DFIG i, en conseqüència, les dades de camp disponibles son per aquesta tecnologia. Per a la indústria eòlica marina un avanç prometedor son els SGTV amb generadors síncrons d'imants permanents (PMSG). Per aquesta raó la segona part d'aquesta tesi es centra en SGTV basats en PMSG amb convertidor back-to-back de plena potència. Aquest convertidor es pot dividir en dues parts: el costat de xarxa (GSC) que interactua amb la xarxa elèctrica i el costat de màquina (MSC) que controla el generador. En general, el sistema de control del convertidor recau en els tradicionals controladors PI i, en ocasions, incorpora desacoblaments per reduir les influencies creuades entre les variables. Aquest controlador pot ser sintonitzat i implementat fàcilment donat que la seva estructura és simple, però, no presenta una resposta ideal donat que no aprofita tots els graus de llibertat disponibles en el sistema. És important desenvolupar controladors fiables que puguin oferir una resposta previsible del sistema i proveir robustesa i estabilitat. En especial per zones on la presència eòlica és gran i per parcs eòlics connectats a xarxes dèbils. En aquest treball es proposa un sistema de control pel convertidor basat en teoria de control H-infinit i en controladors Lineals amb Paràmetres Variants (LPV). La teoria de control òptim proveeix un marc de treball on més opcions es poden tenir en consideració a l'hora de dissenyar el controlador. En concret la teoria de control H-inifinit permet crear controladors multivariables per tal d'obtenir una òptima resposta del sistema, proveir certa robustesa i assegurar l'estabilitat. Amb aquesta tècnica durant la síntesi del controlador el pitjor cas de senyals de pertorbació és contemplat, d'aquesta manera el controlador resultant robustifica l'operació del sistema. Es proposa aquest control per al GSC posant especial èmfasi en obtenir un control de baixa complexitat que mantingui els beneficis d'aplicar la teoria de control òptim i faciliti la seva implementació en computadors industrials. Pel MSC es proposa una estratègia diferent basada en control LPV donat que el punt d'operació del generador canvia constantment. El sistema de control basat en LPV és capaç d'adaptar-se dinàmicament al punt d'operació del sistema, així s'obté en tot moment la resposta definida durant el procés de disseny. Amb aquesta tècnica l'estabilitat del sistema sobre tot el rang d'operació queda garantida i, a més, s'obté una resposta predictible i uniforme. El controlador està dissenyat per tenir una estructura simple, com a resultat s'obté un control que no és computacionalment exigent i es proveeix una solució que pot ser utilitzada amb equips industrials. S'utilitza una bancada de proves que inclou el PMSG i el convertidor back-to-back per tal d'avaluar experimentalment l'estratègia de control dissenyada al llarg d'aquest treball. L'enfoc orientat a la implementació dels controls proposats facilita el seu ús amb el processador de senyals digitals inclòs a la placa de control de la bancada. Els experiments realitzats verifiquen en un ambient realista els beneficis teòrics i els resultats de simulació obtinguts prèviament. Aquestes proves han ajudat a valorar el funcionament dels controls en un sistema discret i la seva tolerància al soroll de senyals i mesures
Wind energy has increased its presence in many countries and it is expected to have even a higher weight in the electrical generation share with the implantation of offshore wind farms. Consequently, the wind energy industry has to take greater responsibility towards the integration and stability of the power grid. In this sense, there are proposed in the present work control systems that aim to improve the response and robustness of the wind energy conversion systems without increasing their complexity in order to facilitate their applicability. In the grid-side converter it is proposed to implement an optimal controller with its design based on H-infinity control theory in order to ensure the stability, obtain an optimal response of the system and also provide robustness. In the machine-side converter the use of a Linear Parameter-Varying controller is selected, this choice provides a controller that dynamically adapts itself to the operating point of the system, in this way the response obtained is always the desired one, the one defined during the design process. Preliminary analysis of the controllers are performed using models validated with field test data obtained from operational wind turbines, the validation process followed the set of rules included in the official regulations of the electric sector or grid codes. In the last stage an experimental test bench has been developed in order to test and evaluate the proposed controllers and verify its correct performance.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Energy conversion systems"

1

Muyeen, S. M., ed. Wind Energy Conversion Systems. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Freris L., ed. Wind energy conversion systems. New York: Prentice Hall, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Energy conversion. St. Paul: West Pub. Co., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

E, Salvagin Carlton, ed. Energy technologies and conversion systems. Englewood Cliffs, N.J: Prentice Hall, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Association, American Wind Energy, ed. Wind energy conversion systems terminology. Alexandria, Va: American Wind Energy Association, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fuchs, Ewald F., and Mohammad A. S. Masoum. Power Conversion of Renewable Energy Systems. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7979-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

J, McEvoy A., and Commission of the European Communities. Directorate-General for Science, Research and Development., eds. Photoelectrochemical systems for solar energy conversion. Luxembourg: Commission of the European Communities, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ioinovici, Adrian. Power electronics and energy conversion systems. Chichester, West Sussex: John Wiley & Sons, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Edward, Doyle, Becker Frederick, and Lewis Research Center, eds. Thermophotovoltaic energy conversion development program. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dmitrievich, Varfolomeev Sergeĭ, Krylova L, and Zaikov Gennadiĭ Efremovich, eds. Molecular and nanoscale systems for energy conversion. New York: Nova Science Publishers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Energy conversion systems"

1

Goswami, D. Yogi, and Frank Kreith. "Global Energy Systems." In Energy Conversion, 1–30. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gülen, Seyfettin C. (John). "Advanced Fossil Fuel Power Systems." In Energy Conversion, 281–445. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mathew, Sathyajith. "Wind energy conversion systems." In Wind Energy, 89–143. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30906-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Courault, Jacques. "Electrical Conversion Systems." In Marine Renewable Energy Handbook, 463–570. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118603185.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bronicki, Lucien Y. "Geothermal Power Conversion Technology geothermal power conversion technology." In Renewable Energy Systems, 818–923. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tanrioven, Mugdesem. "Energy and Energy Conversion." In Photovoltaic Systems Engineering for Students and Professionals, 1–10. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003415572-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Struchtrup, Henning. "Open Systems." In Thermodynamics and Energy Conversion, 177–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43715-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kanoğlu, Mehmet, Yunus A. Çengel, and İbrahim Dinçer. "Energy Conversion Efficiencies." In Efficiency Evaluation of Energy Systems, 55–68. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2242-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sumathi, S., L. Ashok Kumar, and P. Surekha. "Wind Energy Conversion Systems." In Solar PV and Wind Energy Conversion Systems, 247–307. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14941-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kouro, Samir, Bin Wu, Haitham Abu-Rub, and Frede Blaabjerg. "Photovoltaic Energy Conversion Systems." In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, 160–98. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118755525.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Energy conversion systems"

1

"Photovoltaic energy conversion systems." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shen, Po-Sheng, Jen-Hao Teng, and Bo-Hsien Liu. "Conversion efficiency Enhancement for SeriesParallel Power Conversion Systems." In 2021 IEEE International Future Energy Electronics Conference (IFEEC). IEEE, 2021. http://dx.doi.org/10.1109/ifeec53238.2021.9661709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Force-of-gravity conversion systems." In Intersociety Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pan, Tinglong, Zhicheng Ji, and Zhenhua Jiang. "Maximum Power Point Tracking of Wind Energy Conversion Systems Based on Sliding Mode Extremum Seeking Control." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ikura, Michio. "Conversion of Glycerol to Gasoline Additive." In Power and Energy Systems. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.714-158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Grid-connected photovoltaic energy conversion systems." In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). IEEE, 2015. http://dx.doi.org/10.1109/isie.2015.7281625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tounsi, Asma, Hafedh Abid, and Khaled Elleuch. "On the Wind Energy Conversion Systems." In 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2018. http://dx.doi.org/10.1109/ssd.2018.8570704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ivanenok, III, Joseph, and Robert Sievers. "Radioisotope powered AMTEC systems." In Intersociety Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ford, Donnie R. "Cooperating Expert Systems for Power Systems." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sutliff, Thomas, and Leonard Dudzinski. "NASA Radioisotope Power System Program - Technology and Flight Systems." In 7th International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-4575.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Energy conversion systems"

1

Wrighton, M. Interfacial systems for photochemical energy conversion. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5305179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Den Braven, K. R., and S. Stanger. Modeling and analysis of energy conversion systems. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6053752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mendez Cruz, Carmen Margarita, Gary E. Rochau, and Mollye C. Wilson. Systems Engineering Model for ART Energy Conversion. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1343252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tollin, G. Photochemical energy conversion by membrane-bound photoredox systems. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/5784171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tollin, G. Photochemical energy conversion by membrane-bound photoredox systems. Final report. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10106148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thayer, G. R., and C. A. Mangeng. Assessment of dynamic energy conversion systems for radioisotope heat sources. Office of Scientific and Technical Information (OSTI), June 1985. http://dx.doi.org/10.2172/5585004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hoffert, Martin I. Innovative Energy conversion Schemes for Space Based Strategic Defense Systems. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada338958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ostrum, Lee, and Milos Manic. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1407694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fendler, J. H. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5489231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miller, F. L. ,. Jr, and D. E. Zimmerman. Compilation of Failure Data and Fault Tree Analysis for Geothermal Energy Conversion Systems. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/882394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography