Academic literature on the topic 'Endosomal maturation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Endosomal maturation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Endosomal maturation"
Abenza, Juan F., Antonio Galindo, Mario Pinar, Areti Pantazopoulou, Vivian de los Ríos, and Miguel A. Peñalva. "Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement." Molecular Biology of the Cell 23, no. 10 (May 15, 2012): 1889–901. http://dx.doi.org/10.1091/mbc.e11-11-0925.
Full textDelevoye, Cédric, Ilse Hurbain, Danièle Tenza, Jean-Baptiste Sibarita, Stéphanie Uzan-Gafsou, Hiroshi Ohno, Willie J. C. Geerts, et al. "AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis." Journal of Cell Biology 187, no. 2 (October 19, 2009): 247–64. http://dx.doi.org/10.1083/jcb.200907122.
Full textKim, Sungsu, Yogesh P. Wairkar, Richard W. Daniels, and Aaron DiAntonio. "The novel endosomal membrane protein Ema interacts with the class C Vps–HOPS complex to promote endosomal maturation." Journal of Cell Biology 188, no. 5 (March 1, 2010): 717–34. http://dx.doi.org/10.1083/jcb.200911126.
Full textSzatmári, Zsuzsanna, Viktor Kis, Mónika Lippai, Krisztina Hegedűs, Tamás Faragó, Péter Lőrincz, Tsubasa Tanaka, Gábor Juhász, and Miklós Sass. "Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization." Molecular Biology of the Cell 25, no. 4 (February 15, 2014): 522–31. http://dx.doi.org/10.1091/mbc.e13-10-0574.
Full textCasanova, James E., and Bettina Winckler. "A new Rab7 effector controls phosphoinositide conversion in endosome maturation." Journal of Cell Biology 216, no. 10 (September 19, 2017): 2995–97. http://dx.doi.org/10.1083/jcb.201709034.
Full textChotard, Laëtitia, Ashwini K. Mishra, Marc-André Sylvain, Simon Tuck, David G. Lambright, and Christian E. Rocheleau. "TBC-2 Regulates RAB-5/RAB-7-mediated Endosomal Trafficking inCaenorhabditis elegans." Molecular Biology of the Cell 21, no. 13 (July 2010): 2285–96. http://dx.doi.org/10.1091/mbc.e09-11-0947.
Full textSun, Ming, Gary Luong, Faiz Plastikwala, and Yue Sun. "Abstract 155: An endosomal type Igamma PIP 5-kinase controls endosome maturation, lysosome function, and autophagy by modulating Rab7a." Cancer Research 82, no. 12_Supplement (June 15, 2022): 155. http://dx.doi.org/10.1158/1538-7445.am2022-155.
Full textHe, Jing, Jennifer L. Johnson, Jlenia Monfregola, Mahalakshmi Ramadass, Kersi Pestonjamasp, Gennaro Napolitano, Jinzhong Zhang, and Sergio D. Catz. "Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses." Molecular Biology of the Cell 27, no. 3 (February 2016): 572–87. http://dx.doi.org/10.1091/mbc.e15-05-0283.
Full textArlt, Henning, Kathrin Auffarth, Rainer Kurre, Dominik Lisse, Jacob Piehler, and Christian Ungermann. "Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport." Molecular Biology of the Cell 26, no. 7 (April 2015): 1357–70. http://dx.doi.org/10.1091/mbc.e14-08-1318.
Full textFriedman, Jonathan R., Jared R. DiBenedetto, Matthew West, Ashley A. Rowland, and Gia K. Voeltz. "Endoplasmic reticulum–endosome contact increases as endosomes traffic and mature." Molecular Biology of the Cell 24, no. 7 (April 2013): 1030–40. http://dx.doi.org/10.1091/mbc.e12-10-0733.
Full textDissertations / Theses on the topic "Endosomal maturation"
Djeddi, Abderazak. "Caractérisation cellulaire et fonctionnelle de l’autophagie : interactions avec la voie de maturation endosomale chez Caenorhabditis elegans." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112036.
Full textMacroautophgagy is a catabolic process involved in the clearance of cellular components in the lysosome when cells face starvation conditions. This eukaryotic process requires the formation of double membrane vesicles named autophagosomes. Autophagy is implicated in the elimination of misfolded proteins, protein aggregates and long-lived or damaged organelles such as mitochondria, endoplasmic reticulum and peroxysomes. It is alos required for the clearance of intracellular pathogens. The material enclosed inside autophagososmes in degraded in the lysosome: nucleotides, amino-acids and fatty-acids are generated and reused for neosynthesis of macromolecules and ATP.In the present study, we are exploring the cellular and functional aspects of the autophagic pathway in Caenorhabditis elegans. We show that the genome of the worm contain two homologues of the Yeast autophagic gene, Atg8. These homlogues encode for two proteins namely, LGG-1 and LGG-2, which localize to the autophagosomal membranes. We have shown that this two proteins act synergistically in dauer formation and longevity.We have also shown that autophagy play an important role in maintaining cell homeostasis in endosomal maturation mutans. These latter mutants show defects in the ESCRT coplexes (Endosomal Sorting Complex Required for Transport). ESCRT complexes are required the recycling of cell surface receptors and for the sorting of ubiquitinated prtoteins into the multivesicular bodies. Mutations in the ESCRTs cause cellular et developmental defects. In our study, we show that autophagy is induced in these mutants and play a beneficial role in correcting cellular defects
Hunt, Piper Reid. "Evidence for a maturation model of endosomal trafficking derived from analysis of human fibroblasts." Available to US Hopkins community, 2002. http://wwwlib.umi.com/dissertations/dlnow/3068170.
Full textHannemann, Mandy [Verfasser], Stefan [Akademischer Betreuer] Eimer, Reinhard [Akademischer Betreuer] Jahn, and Nils [Akademischer Betreuer] Brose. "Dense-core vesicle maturation at the Golgi-endosomal interface in Caenorhabditis elegans / Mandy Hannemann. Gutachter: Stefan Eimer ; Reinhard Jahn ; Nils Brose. Betreuer: Stefan Eimer." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2012. http://d-nb.info/1043608400/34.
Full textStroud, Evelyn Joy. "Kinetic analysis of endosome processing : maturation of early endosomes and vesicular traffic to lysosomes." Master's thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/27043.
Full textGIUSTRA, MARCO DAVIDE. "Synthesis of multi-branched polymers for the stabilization of metallic nanoparticles." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/366171.
Full textDesigning and monitoring all the preparation steps of a drug delivery system is essential to achieve a specific target. Each part of a nanocarrier affects the batch itself and the surrounding environment. In addition, to obtain monodispersed samples, the coating and any functionalization are crucial to determine the colloidal stability, to predict the behavior with a biological system, and the reaching of the target site. In particular, the achievement of intracellular sites by rationalizing the internalization mechanisms and quantifying the carriers in the target is still today a hot topic in the nanomedical field. Here, a class of multidentate polymers was presented: a simple way to synthesize them and show their broad applicability in combination with metal NPs. Multi-branched polymers were involved in three projects. The first project aimed to present a multidentate polymer as a general model to be applied in the coating of metal surfaces. To prove this, several tests were carried out by modulating the composition and size of the NPs. This easily synthesized polymer has been compared with two types of coatings common in literature. The obtained data show how the new surfactant provides high colloidal stable nanoparticles. Secondly, this leads to improvements from the point of view of toxicity and bio-functionalization. In the second project, the ligands polymer chain was modified to increase the range of application. Moreover, the choice of the ligand was based on the affinity for certain metal surfaces. In this case, the molecule is 4-aminotiophenol which is often used for SERS applications. Initially, the versatility of the polymer was investigated by coating different types of metallic NPs (gold and silver) and then SERS analyses were performed. Size and shape played a key role, especially with cubic concave nanoparticles that are promising for diagnostics application. In the second part of the project, cubic silver nanoparticles were used as a model for the evaluation of cell trafficking and endosomal maturation. Preliminary tests of NPs have been carried out at different pH (to emulate the pH variations in the endosomal evolution stages) and in vitro studies to check the nanoparticles uptake in HeLa cells were performed. The third project aimed to use the designed polymer as precursor in the synthesis of anisotropic nanoparticles. The shape obtained is a petal form. Subsequently, with the increase of the temperature, the petals assembled to nanoflowers above 100 nm. The presence of the active SERS polymer makes these nanoparticles, excellent candidates for this application.
Shah, Ankur H. "Adenovirus RIDalpha Regulates Endosome Maturation by Mimicking GTP-Rab7." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1181051279.
Full textWang, Xiaolin. "Analysis of candidate regulators of TBC-2 and endosome maturation in «Caenorhabditis elegans»." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114348.
Full textLes GTPases Rab5 et Rab7 participent à la régulation du traffic des endosomes. L'activité de ces protéines est régulée positivement par les "Rab Guanine nucleotide Exchange Factors" (GEF) et régulée négativement par les "GTPase Activating Proteins" (GAP). Dans ce projet, le nematode Caenorhabditis elegans a été utilisé comme modèle pour étudier la régulation du traffic endosomal médié par les Rab GTPase car celui-ci est un bon modèle génétique et permet une visualisation des organites à l'aide de microscopie à constraste d'interférence différentielle et de microscopie confocale. Il a été démontré dans la passé que TBC-2 fonctionne en tant que GAP pour RAB-5. La perte de l'activité de tbc-2 résulte en la formation d'endosomes tardifs élargis dans les intestins des nématodes, qui requièrent normalement l'activité de RAB-5, RAB-7 et des constituants du complexe "homotypic fusion and vacuole protein sorting" (HOPS). TBC-2 se retrouve avec RAB-7 sur les endosomes tardifs et nécessite RAB-7 pour sa localisation sur la membrane. Notre hypothèse était que RAB-7 recrute TBC-2 aux endosomes tardifs pour inactiver RAB-5 et possiblement RAB-7, ce qui facilite la maturation des endosomes en endosomes tardifs. Le mutant vh8 a préalablement été identifié dans le laboratoire en tant que suppresseur du phénotype tbc2(-) et cause le déplacement de GFP::RAB-7 des membranes vésiculaires. Il est possible que vh8 exprime un potentiel GEF de RAB-7. Pour trouver l'identité moléculaire de vh8, nous avons testé les gènes candidats à l'aide d'ARN d'interférence (ARNi). Malgré qu'aucun des candidats ne semblaient être vh8, nous avons découvert que le complexe central de HOPS est nécessaire au phénotype tbc-2(-). ARL-8 et son homolog humain arl8b ont récessement été démontrés comme étant importants dans le traffic des endosomess tardifis aux lysosomes. Pour vérifier si ARL-8 est requis dans le traffic des endosomes médiés par TBC-2. Nos travaux à l'aide d'ARNi suggèrent qu'ARL-8 fonctionne en aval de TBC-2. ARL-8 est nécessaire à l'apparition du phénotype tbc-2(-), mais n'est pas requis pour la localisation de TBC-2 et RAB-7 à la membrane. Dans les cellules de mammifères, la GTPase Rac1 peut se lier à Armus, un homologue humain de TBC-2. Ceci suggère que RAB-7 pourrait recruter CED-10/RAC1 par l'entremise de TBC-2. Par contre, nous observons que chez les nématodes tbc-2(tm2241), CED-10 est toujours localisé sur les vésicules. Ceci suggère que CED-10 pourrait être recruté à la membrane par d'autres mécanismes. Un CED-10 activé est aussi nécessaire à la phagocytose et à la dégradation des corps cellulaires apoptotiques. CED-10 peut être activé par le complexe CED-5/CED-12, qui est possiblement recruté et activé par PI(3,5)P2. Nos travaux suggèrent par contre que l'activation de CED-10 n'est pas obligatoire à sa localisation, car l'ARNi de ced-5 ne change pas la localisation de CED-10.
Menager, Mickaël. "Rôles de hMunc13-4 et Rab27a dans la maturation et l'exocytose des granules cytotoxiques." Paris 7, 2008. http://www.theses.fr/2008PA077102.
Full textSeveral human inherited disorders are characterized by a functional impairment of the granule dependent cytotoxic pathway. Molecular characterization of these human conditions allowed to identify critical effectors of this cytotoxic pathway and highlighted the essential role of the cytotoxic activity in lymphocyte homeostasis. According to our previous work, the protein hMunc13-4 and Rab27a are one of these effectors which anomalies lead to Hemophagocytic Syndrom, in the context of Familial Hemophagocytic Lymphohistiocytosis type 3 and Griscelli Syndrome type 2. Here we show that the granule-dependent cytotoxic fonction of cytotoxic T lymphocytes and Natural Killer cells requires the cooperation of two types of organelles, the lytic granule and an endosomal-like "exocytic vesicle". In a first step of the secretory pathway, hMunc!3-4, independently of Rab27a, mediates assembly of recycling and late endosomal structures to constitute a pool of endosomal vesicles engaged into the regulated exocytic pathway. Cytotoxic-target cell recognition induces a rapid polarization of both types of organelles, which overlap and likely fuse at the cell-cell contact. In addition, hMunc13-4 has been identified as one of the effectors of Rab27a, potentially Connecting granule docking to granule priming at the Immunological Synapse. We have also shown that Rab27a recruits a previously unknown hematopoietic form of Slp2a (Slp2a-hem) on vesicular structures in peripheral CTLs. Following CTL-target cell conjugate formation, the Slp2a-hem/Rab27a complex colocalizes with perforin-containing granules at the immunological synapse, where it binds to the plasma membrane through its C2 domains
Basque, Julie. "Modification pharmacologique de l'environnement calcique et du pH acide du système trans-Golgi network/endosomes afin d'inhiber la maturation du pro-TGF[bêta]1." Mémoire, Université de Sherbrooke, 2007. http://savoirs.usherbrooke.ca/handle/11143/3914.
Full textBasque, Julie. "Modification pharmacologique de l'environnement calcique et du pH acide du système trans-Golgi network/endosomes afin d'inhiber la maturation du pro-TGFB[bêta]1." [S.l. : s.n.], 2007.
Find full textBook chapters on the topic "Endosomal maturation"
Podinovskaia, Maria, and Anne Spang. "The Endosomal Network: Mediators and Regulators of Endosome Maturation." In Endocytosis and Signaling, 1–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96704-2_1.
Full textMurphy, Robert F., Mario Roederer, David M. Sipe, Cynthia Corley Cain, and Russell B. Wilson. "Endosomal pH Regulation and the Maturation Model for Lysosome Biogenesis." In Endocytosis, 91–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84295-5_11.
Full textMulligan, Ryan J., Chan Choo Yap, and Bettina Winckler. "Endosomal Transport to Lysosomes and the Trans-Golgi Network in Neurons and Other Cells: Visualizing Maturational Flux." In Methods in Molecular Biology, 595–618. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2639-9_36.
Full textManil-Ségalen, Marion, Emmanuel Culetto, Renaud Legouis, and Christophe Lefebvre. "Interactions Between Endosomal Maturation and Autophagy." In Methods in Enzymology, 93–118. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-397926-1.00006-8.
Full textBenarroch, Eduardo E. "Vesicular Trafficking." In Neuroscience for Clinicians, edited by Eduardo E. Benarroch, 106–25. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.003.0007.
Full textRai, Ashim, Divya Pathak, and Roop Mallik. "Dynein in Endosome and Phagosome Maturation." In Handbook of Dynein, 225–50. Jenny Stanford Publishing, 2019. http://dx.doi.org/10.1201/9780429021312-9.
Full textConference papers on the topic "Endosomal maturation"
Hu, Xian. "A Fast Projection Imaging Method for the Quantification of the Dynamics of Endosome Maturation." In European Light Microscopy Initiative 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.elmi2021.74.
Full text