Academic literature on the topic 'Energy balancing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy balancing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Energy balancing"

1

Shirzeh, Hassan, Fazel Naghdy, Philip Ciufo, and Montserrat Ros. "Stochastic energy balancing in substation energy management." AIMS Energy 3, no. 4 (2015): 810–37. http://dx.doi.org/10.3934/energy.2015.4.810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elliott, David. "Balancing green energy." International Journal of Ambient Energy 37, no. 5 (July 7, 2016): 437–38. http://dx.doi.org/10.1080/01430750.2016.1201910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hardie, D. G. "BIOCHEMISTRY: Balancing Cellular Energy." Science 315, no. 5819 (March 23, 2007): 1671–72. http://dx.doi.org/10.1126/science.1140737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rogers, Peter J., and Jeffrey M. Brunstrom. "Appetite and energy balancing." Physiology & Behavior 164 (October 2016): 465–71. http://dx.doi.org/10.1016/j.physbeh.2016.03.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McEvoy, Peter B. "Balancing insect energy budgets." Oecologia 66, no. 1 (April 1985): 154–56. http://dx.doi.org/10.1007/bf00378568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Ming Xin, and Xiao Meng Wang. "Energy Balance Routing Algorithm Based on Energy Heterogeneous WSN." Applied Mechanics and Materials 687-691 (November 2014): 3976–79. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.3976.

Full text
Abstract:
Balancing energy load is a key problem in wireless sensor network (WSN) research. For balancing node energy consumption and prolong the network lifetime, this paper proposes an improved routing algorithm EBRA (Energy Balancing Routing Algorithm) based on energy heterogeneous WSN. To maximize the energy efficiency of network nodes, the EBRA weights the probability of cluster head election. According to the estimate value of the network average remaining energy and the residual energy of network nodes, we can calculate the new cluster head election threshold. The simulation results show that the utilization of energy balance of EBRA algorithm is improved 74%, 30% and 23%, compare with LEACH, SEP and DCHS, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Nelson, Victoria LB, Lisa M. Ballou, and Richard Z. Lin. "Energy balancing by fat Pik3ca." Adipocyte 4, no. 1 (November 14, 2014): 70–74. http://dx.doi.org/10.4161/21623945.2014.955397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arahmaiani and Siobhan Campbell. "Balancing Feminine and Masculine Energy." Southeast of Now: Directions in Contemporary and Modern Art in Asia 3, no. 1 (2019): 201–13. http://dx.doi.org/10.1353/sen.2019.0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ostrovskis, John. "Energy Balancing — The Ultimate Therapy?" Physiotherapy 79, no. 7 (July 1993): 502. http://dx.doi.org/10.1016/s0031-9406(10)60251-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

HILEMAN, BETTE. "BALANCING ENERGY NEEDS AND SAFETY." Chemical & Engineering News 86, no. 6 (February 11, 2008): 38–42. http://dx.doi.org/10.1021/cen-v086n006.p038.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Energy balancing"

1

Patharlapati, Sai Ram Charan. "Balancing of Network Energy using Observer Approach." Master's thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209453.

Full text
Abstract:
Efficient energy use is primarily for any sensor networks to function for a longer time period. There have been many efficient schemes with various progress levels proposed by many researchers. Yet, there still more improvements are needed. This thesis is an attempt to make wireless sensor networks with further efficient on energy usage in the network with respect to rate of delivery of the messages. In sensor network architecture radio, sensing and actuators have influence over the power consumption in the entire network. While listening as well as transmitting, energy is consumed by the radio. However, if by reducing listening times or by reducing the number of messages transmitting would reduce the energy consumption. But, in real time scenario with critical information sensing network leads to information loss. To overcome this an adaptive routing technique should be considered. So, that it focuses on saving energy in a much more sophisticated way without reducing the performance of the sensing network transmitting and receiving functionalities. This thesis tackles on parts of the energy efficiency problem in a wireless sensor network and improving delivery rate of messages. To achieve this a routing technique is proposed. In this method, switching between two routing paths are considered and the switching decision taken by the server based on messages delivered comparative previous time intervals. The goal is to get maximum network life time without degrading the number of messages at the server. In this work some conventional routing methods are considered for implementing an approach. This approach is by implementing a shortest path, Gradient based energy routing algorithm and an observer component to control switching between paths. Further, controlled switching done by observer compared to normal initial switch rule. Evaluations are done in a simulation environment and results show improvement in network lifetime in a much more balanced way.
APA, Harvard, Vancouver, ISO, and other styles
2

Sudhakar, Soumya. "Balancing actuation energy and computing energy in low-power motion planning." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127096.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 89-91).
Inspired by emerging low-power robotic vehicles, we identify a new class of motion planning problems in which the energy consumed by the computer while planning a path can be as large as the energy consumed by the actuators during the execution of the path. As a result, minimizing energy requires minimizing both actuation energy and computing energy since computing energy is no longer negligible. We propose the first algorithm to address this new class of motion planning problems, called Computing Energy Included Motion Planning (CEIMP). CEIMP operates similarly to other anytime planning algorithms, except it stops when it estimates that while further computing may save actuation energy by finding a shorter path, the additional computing energy spent to find that path will negate those savings. The algorithm formulates a stochastic shortest path problem based on Bayesian inference to estimate future actuation energy savings from homotopic class changes. We assess the trade-off between the computing energy required to continue sampling to potentially reduce the path length, the potential future actuation energy savings due to reduction in path length, and the overhead computing energy expenditure CEIMP introduces to decide when to stop computing. We evaluate CEIMP on realistic computational experiments involving 10 MIT building floor plans, and CEIMP outperforms the average baseline of using maximum computing resources. In one representative experiment on an embedded CPU (ARM Cortex A-15), for a simulated vehicle that uses one Watt to travel one meter per second, CEIMP saves 2.1-8.9x of the total energy on average across the 10 floor plans compared to the baseline, which translates to missions that can last equivalently longer on the same battery. As the the energy to move relative to the energy to compute decreases, the energy savings with CEIMP will increase, which highlights the advantage in spending computing energy to decide when to stop computing.
by Soumya Sudhakar.
S.M.
S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
APA, Harvard, Vancouver, ISO, and other styles
3

Antoniadis, Antonios. "Scheduling algorithms for saving energy and balancing load." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16566.

Full text
Abstract:
Diese Arbeit beschäftigt sich mit Scheduling von Tasks in Computersystemen. Wir untersuchen sowohl die in neueren Arbeiten betrachtete Zielfunktion zur Energieminimierung als auch die klassische Zielfunktion zur Lastbalancierung auf mehreren Prozessoren. Beim Speed-Scaling mit Sleep-State darf ein Prozessor, der zu jedem Zeitpunkt seine Geschwindigkeit anpassen kann, auch in einen Schlafmodus übergehen. Unser Ziel ist es, den Energieverbrauch zu minimieren. Wir zeigen die NP-Härte des Problems und klären somit den Komplexitätsstatus. Wir beweisen eine untere Schranke für die Approximationsgüte für eine spezielle natürliche Klasse von Schedules. Ferner entwickeln wir eine Familie von Algorithmen, die gute Approximationsfaktoren liefert, und zeigen, dass diese sogar Lösungen liefert, die optimal für die zuvor erwähnte Klasse von Schedules sind. Anschließend widmen wir unsere Aufmerksamkeit dem folgenden Termin-basierten Scheduling-Problem. Es seien mehrere Prozessoren gegeben, wobei jeder einzelne Prozessor zu jedem Zeitpunkt seine Geschwindigkeit anpassen kann. Ziel ist es wie zuvor, den Energieverbrauch des erzeugten Schedules zu minimieren. Für den Offline-Fall entwickeln wir einen optimalen Polynomialzeit-Algorithmus. Für das Online-Problem erweitern wir die zwei bekannten Ein-Prozessor-Algorithmen Optimal Available und Average Rate. Wir zeigen, dass diese den gleichen bzw. einen um die additive Konstante von eins vergrößerten kompetiven Faktor haben. Bei der Lastbalancierung auf mehreren Prozessoren betrachten wir Offline-Load-Balancing auf identischen Maschinen. Unser Ziel ist es, die Current-Load für temporäre Tasks mit identischem Gewicht zu minimieren. Wir zeigen, dass eine Lösung mit maximaler Imbalance von eins immer existiert und entwickeln einen effizienten Algorithmus, der solche Lösungen liefert. Zum Schluss beweisen wir die NP-Härte von zwei Verallgemeinerungen des Problems.
This thesis studies problems of scheduling tasks in computing environments. We consider both the modern objective function of minimizing energy consumption, and the classical objective of balancing load across machines. We first investigate offline deadline-based scheduling in the setting of a single variable-speed processor that is equipped with a sleep state. The objective is that of minimizing the total energy consumption. Apart from settling the complexity of the problem by showing its NP-hardness, we provide a lower bound of 2 for general convex power functions, and a particular natural class of schedules. We also present an algorithmic framework for designing good approximation algorithms. Furthermore, we give tight bounds for the aforementioned particular class of schedules. We then focus on the multiprocessor setting where each processor has the ability to vary its speed. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time. Regarding the online problem and a natural class of power functions, we extend the two well-known single-processor algorithms Optimal Available and Average Rate. We prove that Optimal Available has the same competitive ratio as in the single-processor case. For Average Rate we show a competitive factor that increases by an additive constant of one compared to the single-processor result. With respect to load balancing, we consider offline load balancing on identical machines, with the objective of minimizing the current load, for temporary unit-weight jobs. The problem can be seen as coloring n intervals with k colors, such that for each point on the line, the maximal difference between the number of intervals of any two colors is minimal. We prove that a coloring with maximal difference at most one is always possible, and develop a fast polynomial-time algorithm for generating such a coloring. Lastly, we prove that two generalizations of the problem are NP-hard.
APA, Harvard, Vancouver, ISO, and other styles
4

Padoin, Edson Luiz. "Energy-aware load balancing approaches to improve energy efficiency on HPC systems." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/140401.

Full text
Abstract:
Os atuais sistemas de HPC tem realizado simulações mais complexas possíveis, produzindo benefícios para diversas áreas de pesquisa. Para atender à crescente demanda de processamento dessas simulações, novos equipamentos estão sendo projetados, visando à escala exaflops. Um grande desafio para a construção destes sistemas é a potência que eles vão demandar, onde perspectivas atuais alcançam GigaWatts. Para resolver este problema, esta tese apresenta uma abordagem para aumentar a eficiência energética usando recursos de HPC, objetivando reduzir os efeitos do desequilíbrio de carga e economizar energia. Nós desenvolvemos uma estratégia baseada no consumo de energia, chamada ENERGYLB, que considera características da plataforma, irregularidade e dinamicidade de carga das aplicações para melhorar a eficiência energética. Nossa estratégia leva em conta carga computacional atual e a frequência de clock dos cores, para decidir entre chamar uma estratégia de balanceamento de carga que reduz o desequilíbrio de carga migrando tarefas, ou usar técnicas de DVFS par ajustar as frequências de clock dos cores de acordo com suas cargas computacionais ponderadas. Como as diferentes arquiteturas de processador podem apresentam dois níveis de granularidade de DVFS, DVFS-por-chip ou DVFS-por-core, nós criamos dois diferentes algoritmos para a nossa estratégia. O primeiro, FG-ENERGYLB, permite um controle fino da frequência dos cores em sistemas que possuem algumas dezenas de cores e implementam DVFS-por-core. Por outro lado, CG-ENERGYLB é adequado para plataformas de HPC composto de vários processadores multicore que não permitem tal refinado controle, ou seja, que só executam DVFS-por-chip. Ambas as abordagens exploram desbalanceamentos residuais em aplicações interativas e combinam balanceamento de carga dinâmico com técnicas de DVFS. Assim, eles reduzem a frequência de clock dos cores com menor carga computacional os quais apresentam algum desequilíbrio residual mesmo após as tarefas serem remapeadas. Nós avaliamos a aplicabilidade das nossas abordagens utilizando o ambiente de programação paralela CHARM++ sobre benchmarks e aplicações reais. Resultados experimentais presentaram melhorias no consumo de energia e na demanda potência sobre algoritmos do estado-da-arte. A economia de energia com ENERGYLB usado sozinho foi de até 25% com nosso algoritmo FG-ENERGYLB, e de até 27% com nosso algoritmo CG-ENERGYLB. No entanto, os desequilíbrios residuais ainda estavam presentes após as serem tarefas remapeadas. Neste caso, quando as nossas abordagens foram empregadas em conjunto com outros balanceadores de carga, uma melhoria na economia de energia de até 56% é obtida com FG-ENERGYLB e de até 36% com CG-ENERGYLB. Estas economias foram obtidas através da exploração do desbalanceamento residual em aplicações interativas. Combinando balanceamento de carga dinâmico com DVFS nossa estratégia é capaz de reduzir a demanda de potência média dos sistemas paralelos, reduzir a migração de tarefas entre os recursos disponíveis, e manter o custo de balanceamento de carga baixo.
Current HPC systems have made more complex simulations feasible, yielding benefits to several research areas. To meet the increasing processing demands of these simulations, new equipment is being designed, aiming at the exaflops scale. A major challenge for building these systems is the power that they will require, which current perspectives reach the GigaWatts. To address this problem, this thesis presents an approach to increase the energy efficiency using of HPC resources, aiming to reduce the effects of load imbalance to save energy. We developed an energy-aware strategy, called ENERGYLB, which considers platform characteristics, and the load irregularity and dynamicity of the applications to improve the energy efficiency. Our strategy takes into account the current computational load and clock frequency, to decide whether to call a load balancing strategy that reduces load imbalance by migrating tasks, or use Dynamic Voltage and Frequency Scaling (DVFS) technique to adjust the clock frequencies of the cores according to their weighted loads. As different processor architectures can feature two levels of DVFS granularity, per-chip DVFS or per-core DVFS, we created two different algorithms for our strategy. The first one, FG-ENERGYLB, allows a fine control of the clock frequency of cores in systems that have few tens of cores and feature per-core DVFS control. On the other hand, CGENERGYLB is suitable for HPC platforms composed of several multicore processors that do not allow such a fine-grained control, i.e., that only perform per-chip DVFS. Both approaches exploit residual imbalances on iterative applications and combine dynamic load balancing with DVFS techniques. Thus, they reduce the clock frequency of underloaded computing cores, which experience some residual imbalance even after tasks are remapped. We evaluate the applicability of our approaches using the CHARM++ parallel programming system over benchmarks and real world applications. Experimental results present improvements in energy consumption and power demand over state-of-the-art algorithms. The energy savings with ENERGYLB used alone were up to 25%with our FG-ENERGYLB algorithm, and up to 27%with our CG-ENERGYLB algorithm. Nevertheless, residual imbalances were still present after tasks were remapped. In this case, when our approaches were employed together with these load balancers, an improvement in energy savings of up to 56% is achieved with FG-ENERGYLB and up to 36% with CG-ENERGYLB. These savings were obtained by exploiting residual imbalances on iterative applications. By combining dynamic load balancing with the DVFS technique, our approach is able to reduce the average power demand of parallel systems, reduce the task migration among the available resources, and keep load balancing overheads low.
APA, Harvard, Vancouver, ISO, and other styles
5

Ooi, Chia Ai. "Balancing control for grid-scale battery energy storage systems." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/93020/.

Full text
Abstract:
Grid-scale battery energy storage systems (BESSs) are becoming increasingly attractive as the connection of a BESS has been shown to improve the dynamic behaviours of the power grid. A key problem with BESSs is the potential for poor utilisation of mismatched cells and reliability issues resulting from the use of a large number of cells in series. This thesis proposes a technique for state-of-charge balancing of many thousands of cells individually (i.e. not in packs) using a tightly integrated power electronic circuit coupled with a new control system design. Cells are organised in a hierarchical structure consisting of modules, sub-banks, banks and phases. The control strategy includes five levels of balancing: balancing of cells within a module, balancing of modules within a sub-bank, sub-banks within a bank, banks in a phase and balancing between phases. The system seeks to maximise the accessible state-of-charge range of each individual cell, thereby enhancing the overall capacity of the system. The system is validated in simulation for a 380 kWh BESS using 2835 lithium-ion cells where charge balancing is demonstrated for mismatched cells. A ‘peak sharing’ concept is implemented to manage voltage constraints so that alternative modules assume a portion of the load when certain modules are not capable of meeting the demand. An experimental validation has been performed to demonstrate the effectiveness of the balancing control. This work is intended to address the challenges of eventual scaling towards a 100 MWh+ BESS, which may be composed of hundreds of thousands of individual cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Gratwick, Katharine Nawaal. "Independent power projects in Africa : balancing development and investment outcomes." Doctoral thesis, University of Cape Town, 2007. http://hdl.handle.net/11427/19641.

Full text
Abstract:
Includes bibliographic references.
In the early 1990s, a new model emerged for the provision of electricity generation across developing regions. The model involved private sector participation in the form of independent power projects (IPP). Driving this change in business was insufficient public finance from host country governments, a reduction in concessionary loans from multilateral and bilateral development institutions, and a push for improved efficiency in a state-owned utility sector that was considered to be underperforming. This dissertation reviews how IPPs developed across both North Africa and Sub-Saharan Africa. The analysis focuses on the extent to which positive development outcomes (viz. reliable and affordable power) and investment outcomes (viz. favourable investment returns and the opportunity to grow investments) were both achieved. The dissertation posits that balancing development and investment outcomes leads to greater sustainability for projects. It further explores a range of elements that contribute to the success of projects, namely: the investment climate; policy, regulatory and planning frameworks; competitive procurement practices; availability of competitively procured fuel; favourable debt and equity arrangements, including new trends in the nature of IPP firms and credit enhancement arrangements; and new risk management techniques. In-depth case studies of IPP experiences in Egypt, Kenya and Tanzania are used to explore the question of balancing outcomes and sustainability. Reviews of IPP experiences in Cote d'Ivoire, Ghana, Morocco, Nigeria and Tunisia also supplement the analysis together with an evaluation of the foreign direct investment context and related theory. Framing the whole discussion is an examination of how the new model for electric power provision evolved and how power sector reform models need to be adjusted to better reflect the reality in developing countries and emerging economies.
APA, Harvard, Vancouver, ISO, and other styles
7

Thiam, Cheikhou. "Anti load-balancing for energy-aware distributed scheduling of virtual machines." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2441/.

Full text
Abstract:
La multiplication de l'informatique en nuage (Cloud) a abouti à la création de centres de données dans le monde entier. Le Cloud contient des milliers de nœuds de calcul. Cependant, les centres de données consomment d'énorme quantités d'énergie à travers le monde estimées à plus de 1,5 % de la consommation mondiale d'électricité et devrait continuer à croître. Une problématique habituellement étudiée dans les systèmes distribués est de répartir équitablement la charge. Mais lorsque l'objectif est de réduire la consommation électrique, ce type d'algorithmes peut mener à avoir des serveurs fortement sous chargés et donc à consommer de l'énergie inutilement. Cette thèse présente de nouvelles techniques, des algorithmes et des logiciels pour la consolidation dynamique et distribuée de machines virtuelles (VM) dans le Cloud. L'objectif principal de cette thèse est de proposer des stratégies d'ordonnancement tenant compte de l'énergie dans le Cloud pour les économies d'énergie. Pour atteindre cet objectif, nous utilisons des approches centralisées et décentralisées. Les contributions à ce niveau méthodologique sont présentées sur ces deux axes. L'objectif de notre démarche est de réduire la consommation de l'énergie totale du centre de données en contrôlant la consommation globale d'énergie des applications tout en assurant les contrats de service pour l'exécution des applications. La consommation d'énergie est réduite en désactivant et réactivant dynamiquement les nœuds physiques pour répondre à la demande des ressources. Les principales contributions sont les suivantes: - Ici on s'intéressera à la problématique contraire de l'équilibrage de charge. Il s'agit d'une technique appelée Anti Load-Balancing pour concentrer la charge sur un nombre minimal de nœuds. Le but est de pouvoir éteindre les nœuds libérés et donc de minimiser la consommation énergétique du système. - Ensuite une approche centralisée a été proposée et fonctionne en associant une valeur de crédit à chaque nœud. Le crédit d'un nœud dépend de son affinité pour ses tâches, sa charge de travail actuelle et sa façon d'effectuer ses communications. Les économies d'énergie sont atteintes par la consolidation continue des machines virtuelles en fonction de l'utilisation actuelle des ressources, les topologies de réseaux virtuels établis entre les machines virtuelles et l'état thermique de nœuds de calcul. Les résultats de l'expérience sur une extension de CloudSim (EnerSim) montrent que l'énergie consommée par les applications du Cloud et l'efficacité énergétique ont été améliorées. - Le troisième axe est consacré à l'examen d'une approche appelée "Cooperative scheduling Anti load-balancing Algorithm for cloud". Il s'agit d'une approche décentralisée permettant la coopération entre les différents sites. Pour valider cet algorithme, nous avons étendu le simulateur MaGateSim. Avec une large évaluation expérimentale d'un ensemble de données réelles, nous sommes arrivés à la conclusion que l'approche à la fois en utilisant des algorithmes centralisés et décentralisés peut réduire l'énergie consommée des centres de données
The multiplication of Cloud computing has resulted in the establishment of largescale data centers around the world containing thousands of compute nodes. However, Cloud consume huge amounts of energy. Energy consumption of data centers worldwide is estimated at more than 1. 5% of the global electricity use and is expected to grow further. A problem usually studied in distributed systems is to evenly distribute the load. But when the goal is to reduce energy consumption, this type of algorithms can lead to have machines largely under-loaded and therefore consuming energy unnecessarily. This thesis presents novel techniques, algorithms, and software for distributed dynamic consolidation of Virtual Machines (VMs) in Cloud. The main objective of this thesis is to provide energy-aware scheduling strategies in cloud computing for energy saving. To achieve this goal, we use centralized and decentralized approaches. Contributions in this method are presented these two axes. The objective of our approach is to reduce data center's total energy consumed by controlling cloud applications' overall energy consumption while ensuring cloud applications' service level agreement. Energy consumption is reduced by dynamically deactivating and reactivating physical nodes to meet the current resource demand. The key contributions are: - First, we present an energy aware clouds scheduling using anti-load balancing algorithm : concentrate the load on a minimum number of severs. The goal is to turn off the machines released and therefore minimize the energy consumption of the system. - The second axis proposed an algorithm which works by associating a credit value with each node. The credit of a node depends on its affinity to its jobs, its current workload and its communication behavior. Energy savings are achieved by continuous consolidation of VMs according to current utilization of resources, virtual network topologies established between VMs, and thermal state of computing nodes. The experiment results, obtained with a simulator which extends CloudSim (EnerSim), show that the cloud application energy consumption and energy efficiency are being improved. - The third axis is dedicated to the consideration of a decentralized dynamic scheduling approach entitled Cooperative scheduling Anti-load balancing Algorithm for cloud. It is a decentralized approach that allows cooperation between different sites. To validate this algorithm, we have extended the simulator MaGateSim. With an extensive experimental evaluation with a real workload dataset, we got the conclusion that both the approach using centralized and decentralized algorithms can reduce energy consumed by data centers
APA, Harvard, Vancouver, ISO, and other styles
8

Gou, Changjiang. "Task Mapping and Load-balancing for Performance, Memory, Reliability and Energy." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN047.

Full text
Abstract:
Cette thèse se concentre sur les problèmes d'optimisation multi-objectifs survenant lors de l'exécution d'applications scientifiques sur des plates-formes de calcul haute performance et des applications de streaming sur des systèmes embarqués. Ces problèmes d'optimisation se sont tous avérés NP-complets, c'est pourquoi nos efforts portent principalement sur la conception d'heuristiques efficaces pour des cas généraux et sur la proposition de solutions optimales pour des cas particuliers.Certaines applications scientifiques sont généralement modélisées comme des arbres enracinés. En raison de la taille des données temporaires, le traitement d'une telle arborescence peut dépasser la capacité de la mémoire locale. Une solution pratique sur un système multiprocesseur consiste à partitionner l'arborescence en plusieurs sous-arbres, et à exécuter chacun d'eux sur un processeur, qui est équipé d'une mémoire locale. Nous avons étudié comment partitionner l'arbre en plusieurs sous-arbres de sorte que chaque sous-arbre tienne dans la mémoire locale et que le makespan soit minimisé, lorsque les coûts de communication entre les processeurs sont pris en compte. Ensuite, un travail pratique d'ordonnancement d'arbres apparaissant dans un solveur de matrice clairsemée parallèle est examiné. L'objectif est de minimiser le temps de factorisation en présentant une bonne localisation des données et un équilibrage de charge. La technique de cartographie proportionnelle est une approche largement utilisée pour résoudre ce problème d'allocation des ressources. Il réalise une bonne localisation des données en affectant les mêmes processeurs à de grandes parties de l'arborescence des tâches. Cependant, cela peut limiter l'équilibrage de charge dans certains cas. Basé sur une cartographie proportionnelle, un algorithme d'ordonnancement dynamique est proposé. Il assouplit le critère de localisation des données pour améliorer l'équilibrage de charge. La performance de notre approche a été validée par de nombreuses expériences avec le solveur direct à matrice clairsemée parallèle PaStiX. Les applications de streaming apparaissent souvent dans les domaines vidéo et audio. Ils se caractérisent par une série d'opérations sur le streaming de données et un débit élevé. Le système multiprocesseur sur puce (MPSoC) est un système embarqué multi / plusieurs cœurs qui intègre de nombreux cœurs spécifiques via une interconnexion haute vitesse sur une seule puce. De tels systèmes sont largement utilisés pour les applications multimédias. De nombreux MPSoC fonctionnent sur piles. Un budget énergétique aussi serré nécessite intrinsèquement un calendrier efficace pour répondre aux demandes de calcul intensives. La mise à l'échelle dynamique de la tension et de la fréquence (DVFS) peut économiser de l'énergie en diminuant la fréquence et la tension au prix d'une augmentation des taux de défaillance. Une autre technique pour réduire le coût énergétique et atteindre l'objectif de fiabilité consiste à exécuter plusieurs copies de tâches. Nous modélisons d'abord les applications sous forme de chaînes linéaires et étudions comment minimiser la consommation d'énergie sous des contraintes de débit et de fiabilité, en utilisant DVFS et la technique de duplication sur les plates-formes MPSoC.Ensuite, dans une étude suivante, avec le même objectif d'optimisation, nous modélisons les applications de streaming sous forme de graphes série-parallèle, plus complexes que de simples chaînes et plus réalistes. La plate-forme cible dispose d'un système de communication hiérarchique à deux niveaux, ce qui est courant dans les systèmes embarqués et les plates-formes informatiques hautes performances. La fiabilité est garantie par l'exécution des tâches à la vitesse maximale ou par la triplication des tâches. Plusieurs heuristiques efficaces sont proposées pour résoudre ce problème d'optimisation NP-complet
This thesis focuses on multi-objective optimization problems arising when running scientific applications on high performance computing platforms and streaming applications on embedded systems. These optimization problems are all proven to be NP-complete, hence our efforts are mainly on designing efficient heuristics for general cases, and proposing optimal solutions for special cases.Some scientific applications are commonly modeled as rooted trees. Due to the size of temporary data, processing such a tree may exceed the local memory capacity. A practical solution on a multiprocessor system is to partition the tree into many subtrees, and run each on a processor, which is equipped with a local memory. We studied how to partition the tree into several subtrees such that each subtree fits in local memory and the makespan is minimized, when communication costs between processors are accounted for.Then, a practical work of tree scheduling arising in parallel sparse matrix solver is examined. The objective is to minimize the factorization time by exhibiting good data locality and load balancing. The proportional mapping technique is a widely used approach to solve this resource-allocation problem. It achieves good data locality by assigning the same processors to large parts of the task tree. However, it may limit load balancing in some cases. Based on proportional mapping, a dynamic scheduling algorithm is proposed. It relaxes the data locality criterion to improve load balancing. The performance of our approach has been validated by extensive experiments with the parallel sparse matrix direct solver PaStiX.Streaming applications often appear in video and audio domains. They are characterized by a series of operations on streaming data, and a high throughput. Multi-Processor System on Chip (MPSoC) is a multi/many-core embedded system that integrates many specific cores through a high speed interconnect on a single die. Such systems are widely used for multimedia applications. Lots of MPSoCs are batteries-operated. Such a tight energy budget intrinsically calls for an efficient schedule to meet the intensive computation demands. Dynamic Voltage and Frequency Scaling (DVFS) can save energy by decreasing the frequency and voltage at the price of increasing failure rates. Another technique to reduce the energy cost and meet the reliability target consists in running multiple copies of tasks. We first model applications as linear chains and study how to minimize the energy consumption under throughput and reliability constraints, using DVFS and duplication technique on MPSoC platforms.Then, in a following study, with the same optimization goal, we model streaming applications as series-parallel graphs, which are more complex than simple chains and more realistic. The target platform has a hierarchical communication system with two levels, which is common in embedded systems and high performance computing platforms. The reliability is guaranteed through either running tasks at the maximum speed or triplication of tasks. Several efficient heuristics are proposed to tackle this NP-complete optimization problem
APA, Harvard, Vancouver, ISO, and other styles
9

Portella, Rodrigo. "Balancing energy, security and circuit area in lightweight cryptographic hardware design." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE036/document.

Full text
Abstract:
Cette thèse aborde la conception et les contremesures permettant d'améliorer le calcul cryptographique matériel léger. Parce que la cryptographie (et la cryptanalyse) sont de nos jours de plus en plus omniprésentes dans notre vie quotidienne, il est crucial que les nouveaux systèmes développés soient suffisamment robustes pour faire face à la quantité croissante de données de traitement sans compromettre la sécurité globale. Ce travail aborde de nombreux sujets liés aux implémentations cryptographiques légères. Les principales contributions de cette thèse sont : - Un nouveau système d'accélération matérielle cryptographique appliqué aux codes BCH ; - Réduction de la consommation des systèmes embarqués et SoCs ; - Contre-mesures légères des attaques par canal auxiliaire applicables à l'algorithme de chiffrement reconfigurable AES ;- CSAC : Un pare-feu sécurisé sur la puce cryptographique ; - Attaques par analyse fréquentielle ; - Un nouveau protocole à divulgation nulle de connaissance appliquée aux réseaux de capteurs sans fil ; - OMD : Un nouveau schéma de chiffrement authentifié
This thesis addresses lightweight hardware design and countermeasures to improve cryptographic computation. Because cryptography (and cryptanalysis) is nowadays becoming more and more ubiquitous in our daily lives, it is crucial that newly developed systems are robust enough to deal with the increasing amount of processing data without compromising the overall security. This work addresses many different topics related to lightweight cryptographic implementations. The main contributions of this thesis are: - A new cryptographic hardware acceleration scheme applied to BCH codes; - Hardware power minimization applied to SoCs and embedded devices; - Timing and DPA lightweight countermeasures applied to the reconfigurable AES block cipher; - CSAC: A cryptographically secure on-chip firewall; - Frequency analysis attack experiments; - A new zero-knowledge zero-knowledge protocol applied to wireless sensor networks; - OMD: A new authenticated encryption scheme
APA, Harvard, Vancouver, ISO, and other styles
10

Du, Plessis Louis Kemp. "Integrating non-dispatchable renewable energy into the South African grid : an energy balancing view / L.K. du Plessis." Thesis, North-West University, 2013. http://hdl.handle.net/10394/9648.

Full text
Abstract:
The integration of dispatchable renewable energies like biomass, geothermal and reservoir hydro technologies into an electrical network present no greater challenge than the integration of conventional power technologies for which are well understood by Eskom engineers. However, renewable energies that are based on resources that fluctuate throughout the day and from season to season, like wind and solar, introduce a number of challenges that Eskom engineers have not dealt with before. It is current practice for Eskom‟s generation to follow the load in order to balance the demand and supply. Through Eskom‟s load dispatching desk at National Control, generator outputs are adjusted on an hourly basis with balancing reserves making up only a small fraction of the total generation. Through the Integrated Resource Plan for Electricity of 2010, the Department of Energy has set some targets towards integrating renewable energy, including wind and solar generation, into the South African electricity market consequently introducing variability on the supply side. With demand that varies continually, maintaining a steady balance between supply and demand is already a challenging task. When the supply also becomes variable and less certain with the introduction of non-dispatchable renewable energy, the task becomes even more challenging. The aim of this research study is to determine whether the resources that previously helped to balance the variability in demand will still be adequate to balance variability in both demand and supply. The study will only concentrate on variable or non-dispatchable renewable energies as will be added to the South African electrical network according to the first two rounds of the Department of Energy‟s Renewable Energy Independent Power Producer Procurement Programme. This research study only looks into the balancing challenge and does not go into an analysis of voltage stability or network adequacy, both of which warrant in depth analysis.
Thesis (MIng (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2013.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Energy balancing"

1

Essential energy balancing. Freedom, Calif: Crossing Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pritchard, David, and Shaik Feroz. Mass and Energy Balancing. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003149200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Young, Patrice Voran. Basic equine energy balancing. Whitefish, Mont: Whitefish Editions, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rochlitz, Steven. Advanced human ecology and energy balancing sciences. Mahopac, N.Y: Human Ecology Balancing Sciences, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wendes, Herb. HVAC energy audit and balancing forms manual. Liburn, GA: Fairmont Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wendes, Herbert. HVAC energy audit and balancing forms manual. Lilburn, Ga: Fairmont Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

CERA, IHS. Southeast Asia's Energy Future: Balancing Competition and Integration. Cambridge, Massachusetts: iHS CERA, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Acpuncture: Energy balancing for body, mind, and spirit. Shaftesbury, Dorset: Element, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anne, Olivier, and Trimble Chris, eds. Balancing act: Cutting energy subsidies while protecting affordability. Washington, DC: World Bank, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peak energy: Balancing your body for personal maximum performance. Wellingborough, Northamptonshire, England: Thorsons Publishers, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Energy balancing"

1

Söder, Lennart, and Hannele Holttinen. "Wind Power Balancing wind power balancing." In Renewable Energy Systems, 1663–99. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moore, James W. "Energy Production." In Balancing the Needs of Water Use, 69–101. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3496-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pritchard, David, and Shaik Feroz. "Compression, Preheat and Desulphurisation." In Mass and Energy Balancing, 67–77. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003149200-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pritchard, David, and Shaik Feroz. "Answers to Problems in Chapter 5." In Mass and Energy Balancing, 87–98. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003149200-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pritchard, David, and Shaik Feroz. "Introduction, Reformers and Stream Energy Interchange." In Mass and Energy Balancing, 1–29. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003149200-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pritchard, David, and Shaik Feroz. "Problems to Solve with Hints." In Mass and Energy Balancing, 79–85. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003149200-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pritchard, David, and Shaik Feroz. "Shift Converters and Stream Energy Interchange." In Mass and Energy Balancing, 31–45. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003149200-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pritchard, David, and Shaik Feroz. "Carbon Dioxide Removal and Stream Energy Interchange." In Mass and Energy Balancing, 47–65. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003149200-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Caswell, Margriet F. "Balancing Energy and the Environment." In Studies in Industrial Organization, 179–214. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2174-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soeder, Daniel J. "Balancing Energy, Environment, and Economics." In Fracking and the Environment, 203–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59121-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Energy balancing"

1

O'Neill-Carrillo, Efrain, Agustin A. Irizarry-Rivera, Jose A. Colucci-Rios, Marla Perez-Lugo, and Cecilio Ortiz-Garcia. "Sustainable Energy: Balancing the Economic, Environmental and Social Dimensions of Energy." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pavic, Ivan, Hrvoje Pandzic, and Tomislav Capuder. "Day-ahead Energy and Balancing Capacity Bidding Considering Balancing Energy Market Uncertainty." In 2022 International Conference on Smart Energy Systems and Technologies (SEST). IEEE, 2022. http://dx.doi.org/10.1109/sest53650.2022.9898473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rivero, Enrique, Julian Barquin, and Luis Rouco. "European balancing markets." In 2011 European Energy Market (EEM). IEEE, 2011. http://dx.doi.org/10.1109/eem.2011.5953033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ortega, R., and I. Mareels. "Energy-balancing passivity-based control." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.876703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Papavasiliou, Anthony, Gerard Doorman, Mette Bjorndal, Yves Langer, Guillaume Leclercq, and Pierre Crucifix. "Interconnection of Norway to European Balancing Platforms Using Hierarchical Balancing." In 2022 18th International Conference on the European Energy Market (EEM). IEEE, 2022. http://dx.doi.org/10.1109/eem54602.2022.9921153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

P. Eng, Dana Sundmark. "Balancing Power Availability With Energy Efficiency." In INTELEC'06. The 28th International Telecommunications Energy Conference. IEEE, 2006. http://dx.doi.org/10.1109/intlec.2006.251618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Xiaoxiao, Xiangyu Ma, and Deji Chen. "Energy-balancing routing algorithm for WirelessHART." In 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE, 2019. http://dx.doi.org/10.1109/wfcs.2019.8758030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davies, Sami, Samir Khuller, and Shirley Zhang. "Balancing Flow Time and Energy Consumption." In SPAA '22: 34th ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3490148.3538582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alirezaee, Shahpour, Majid Ahmadi, Shervin Erfani, Saber Akbari, Arash Ahmadi, and Mohammad Naserian. "Energy balancing in cooperative sensor networks." In 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE). IEEE, 2014. http://dx.doi.org/10.1109/iccke.2014.6993426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Veitch, Paul, Chris Macnamara, and John J. Browne. "Balancing NFV Performance and Energy Efficiency." In 2022 25th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). IEEE, 2022. http://dx.doi.org/10.1109/icin53892.2022.9758133.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Energy balancing"

1

Deshmukh, Ranjit, Grace C. Wu, and Amol Phadke. Renewable Energy Zones for Balancing Siting Trade-offs in India. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1366450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Galkin, Philipp, Carlo Andrea Bolino, and Simona Bigerna. Balancing Energy Security Priorities: A Portfolio Optimization Approach to Oil Imports. King Abdullah Petroleum Studies and Research Center, May 2019. http://dx.doi.org/10.30573/ks--2019-dp58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kintner-Meyer, Michael CW, Patrick J. Balducci, Whitney G. Colella, Marcelo A. Elizondo, Chunlian Jin, Tony B. Nguyen, Vilayanur V. Viswanathan, and Yu Zhang. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1131386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nicholson, E., J. Rogers, and K. Porter. Relationship Between Wind Generation and Balancing Energy Market Prices in ERCOT: 2007-2009. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/993654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cochran, Jaquelin. Greening the Grid Special Topic: Facilitating the Integration of Renewable Energy through Balancing Cooperation. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1236470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bolinger, Mark, and Ryan Wiser. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/843154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Diao, Ruisheng, Shuai Lu, Pavel V. Etingov, Jian Ma, Yuri V. Makarov, and Xinxin Guo. NV Energy Solar Integration Study: Cycling and Movements of Conventional Generators for Balancing Services. Office of Scientific and Technical Information (OSTI), July 2011. http://dx.doi.org/10.2172/1029090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kirsten, Ingrid, and Mara Zarka. Balancing the Three Pillars of the NPT: How can Promoting Peaceful Uses Help? Stockholm International Peace Research Institute, May 2022. http://dx.doi.org/10.55163/shzz2322.

Full text
Abstract:
The Treaty on the Non-Proliferation of Nuclear Weapons (NPT) is the cornerstone of the non-proliferation regime and the centrepiece of global efforts to promote cooperation in the peaceful uses of nuclear energy and further the goal of general and complete nuclear disarmament. Although there is no implementation body for the NPT, the International Atomic Energy Agency (IAEA) has been entrusted with key verification responsibilities under Article III of the treaty, where it plays an important role in achieving the objectives under Article IV to foster international cooperation for peaceful uses of nuclear energy. This paper argues that peaceful uses of science, technology and applications have an important role to play in achieving the United Nations Sustainable Development Goals (SDGs). Noting that the European Union (EU) is the biggest donor of development assistance, the paper suggests that the EU enhance its contribution to peaceful uses of nuclear science, technology and applications through supporting the IAEA’s technical cooperation activities. This will contribute to delivering the EU’s nonproliferation goals, thus strengthening global human security.
APA, Harvard, Vancouver, ISO, and other styles
9

Williams, C., and J. Swenson. Balancing single pipe steam heating systems: An opportunity for energy conservation in the multi-family market. Office of Scientific and Technical Information (OSTI), October 1987. http://dx.doi.org/10.2172/5957506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leijonhufvud, Gustaf, Tor Broström, and Alessia Buda. An Evaluation of the Usability of EN 16883:2017. IEA SHC Task 59, October 2021. http://dx.doi.org/10.18777/ieashc-task59-2021-0002.

Full text
Abstract:
The balancing of preservation aspects and energy efficiency is a key challenge in the sustainable management of built heritage. There is a need to get a better fundamental understanding of the processes, barriers and constraints involved in the planning of energy retrofits in historic buildings, and what role standards and guidelines can have in decision making.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography