Academic literature on the topic 'Energy and glucose homeostasis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy and glucose homeostasis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy and glucose homeostasis"
Lam, Carol K. L., Madhu Chari, and Tony K. T. Lam. "CNS Regulation of Glucose Homeostasis." Physiology 24, no. 3 (June 2009): 159–70. http://dx.doi.org/10.1152/physiol.00003.2009.
Full textPattaranit, Ratchada, and Hugo Antonius van den Berg. "Mathematical models of energy homeostasis." Journal of The Royal Society Interface 5, no. 27 (July 8, 2008): 1119–35. http://dx.doi.org/10.1098/rsif.2008.0216.
Full textMarty, Nell, Michel Dallaporta, and Bernard Thorens. "Brain Glucose Sensing, Counterregulation, and Energy Homeostasis." Physiology 22, no. 4 (August 2007): 241–51. http://dx.doi.org/10.1152/physiol.00010.2007.
Full textLópez-Gambero, A. J., F. Martínez, K. Salazar, M. Cifuentes, and F. Nualart. "Brain Glucose-Sensing Mechanism and Energy Homeostasis." Molecular Neurobiology 56, no. 2 (May 24, 2018): 769–96. http://dx.doi.org/10.1007/s12035-018-1099-4.
Full textSoty, Maud, Amandine Gautier-Stein, Fabienne Rajas, and Gilles Mithieux. "Gut-Brain Glucose Signaling in Energy Homeostasis." Cell Metabolism 25, no. 6 (June 2017): 1231–42. http://dx.doi.org/10.1016/j.cmet.2017.04.032.
Full textWang, Yan, Markey C. McNutt, Serena Banfi, Michael G. Levin, William L. Holland, Viktoria Gusarova, Jesper Gromada, Jonathan C. Cohen, and Helen H. Hobbs. "Hepatic ANGPTL3 regulates adipose tissue energy homeostasis." Proceedings of the National Academy of Sciences 112, no. 37 (August 24, 2015): 11630–35. http://dx.doi.org/10.1073/pnas.1515374112.
Full textSeo, J., E. S. Fortuno, J. M. Suh, D. Stenesen, W. Tang, E. J. Parks, C. M. Adams, T. Townes, and J. M. Graff. "Atf4 Regulates Obesity, Glucose Homeostasis, and Energy Expenditure." Diabetes 58, no. 11 (August 18, 2009): 2565–73. http://dx.doi.org/10.2337/db09-0335.
Full textGiridharan, NV. "Glucose & energy homeostasis: Lessons from animal studies." Indian Journal of Medical Research 148, no. 5 (2018): 659. http://dx.doi.org/10.4103/ijmr.ijmr_1737_18.
Full textPepino, Marta Y., and Christina Bourne. "Non-nutritive sweeteners, energy balance, and glucose homeostasis." Current Opinion in Clinical Nutrition and Metabolic Care 14, no. 4 (July 2011): 391–95. http://dx.doi.org/10.1097/mco.0b013e3283468e7e.
Full textvan Praag, H., M. Fleshner, M. W. Schwartz, and M. P. Mattson. "Exercise, Energy Intake, Glucose Homeostasis, and the Brain." Journal of Neuroscience 34, no. 46 (November 12, 2014): 15139–49. http://dx.doi.org/10.1523/jneurosci.2814-14.2014.
Full textDissertations / Theses on the topic "Energy and glucose homeostasis"
Forsyth, Robert J. "The contribution of astrocyte glycogen to brain energy homeostasis." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361387.
Full textBurke, Luke Kennedy. "Neurocircuitry underlying serotonin's effects on energy and glucose homeostasis." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708592.
Full textMatthäus, Dörte. "The role of CADM1 in energy and glucose homeostasis." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16905.
Full textMore than 300 million people world-wide are affected by diabetes, the majority suffering from type 2 diabetes. Type 2 diabetes is characterized by insulin resistance, usually caused by obesity and overweight. Enhanced pancreatic insulin secretion largely compensates insulin resistance for years. A failure of pancreatic beta-cells to meet increased insulin demands drastically increases blood glucose levels and marks the onset of type 2 diabetes. Besides environmental influences, mainly elevated food intake and reduced physical activity, also genetic mutations are important factors in the pathophysiology of type 2 diabetes. Recent literature highlights the role of microRNA 375 (miR-375) in the growth and function of pancreatic insulin-producing beta-cells. MiR-375 gene expression is regulated in diabetic humans and rodents, suggesting that this microRNA is involved in the pathogenesis of type 2 diabetes. Genes regulated by miR-375 have been described in pancreatic beta-cells. Nevertheless, the exact mechanisms how miR-375 regulates beta-cell growth and insulin secretion have not been understood. Cell adhesion molecule 1 (CADM1) is a known target of miR-375 and has mainly been described as regulator of synapse number and synaptic function in the brain. CADM1 is also expressed in pancreatic beta-cells and might regulate beta-cell growth and function and might be involved in the control of glucose and energy homeostasis. The aim of this work was to investigate whether CADM1 in pancreatic beta-cells or neuronal tissue contributes to the regulation of energy and glucose homeostasis by using total and conditional Cadm1 deficient mice. Total Cadm1 deficient (Cadm1KO) mice showed increased sensitivity to glucose and insulin as well as enhanced glucose-stimulated insulin secretion compared to littermate control mice. Elevated glucose-stimulated insulin secretion after Cadm1 depletion could be confirmed in an in vitro beta-cell model.
Wang, Xun. "IRF3 is a Critical Regulator of Adipose Glucose and Energy Homeostasis." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10537.
Full textHall, Jessica Ann. "Thyroid Hormone and Insulin Metabolic Actions on Energy and Glucose Homeostasis." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11663.
Full textRahman, S. A. "Investigating the role of gut hormones in energy and glucose homeostasis." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1417078/.
Full textStump, Madeliene. "The role of brain PPAR[gamma] in regulation of energy balance and glucose homeostasis." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/6000.
Full textAatsinki, S. M. (Sanna-Mari). "Regulation of hepatic glucose homeostasis and Cytochrome P450 enzymes by energy-sensing coactivator PGC-1α." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208053.
Full textTiivistelmä Peroksisomiproliferaattori-aktivoituvan reseptori γ:n koaktivaattori 1α (PGC-1α) on merkittävä glukoosiaineenvaihdunnan ja mitokondrioiden toiminnan säätelijä korkeaenergisissä soluissa ja kudoksissa. PGC-1α:a säädellään monin tavoin: sekä transkriptionaalisella säätelyllä että transkription jälkeisellä muokkauksella on merkittävä rooli. Monet ulkoiset tekijät säätelevät PGC-1α:n aktiivisuutta, joka puolestaan säätelee solunsisäisiä signaalireittejä vastaamaan tähän signaaliin. Esimerkiksi paasto ja diabetes mellitus (DM) ovat fysiologisia tiloja, jotka lisäävät voimakkaasti PGC-1α:n ilmentymistä maksassa, jolloin glukoosin uudistuotanto eli glukoneogeneesi kiihtyy. Tässä väitöskirjassa tutkittiin PGC-1α:n säätelyä sekä PGC-1α -säädeltyjä signaalireittejä maksassa. Osoitimme, että tyypin 2 diabeteslääke metformiini indusoi PGC-1α:n ilmentymistä maksassa, vastoin aikaisempia käsityksiä. PGC-1α indusoitui AMPK:n ja SIRT1:n välityksellä, säädelleen edelleen mitokondriaalisten geenien aktiivisuutta. Samalla glukoneogeneesi kuitenkin repressoitui muilla mekanismeilla. Lisäksi osoitimme, että PGC-1α indusoi tulehdusreaktiota vaimentavaa interleukiini 1 reseptorin antagonistia (IL1Rn). PGC-1α esti interleukiini 1β:n aiheuttamaa tulehdusvastetta hepatosyyteissä. Lisäksi väitöskirjassa tunnistettiin uusia, PGC-1α -säädeltyjä lääkeaineita ja elimistön sisäisiä yhdisteitä metaboloivia sytokromi P450 -entsyymejä (CYP). Hiiren CYP2A5:n ilmentymisen osoitettiin olevan PGC-1α- ja HNF4α-välitteistä. Lisäksi osoitettiin, että D-vitamiinia metaboloivat CYP2R1 ja CYP24A1 ovat uusia PGC-1α -säädeltyjä geenejä. Tämä löydös viittaa siihen, että PGC-1α:lla on rooli aktiivisen D-vitamiinin säätelyssä. Tämän väitöskirjan löydökset lisäävät tietoa glukoosiaineenvaihdunnan häiriöiden kuten tyypin 2 diabeteksen molekulaarisista mekanismeista, joita voidaan hyödyntää mahdollisten uusien lääkeaineiden kehittämisessä. Lisäksi väitöskirjassa osoitettiin, että D-vitamiinimetabolia on kytköksissä energia-aineenvaihduntaan ja että PGC-1α:lla on tässä rooli, jota ei aiemmin ole tunnettu
Eftychidis, Vasileios. "Elucidating the principal role of cholecystokinin neurons of the ventromedial hypothalamic nucleus in energy homeostasis." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:906a0aa6-847a-43b8-a527-458252aca825.
Full textBirkenfeld, Andreas L. [Verfasser]. "The role of natriuretic peptides in the regulation of energy metabolism, lipid- and glucose homeostasis / Andreas L. Birkenfeld." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2013. http://d-nb.info/1035182424/34.
Full textBooks on the topic "Energy and glucose homeostasis"
Mladen, Vranic, Efendić Suad, and Hollenberg Charles H. 1930-, eds. Fuel homeostasis and the nervous system. New York: Plenum Press, 1991.
Find full textinstitutet, Karolinska, ed. Food deprivation and glucose homeostasis in hemorrhagic stress. Stockholm: [s.n.], 1987.
Find full text1950-, Pagliassotti Michael J., Davis Stephen N. 1955-, and Cherrington Alan 1946-, eds. The role of the liver in maintaining glucose homeostasis. Austin: Landes, 1994.
Find full textPolakof, Sergio. Brain glucosensing: Physiological implications. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textSarabia, Vivian E. Calcium homeostasis and regulation of glucose uptake in human skeletal muscle cells in culture. Ottawa: National Library of Canada, 1990.
Find full textHodakoski, Cindy Marie. P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and Glucose Homeostasis. [New York, N.Y.?]: [publisher not identified], 2012.
Find full textMiller, Janette Brand. The new glucose revolution pocket guide to sugar & energy. New York: Marlowe, 2004.
Find full textGema, Frühbeck, and Nutrition Society (Great Britain), eds. Peptides in energy balance and obesity. Wallingford, Oxfordshire: CABI Pub. in association with the Nutrition Society, 2009.
Find full textMuromt͡sev, V. A. Medit͡sina v XXI veke: Ot drevneĭshikh tradit͡siĭ do vysokikh tekhnologiĭ. Sankt-Peterburg: Izd-vo "Intan", 1998.
Find full textPool, Ontario Assessment Instrument, ed. Energy and the living cell: Draft. Toronto: Minister of Education, Ontario, 1989.
Find full textBook chapters on the topic "Energy and glucose homeostasis"
Kirchner, Henriette, Matthias Tschöp, and Jenny Tong. "GOAT and the Regulation of Energy and Glucose Homeostasis." In Ghrelin in Health and Disease, 131–47. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-903-7_7.
Full textKamstra, Kaj, and Alexander Tups. "Neuroendocrine Interactions in the Control of Glucose- and Energy Homeostasis." In Physiological Consequences of Brain Insulin Action, 63–78. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003079927-5.
Full textMounien, Lourdes, and Bernard Thorens. "Central Glucose Sensing and Control of Food Intake and Energy Homeostasis." In Metabolic Syndrome, 29–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470910016.ch2.
Full textGuillaume, Maeva, Alexandra Montagner, Coralie Fontaine, Françoise Lenfant, Jean-François Arnal, and Pierre Gourdy. "Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis." In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity, 401–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70178-3_19.
Full textAlsahli, Mazen, and John E. Gerich. "Normal Glucose Homeostasis." In Principles of Diabetes Mellitus, 1–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20797-1_2-1.
Full textAlsahli, Mazen, Muhammad Z. Shrayyef, and John E. Gerich. "Normal Glucose Homeostasis." In Principles of Diabetes Mellitus, 1–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-20797-1_2-2.
Full textGerich, John E., Steven D. Wittlin, and Christian Meyer. "Normal Glucose Homeostasis." In Principles of Diabetes Mellitus, 39–56. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-6260-0_2.
Full textAlsahli, Mazen, Muhammad Z. Shrayyef, and John E. Gerich. "Normal Glucose Homeostasis." In Principles of Diabetes Mellitus, 23–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-18741-9_2.
Full textShrayyef, Muhammad Z., and John E. Gerich. "Normal Glucose Homeostasis." In Principles of Diabetes Mellitus, 19–35. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09841-8_2.
Full textFerrannini, Ele, and Marta Seghieri. "Overview of Glucose Homeostasis." In Endocrinology, 1–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-45015-5_1.
Full textConference papers on the topic "Energy and glucose homeostasis"
Ahmed, Sumaya, and Nasser Rizk. "The Expression of Bile Acid Receptor TGR5 in Adipose Tissue in Diet-Induced Obese Mice." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0212.
Full textBelmon, Anchana P., and Jeraldin Auxillia. "An Unprecedented PSO-PID Optimized Glucose Homeostasis." In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE, 2020. http://dx.doi.org/10.1109/icstcee49637.2020.9277306.
Full textKim, Jaeyeon, Gerald M. Saidel, John P. Kirwan, and Marco E. Cabrera. "Computational Model of Glucose Homeostasis During Exercise." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260736.
Full textKim, Jaeyeon, Gerald M. Saidel, John P. Kirwan, and Marco E. Cabrera. "Computational Model of Glucose Homeostasis During Exercise." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397397.
Full textPanwar, Madhuri, Amit Acharyya, and Rishad A. Shafik. "Non-invasive Blood Glucose Estimation Methodology Using Predictive Glucose Homeostasis Models." In 2018 8th International Symposium on Embedded Computing and System Design (ISED). IEEE, 2018. http://dx.doi.org/10.1109/ised.2018.8703991.
Full textSingh, Neeraj Kumar, and Hao Wang. "Virtual Environment Model of Glucose Homeostasis for Diabetes Patients." In 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). IEEE, 2019. http://dx.doi.org/10.1109/icphys.2019.8780383.
Full textVilla E, Yisel C., and Julian M. Garcia G. "Modeling of the Human Pancreas Function in Glucose Homeostasis." In 2018 Argentine Conference on Automatic Control (AADECA). IEEE, 2018. http://dx.doi.org/10.23919/aadeca.2018.8577449.
Full textShrestha, Man Mohan, Chun-Yan Lim, and Weiping Han. "Actin Cytoskeletal Remodeling in the Regulation of Glucose Homeostasis." In International Conference on Photonics and Imaging in Biology and Medicine. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/pibm.2017.t1b.2.
Full textNevis, Ruiz M., Colorado G. Vivian, and Lema-Perez Laura. "A Coupled Model of Glucose Homeostasis From a Fieldbus View." In 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC). IEEE, 2019. http://dx.doi.org/10.1109/ccac.2019.8920895.
Full textBerggren, Per-Olof. "The islet of Langerhans is a master regulator of glucose homeostasis." In 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM 2010). IEEE, 2010. http://dx.doi.org/10.1109/photwtm.2010.5421943.
Full textReports on the topic "Energy and glucose homeostasis"
Puigserver, Pere. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada467976.
Full textPuigserver, Pere. Maintenance of Glucose Homeostasis Through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada551301.
Full textSosa Munguía, Paulina del Carmen, Verónica Ajelet Vargaz Guadarrama, Marcial Sánchez Tecuatl, Mario Garcia Carrasco, Francesco Moccia, and Roberto Berra-Romani. Diabetes mellitus alters intracellular calcium homeostasis in vascular endothelial cells: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0104.
Full textfrydman, judith. Mechanism and function of the chaperonin from Methanococcus maripaludis: implications for archaeal protein homeostasis and energy production. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1429063.
Full textChen, Jiankun, Yingming Gu, Lihong Yin, Minyi He, Na Liu, Yue Lu, Changcai Xie, Jiqiang Li, and Yu Chen. Network meta-analysis of curative efficacy of different acupuncture methods on obesity combined with insulin resistance. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0075.
Full textCorscadden, Louise, and Anjali Singh. Metabolism And Measurable Metabolic Parameters. ConductScience, December 2022. http://dx.doi.org/10.55157/me20221213.
Full textCahaner, Avigdor, Sacit F. Bilgili, Orna Halevy, Roger J. Lien, and Kellye S. Joiner. effects of enhanced hypertrophy, reduced oxygen supply and heat load on breast meat yield and quality in broilers. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7699855.bard.
Full textGothilf, Yoav, Roger Cone, Berta Levavi-Sivan, and Sheenan Harpaz. Genetic manipulations of MC4R for increased growth and feed efficiency in fish. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600043.bard.
Full textBoisclair, Yves R., and Arieh Gertler. Development and Use of Leptin Receptor Antagonists to Increase Appetite and Adaptive Metabolism in Ruminants. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697120.bard.
Full textGranot, David, Scott Holaday, and Randy D. Allen. Enhancing Cotton Fiber Elongation and Cellulose Synthesis by Manipulating Fructokinase Activity. United States Department of Agriculture, 2008. http://dx.doi.org/10.32747/2008.7613878.bard.
Full text