Academic literature on the topic 'Encapsulation devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Encapsulation devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Encapsulation devices"

1

Ahn, Jeong, and Kim. "Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices." Micromachines 10, no. 8 (July 31, 2019): 508. http://dx.doi.org/10.3390/mi10080508.

Full text
Abstract:
The development of reliable long-term encapsulation technologies for implantable biomedical devices is of paramount importance for the safe and stable operation of implants in the body over a period of several decades. Conventional technologies based on titanium or ceramic packaging, however, are not suitable for encapsulating microfabricated devices due to their limited scalability, incompatibility with microfabrication processes, and difficulties with miniaturization. A variety of emerging materials have been proposed for encapsulation of microfabricated implants, including thin-film inorganic coatings of Al2O3, HfO2, SiO2, SiC, and diamond, as well as organic polymers of polyimide, parylene, liquid crystal polymer, silicone elastomer, SU-8, and cyclic olefin copolymer. While none of these materials have yet been proven to be as hermetic as conventional metal packages nor widely used in regulatory approved devices for chronic implantation, a number of studies have demonstrated promising outcomes on their long-term encapsulation performance through a multitude of fabrication and testing methodologies. The present review article aims to provide a comprehensive, up-to-date overview of the long-term encapsulation performance of these emerging materials with a specific focus on publications that have quantitatively estimated the lifetime of encapsulation technologies in aqueous environments.
APA, Harvard, Vancouver, ISO, and other styles
2

Anye, V. C., W. O. Akande, M. G. Zebaze Kana, and W. O. Soboyejo. "Encapsulation of Organic Light Emitting Diodes by PDMS Stamping ." Advanced Materials Research 1132 (December 2015): 166–84. http://dx.doi.org/10.4028/www.scientific.net/amr.1132.166.

Full text
Abstract:
This paper presents results of the improvement of the lifetime of organic light emitting diodes (OLEDs) by encapsulation with polydimethyl siloxane (PDMS). This polymer is very effective in protecting the device from degradation in oxygen and moisture rich environments. This is captured in the results obtained for full immersion and storage tests of encapsulated single layer devices based on MEH:PPV as the active layer. Mechanical tests were carried out to ascertain the strength (adhesion) of the interface between the encapsulating layer and the device cathode material, aluminum (Al) using both centrally-cracked Brazilian Disk, CCBD and force microscopy techniques. The encapsulated devices provided an average of 90 minutes of illumination while the bare devices provided illumination for about 3 minutes. Such a reproducible stamping technique is more appropriate due to the low processing temperatures, inherent flexibility, device compatibility and mechanical robustness at low costs.
APA, Harvard, Vancouver, ISO, and other styles
3

Hozoji, Hiroshi. "Encapsulation Materials for Power Devices." Journal of Japan Institute of Electronics Packaging 15, no. 5 (2012): 374–78. http://dx.doi.org/10.5104/jiep.15.374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kinkeldei, Thomas, Niko Munzenrieder, Christoph Zysset, Kunigunde Cherenack, and Gerhard Tröster. "Encapsulation for Flexible Electronic Devices." IEEE Electron Device Letters 32, no. 12 (December 2011): 1743–45. http://dx.doi.org/10.1109/led.2011.2168378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Desmarais, Samantha M., Henk P. Haagsman, and Annelise E. Barron. "Microfabricated devices for biomolecule encapsulation." ELECTROPHORESIS 33, no. 17 (September 2012): 2639–49. http://dx.doi.org/10.1002/elps.201200189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shahrivar, Keshvad, and Francesco Del Giudice. "Controlled viscoelastic particle encapsulation in microfluidic devices." Soft Matter 17, no. 35 (2021): 8068–77. http://dx.doi.org/10.1039/d1sm00941a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pope, Emily, Bradley Haltli, Russell G. Kerr, and Ali Ahmadi. "Effects of Matrix Composition and Temperature on Viability and Metabolic Activity of Microencapsulated Marine Bacteria." Microorganisms 10, no. 5 (May 10, 2022): 996. http://dx.doi.org/10.3390/microorganisms10050996.

Full text
Abstract:
To enhance the discovery of novel natural products, various innovations have been developed to aid in the cultivation of previously unculturable microbial species. One approach involving the microencapsulation of bacteria has been gaining popularity as a new cultivation technique, with promising applications. Previous studies demonstrated the success of bacterial encapsulation; however, they highlighted that a key limitation of encapsulating bacteria within agarose is the high temperature required for encapsulation. Encapsulation of bacteria within agarose typically requires a temperature high enough to maintain the flow of agarose through microfluidic devices without premature gelation. Given the sensitivity of many bacterial taxa to temperature, the effect of various agarose-based encapsulating matrices on marine bacterial viability was assessed to further develop this approach to bacterial culture. It was determined that lowering the temperature of encapsulation via the use of low-gelling-temperature agarose, as well as the addition of nutrients to the matrix, significantly improved the viability of representative marine sediment bacteria in terms of abundance and metabolic activity. Based on these findings, the use of low-gelling-temperature agarose with supplemental nutrients is recommended for the encapsulation of marine bacteria obtained from temperate habitats.
APA, Harvard, Vancouver, ISO, and other styles
8

Candler, R. N., Woo-Tae Park, Huimou Li, G. Yama, A. Partridge, M. Lutz, and T. W. Kenny. "Single wafer encapsulation of mems devices." IEEE Transactions on Advanced Packaging 26, no. 3 (August 2003): 227–32. http://dx.doi.org/10.1109/tadvp.2003.818062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Madakasira, Pallavi, Kanzan Inoue, Ross Ulbricht, Sergey B. Lee, M. Zhou, John P. Ferraris, and Anvar A. Zakhidov. "Multilayer encapsulation of plastic photovoltaic devices." Synthetic Metals 155, no. 2 (November 2005): 332–35. http://dx.doi.org/10.1016/j.synthmet.2005.09.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Randall, Christina L., Yevgeniy V. Kalinin, Mustapha Jamal, Aakash Shah, and David H. Gracias. "Self-folding immunoprotective cell encapsulation devices." Nanomedicine: Nanotechnology, Biology and Medicine 7, no. 6 (December 2011): 686–89. http://dx.doi.org/10.1016/j.nano.2011.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Encapsulation devices"

1

Roohpour, Nima. "Polyurethane membranes for encapsulation of implantable medical devices." Thesis, Queen Mary, University of London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goh, Kuan Eng Johnson Physics Faculty of Science UNSW. "Encapsulation of Si:P devices fabricated by scanning tunnelling microscopy." Awarded by:University of New South Wales. School of Physics, 2006. http://handle.unsw.edu.au/1959.4/27022.

Full text
Abstract:
This thesis demonstrates the effective use of low temperature molecular beam epitaxy to encapsulate planar Si:P (phosphorus-in-silicon) devices lithographically patterned by scanning tunnelling microscopy (STM) without significant redistribution of the dopants. To achieve this goal, low temperature magnetotransport is used in combination with STM, Auger electron spectroscopy and secondary ion-mass spectrometry to analyse Si:P ??-doped samples fabricated under different doping and growth conditions. An important aspect of this project is the use of large 1 ?? 1 cm2 Si(001) samples which are about five times larger than standard STM samples. The larger sample size is necessary for post-STM fabrication lithography processes in a cleanroom but presents problems for preparing atomically clean surfaces. The ability to prepare clean and atomically flat Si(001) surfaces for STM lithography on such 1 ?? 1 cm2 samples is demonstrated, and it is shown that Si:P ??-doped layers fabricated on these surfaces exhibit complete electrical activation. Two dopant sources (gaseous PH3 and solid GaP source) were investigated to assess their compatibility with STM-lithography on the H:Si(001) surface. The findings show that while the PH3 and GaP sources result in near identical electrical qualities, only PH3 molecules are compatible with H-resist based lithography for controlled nano-scale doping. For achieving complete activation of the P dopants, it is shown that an anneal to ??? 350 ???C to incorporate P atoms into the Si surface prior to encapsulation is critical. While it is known that the presence of H during growth degrades the quality of Si epitaxy, investigations in this thesis indicate that it has no significant effect on dopant activation. Systematic studies performed to assess the impact of growth temperature recommend an encapsulation temperature of 250 ???C for achieving optimal electrical qualities with minimal dopant segregation. In addition, it is shown that rapid thermal anneals (RTAs) at temperatures < 700 ???C provide only marginal improvement in the electrical quality of Si:P ??-doped samples encapsulated at 250 ???C, while RTA temperatures > 700 ???C should be avoided due to the high probability of dopant redistribution. To elucidate the nature of 2D transport in Si:P ??-doped devices, a detailed analysis of the low temperature magnetotransport for Si:P ??-doped layers with doping densities in the range ??? 0.2 ??? 2 ?? 1014 cm???2 was carried out. Using conventional 2D theories for disordered systems, both weak localisation (WL) and electron-electron interactions (EEI) are shown to contribute almost equal corrections to the 2D conductivity. In particular, it is found that EEI can introduce a significant correction in the Hall coefficient RH (hence Hall density) especially in the low density/temperature regime and the need to correct for this when using the Hall density to estimate the activated electron density is highlighted. While the electronic mean free path in such highly doped ??-layers is typically < 10 nm making ballistic transport in these devices difficult to observe, the phase coherence length can extend to almost 200 nm at about 0.3???0.5 K for doping densities of ??? 1 ??? 2 ?? 1014 cm???2. Finally, the optimised encapsulation strategy developed in this thesis is applied to a 2D square device fabricated by STM. The device exhibits Ohmic conductivity with complete dopant activation. An analysis of its low temperature magnetotransport shows that the device behaves similarly to a Si:P ??-doped layer encapsulated under similar conditions, thus highlighting that the STM patterning process had no adverse effect on device quality.
APA, Harvard, Vancouver, ISO, and other styles
3

Nehm, Frederik. "Encapsulation and stability of organic devices upon water ingress." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-223230.

Full text
Abstract:
Organic electronic devices like organic solar cells and organic light-emitting diodes quickly degrade in ambient conditions if left unprotected. High susceptibility to moisture necessitates their encapsulation. The maximum water ingress acceptable to achieve reasonable lifetimes ranges several orders of magnitudes below industrial flexible barrier solutions. In this work, an electrical Ca-Test is used to optimize and investigate moisture barriers towards their application in device encapsulation. Aside from substantial improvement of the measurement system, atomic layer deposited, sputtered, and thermally evaporated barriers are screened and their water vapor transmission rates measured down to 2*10^(-5) g(H2O)/(m²*d) at 38 °C and 90% RH. Completely new encapsulation techniques are presented using novel molecular layer deposition interlayers or lamination of independently processed barriers. This way, simple Al layers become high-end moisture barriers. Furthermore, different single layer barriers are exposed to a wide variety of climates. An in-depth analysis of water permeation mechanics reveals sorption governed by Henry's law as well as dominance of interface diffusion below the barrier at late test stages. Investigated moisture barriers are applied to organic light-emitting diodes as well as solar cells and great improvements of lifetimes are observed. In addition, significant improvements in stability towards water ingress are witnessed upon the integration of adhesion layers at the cathode interface. Lastly, the great potential and applicability of this technology is showcased by the production and aging of fully flexible, highly efficient, stable organic solar cells
Organische Elektronik-Bauteile wie organische Solarzellen und organische Leuchtdioden degradieren in kürzester Zeit, wenn sie ungeschützt feuchter Luft ausgesetzt sind. Ihre starke Anfälligkeit gegenüber Wasserdampf macht ihre Verkapselung notwendig. Der maximale Wassereintritt, der für sinnvolle Lebensdauern noch zulässig erscheint, liegt jedoch noch mehrere Größenordnungen unter dem, was mit existierenden Technologien erreicht werden kann. In der vorliegenden Arbeit wird ein elektrischer Kalzium-Korrosionstest benutzt, um Barrieresysteme auf ihre Anwendbarkeit als Verkapselung organischer Bauelemente hin zu untersuchen und zu optimieren. Abgesehen von signifikanten Verbesserungen am Messsystem werden Wasserdampfbarrieren aus Atomlagenabscheidungs-, Kathodenzerstäubungs- und Verdampfungsprozessen vermessen. Dabei werden außerordentlich niedrige Wasserdampfdurchtrittsraten von nur 2*10^(-5) g(H2O)/(m²*d) in einem Alterungsklima von 38 °C und 90% relativer Feuchte verzeichnet. Vollkommen neue Verkapselungstechniken werden realisiert, wie etwa die Integration von Zwischenschichten durch Molekularlagenabscheidung oder die Lamination zweier Barrieren, die unabhängig voneinander prozessiert werden. Dieser Prozess verwandelt einfache Al Schichten in qualitativ hochwertige Wasserdampfbarrieren. Des Weiteren werden verschiedene Einzelschicht-Barrieren einer breiten Klimavariation ausgesetzt. Dies ermöglicht die genaue Analyse der Permeationsmechanismen des Wassers. Es wird gezeigt, dass Sorption hier dem Henry'sche Gesetz folgt. Diffusion entlang der Grenzfläche unterhalb der Barriere dominiert die Permeation zu späten Testzeiten. Die untersuchten Wasserdampfbarrieren werden an organischen Leuchtdioden und Solarzellen erprobt und zeigen große Verbesserungen bezüglich ihrer Lebensdauern. Darüber hinaus zeigt sich eine stark verbesserte Resistenz gegenüber Wassereintritt, wenn eine zusätzliche Adhäsionsschicht unter der Kathodengrenzfläche integriert wird. Letztendlich zeigt sich das große Potential und die Anwendbarkeit der Ergebnisse in der hohen Effizienz und langen Lebensdauer vollflexibler, verkapselter organischer Solarzellen
APA, Harvard, Vancouver, ISO, and other styles
4

Fuchs, Adrian Vaughan. "The encapsulation of gold nanoparticles using RAFT, ATRP and miniemulsion polymerisation techniques." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/31708/3/Adrian_Fuchs_Thesis.pdf.

Full text
Abstract:
The investigation into the encapsulation of gold nanoparticles (AuNPs) by poly(methyl methacrylate) (PMMA) was undertaken. This was performed by three polymerisation techniques including: grafting PMMA synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation to AuNPs, grafting PMMA synthesised by atom transfer radical polymerisation (ATRP) from the surface of functionalised AuNPs and by encapsulation of AuNPs within PMMA latexes produced through photo-initiated oil-in-water (o/w) miniemulsion polymerisation. The grafting of RAFT PMMA to AuNPs was performed by the addition of the RAFT functionalised PMMA to citrate stabilised AuNPs. This was conducted with a range of PMMA of varying molecular weight distribution (MWD) as either the dithioester or thiol end-group functionalities. The RAFT PMMA polymers were characterised by gel permeation chromatography (GPC), ultraviolet-visible (UV-vis), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), Fourier transform Raman (FT-Raman) and proton nuclear magnetic resonance (1H NMR) spectroscopies. The attachment of PMMA to AuNPs showed a tendency for AuNPs to associate with the PMMA structures formed, though significant aggregation occurred. Interestingly, thiol functionalised end-group PMMA showed very little aggregation of AuNPs. The spherical polymer-AuNP structures did not vary in size with variations in PMMA MWD. The PMMA-AuNP structures were characterised using scanning electron microscopy (SEM), transition electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopy. The surface confined ATRP grafting of PMMA from initiator functionalised AuNPs was polymerised in both homogeneous and heterogeneous media. 11,11’- dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] (DSBr) was used as the surface-confined initiator and was synthesised in a three step procedure from mercaptoundecanol (MUD). All compounds were characterised by 1H NMR, FTIR-ATR and Raman spectroscopies. The grafting in homogeneous media resulted in amorphous PMMA with significant AuNP aggregation. Individually grafted AuNPs were difficult to separate and characterise, though SEM, TEM, EDAX and UV-vis spectroscopy was used. The heterogeneous polymerisation did not produce grafted AuNPs as characterised by SEM and EDAX. The encapsulation of AuNPs within PMMA latexes through the process of photoinitiated miniemulsion polymerisation was successfully achieved. Initially, photoinitiated miniemulsion polymerisation was conducted as a viable low temperature method of miniemulsion initiation. This proved successful producing a stable PMMA with good conversion efficiency and narrow particle size distribution (PSD). This is the first report of such a system. The photo-initiated technique was further optimised and AuNPs were included into the miniemulsion. AuNP encapsulation was very effective, producing reproducible AuNP encapsulated PMMA latexes. Again, this is the first reported case of this. The latexes were characterised by TEM, SEM, GPC, gravimetric analysis and dynamic light scattering (DLS).
APA, Harvard, Vancouver, ISO, and other styles
5

Kinder, Erich W. "Fabrication of All-Inorganic Optoelectronic Devices Using Matrix Encapsulation of Nanocrystal Arrays." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339719904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karasinski, Michael A. "Manufacturing Microfluidic Flow Focusing Devices For Stimuli Responsive Alginate Microsphere Generation And Cell Encapsulation." ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/756.

Full text
Abstract:
In this paper a novel stimuli responsive hydrogel material, methacrylated sodium alginate beta-cyclodextrin (Alg-MA-β-CD), was used in combination with a microfluidic device to create microspheres. Currently there is no reliable method for fabricating homogeneous stimuli-responsive microspheres, in-house microfluidic devices are not reliable in manufacture quality or long-term use. Alginate hydrogels have many attractive characteristics for bioengineering applications and are commonly used to mimic the features and properties of the extracellular matrix (ECM). Human mesenchymal stem cells (hMSCs) are of top interest to tissue engineers. hMSCs are widely available and can be harvested and cultured directly out of human bone marrow. hMSCs have the ability to differentiate into osteoblasts, adipocytes, chondrocytes, muscle cells, and stromal fibroblasts depending on mechanical signals transmitted through surrounding ECM. The biomechanical properties of alginate based stimuli-responsive hydrogels can be tuned to match those of different types of tissues. When trying to transport and control the differentiation of hMSCs into generating new tissues or regenerating damaged tissues, it is highly beneficial to encapsulate the cells inside a microsphere made from these hydrogels. The proposed research objectives are: 1) To optimize fabrication techniques and create functional microfluidic devices; 2) Analyze the effects of flow parameters on microsphere production; and 3) Encapsulate viable hMSCs inside multi-stimuli responsive alginate microspheres using the fabricated microfluidic devices (MFDs). In this study, photolithography microfabrication methods were used to create flow-focusing style MFDs. The hydrogel materials were characterized via rheological methods. Syringe pumps controlled flow rates of fluids through the devices. Active droplets formation was monitored through a camera attached to an inverted microscope, where images were analyzed. Microsphere production was analyzed optically and characterized. Alg-MA-β-CD polymer solutions containing hMSCs were encapsulated, and a live/dead florescence assay was preformed to verify cell viability. Using a modified fabrication process it was possible to manufacture Alg-MA-β-CD microspheres and encapsulate and maintain viable hMSCs inside.
APA, Harvard, Vancouver, ISO, and other styles
7

Broha, Vincent. "Encapsulation couche mince des dispositifs photovoltaïquesorganiques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI027.

Full text
Abstract:
L’oxygène et l’eau présents dans l’atmosphère sont des acteurs important dans la dégradationdes matériaux contenus dans les dispositifs opto-électroniques organiques. Dans le but d’améliorerla stabilité et la durée de vie de ces dispositifs, ces dispositifs sont encapsulés avec desmatériaux barrière aux gaz par lamination ou par l’utilisation de couches minces. Cette dernière,notamment utilisée pour les OLED, permet de fournir des barrières aux gaz performantes parle dépôt de couches inorganiques denses directement sur les dispositifs. Cependant, elles sontassujetties aux défauts des surfaces sur lesquelles elle sont déposées.L’objectif de ces travaux est de développer une couche de planarisation afin d’homogénéiserla surface des dispositifs photovoltaïques organiques (OPV) et de réduire la rugosité dans lebut d’obtenir une protection barrières aux gaz améliorée, conférée par le dépôt subséquent decouches denses inorganiques selon divers moyens (voie liquide et gazeuse).Dans un premier temps, des couches de planarisation ont été développées à partir de 6 copolymèresp(VDF-HFP). Ces derniers ont été caractérisés afin d’améliorer nos connaissances sur cesmatériaux.Grâce à une étude de solubilité, des encres à différentes concentrations dans l’acétate d’éthyleont été réalisées. Ces dernières ont été étudiées par des mesures rhéologiques et de tension desurface permettant de mieux appréhender leur étalement, et les états de surface obtenus sur dessubstrats PET et sur les dispositifs OPV. Ces recherches ont été complétées par un contrôlede la topographie et par conséquent de la planarisation des dispositifs OPV par microscopieconfocale.Pour finir, l’étude des performances barrière des structures d’encapsulations hybrides (organiqueinorganique)ont dévoilé une bonne compatibilité lorsque la rugosité de la couche de planarisationest très faible. Ces résultats sont confirmés par des mesures barrières aux gaz et des tests devieillissement accélérés des dispositifs OPV encapsulés en enceinte climatique qui permettentd’illustrer l’intérêt de l’encre planarisante développée.Ce travail a été réalisé au laboratoire LMPO au CEA/LITEN en collaboration avec l’industrielArkema dans le but de fournir des technologies d’encapsulations performantes
Oxygen and water present in the atmosphere are important actors of the degradation of materialscontained in optoelectronic devices. In order to increase the stability and the lifetime ofOPV, the devices are encapsulated with gas-barrier materials by lamination encapsulation orthin film encapsulation. These latter, espacially used in OLED technology, provides high performancegas barriers by depositing dense inorganic layers directly onto the devices. However,they are subject to the defects of the surfaces on which they are deposited.The purpose of this study is to develop a planarinzing layer in order to homogenize the surfaceof organic photovoltaic devices (OPV) and to reduce the roughness with the aim to obtain animproved gas barrier protection, conferred by the subsequent deposition of dense inorganic layersby various ways (liquid and gaseous routes).In a first step, the planarization layers were developed from six p(VDF-HFP) co-polymers. Thesehave been characterized to improve our knowledge on those materials.Through a solubility study, inks at different concentrations in ethyl acetate were made. Thelatter were studied by rheological measurements and surface tension to understand better theirspread, and the surface conditions obtained on PET substrates and OPV devices. Those researchswere completed with a topography control and consequently the planarization of OPVdevices by confocal microscopy.Finally, the study of the barrier performance of hybrid encapsulation structures (organic-inorganic)revealed a good compatibility when the rugosity of the planarization layer is very low. Theseresults are confirmed by permeation measurements and accelerated aging tests of OPV devicesencapsulated in climatic chambers that illustrate the interest of the planarized ink developed.This work has been performed in the LMPO Laboratory at CEA/LITEN in collaboration withthe chemical company Arkema in order to be able to provide performant encapsulation technologies
APA, Harvard, Vancouver, ISO, and other styles
8

Klumbies, Hannes. "Encapsulations for Organic Devices and their Evaluation using Calcium Corrosion Tests." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133263.

Full text
Abstract:
This work investigates the encapsulation of organic light-emitting diodes (OLEDs) and organic solar cells (OSCs) in order to extend their lifetimes. Despite their unquestioned benefits, such as low material consumption and flexibility, their short lifetime span in ambient atmosphere is a clear disadvantage. For protection purposes, the devices are required to be encapsulated with permeation barriers. An appropriate barrier must have a water vapor transmission rate (WVTR) below 10^(-4) g(H2O) m^(-2) d^(-1) – below a monolayer of water permating through the barrier per day. Thus to design such barriers, a highly sensitive method for their evaluation is the primary requirement. Much fundamental research and setup development is thus performed in this work in order to improve the electrical calcium test to a sufficient level of sensitivity, reliability, and measurement capacity. The electrical calcium test uses a thin film of ignoble calcium and determines the amount of incoming water based on the decrease in its electrical conductance. In order to obtain highly precise results, this work identifies the reaction product (calcium hydroxide) and electrical resistivity of evaporated calcium films ((6.2 +- 0.1) 10^(-6-) Ohm cm). In contrast to a common assumption for the evaluation of calcium tests, calcium is found to corrode laterally inhomogeneous. However, it is shown theoretically and experimentally that this inhomogeneity does not distort the WVTR-measurement. Besides these fundamental investigations, calcium test design problems – as well as their solutions – are shown such as the damaging of an inorganic barrier film by an adjacent calcium sensor. As a result, a powerful and reliable measurement setup has been created. Subsequently, an investigation of a variety of barriers is presented, based on calcium tests, but also on device encapsulation and electroplating into defects: Permeation through evaporated aluminum thin films is found to occur mainly through macroscopic defects (radii > 0.4 μm) characterizable by optical inspection. Barriers made via atomic layer deposition (ALD) show improved performance with increasing layer thickness. Using ALD on foils provides excellent but, thus far, unreliable barriers. Permeation through bare polymer foils as well as sputtered zinc tin oxide (ZTO) increases roughly linear with increasing humidity and the measured WVTRs are highly comparable to reference values. The POLO barrier with a WVTR in the lower 10^(-4) g(H2O) m^(-2) d^(-1)-regime reaches the sensitivity limit of the current calcium test layout. In summary, in-depth investigations on permeation through different barriers are conducted here which reveal basic WVTR-dependencies from process- and climate parameters. Finally, water is identified as the predominant cause for device degradation, reducing the active area. For one type of both OLEDs and OSCs, the amount of water causing a 50% loss in active area (T50- water-uptake) is quantified via a comparative aging experiment involving calcium tests. Further for the case of the OSC, this T50-water-uptake of (20 +- 7) mg(H2O) m^(-2) is shown to be independent of climate conditions. As a result, the previously unspecific request for an aimed device lifetime can now be translated into a specific requirement for the permeation barrier: a water vapor transmission rate. Regarding the field of encapsulation, this work improves an essential measurement technique, characterizes a variety of permeation barriers, and investigates degradation of devices by ambient gases. The encapsulation field still poses several open questions. This work, however, strengthens the belief that organic devices will outlive them
Diese Arbeit untersucht die Verkapselung organischer Leuchtdioden (OLEDs) und organischer Solarzellen (OSCs), um ihre Lebensdauer zu verlängern. Trotz unbestrittener Vorteile wie geringer Materialaufwand und mechanische Flexibilität stellt die kurze Lebensdauer dieser Bauteile an Luft einen deutlichen Nachteil dar. Um sie zu schützen, müssen sie mit Permeationsbarrieren verkapselt werden. Eine geeignete Barriere zeichnet sich durch eine Wasserpermeationsrate (WVTR) unterhalb von 10^(-4) g(H2O) m^(-2) d^(-1) aus – weniger als eine Monolage Wasser pro Tag. Folglich wird zur Entwicklung einer solchen Barriere primär eine äußerst empflindliche Methode zu ihrer Vermessung benötigt. Um für den elektrischen Calcium-Test ein hinreichendes Maß an Messgenauigkeit, Zuverlässigkeit und Probendurchsatz zu erzielen, werden in dieser Arbeit Grundlagenuntersuchungen sowie die Entwicklung des Messaufbaus umfassend behandelt. Der elektrische Calcium-Test bestimmt die Menge eindringenden Wassers anhand der Leitfähigkeitsabnahme einer dünnen Schicht Calcium – eines unedlen Metalls. Um eine hohe Genauigkeit zu erlangen, werden das Reaktionsprodukt (Calciumhydroxid) und der spezifische Widerstand ((6,2 +- 0,1) 10^(-6) Ohm cm) aufgedampfter Calcium-Filme bestimmt. Entgegen einer für die Auswertung von Calcium-Tests üblichen Annahme wird für Calcium ein lateral inhomogenes Korrosionsverhalten festgestellt. Allerdings kann theoretisch und experimentell nachgewiesen werden, dass hierdurch die WVTR-Messung nicht verfälscht wird. Neben diesen Grundlagenuntersuchungen werden Design-Probleme des Calcium-Tests und deren Lösung vorgestellt, z. B. die Schädigung der anorganischen Barriere durch direkten Kontakt mit dem Calcium-Sensor. Im Ergebnis ist damit ein ebenso leistungsstarker wie zuverlässiger Messaufbau entwickelt worden. Im nächsten Schritt wird die Untersuchung einer Vielzahl von Barrieren mithilfe von Calcium-Tests, aber auch Bauteil-Verkapselung und galvanischer Abscheidung in Defekten, vorgestellt: Die Permeation durch aufgedampfte Aluminium-Dünnfilme geschieht demnach im Wesentlichen durch Makro-Defekte (Radien > 0,4 μm), die einer optischen Charakterisierung zugänglich sind. Barrieren, die durch Atomlagenabscheidung (ALD) hergestellt werden, verbessern sich mit steigender Schichtdicke, wobei solche Schichten auf Folien ausgezeichnete – aber bisher unzuverlässige – Permeationsbarrieren darstellen. Sowohl für einfache Polymerfolien als auch für gesputterte Zink-Zinn-Oxid-Barrieren (ZTO) werden zum einen gute Übereinstimmungen der gemessenen WVTR mit Vergleichswerten erzielt, zum anderen wächst in beiden Fällen die WVTR grob linear mit der anliegenden Luftfeuchte. Die POLO-Barriere mit einer WVTR im unteren 10^(-4) g(H2O) m^(-2) d^(-1)-Bereich erreicht die Messgrenze des aktuellen Messaufbaus. Kurzgesagt, es werden tiefgehende Untersuchungen zur Permeation durch verschiedene Barrieren durchgeführt, die grundlegende Zusammenhänge zwischen WVTR und Prozess-/Klimabedingungen beleuchten. Schließlich wird Wasser, das die aktive Fläche reduziert, als die vorrangige Degradationsursache identifiziert. Für je eine Sorte OLEDs und OSCs wird mittels eines vergleichenden (gegenüber Calcium-Tests) Alterungsexperiments dieWassermenge bestimmt, die die aktive Fläche um 50% verringert (T50-Wasser-Aufnahme). Für die OSC wird zudem gezeigt, dass die T50-Wasser-Aufnahme von (20 +- 7) mg(H2O) m^(-2) unabhängig von den Klimabedingungen ist. Folglich kann die zuvor unspezifische Forderung nach einer angestrebten Lebensdauer nun in eine konkrete Anforderung an die Barriere übersetzt werden: eine Wasserpermeationsrate. Mit Blick auf das Feld der Verkapselung verbessert diese Arbeit eine wichtige Messmethode, charakterisiert eine Vielzahl an Permeationsbarrieren und untersucht die Bauteilalterung durch Lufteinwirkung. Auch wenn das das Forschungsfeld der Verkapselungen nach wie vor eine Reihe offener Fragen aufweist, so bestärkt diese Arbeit doch in der Hoffnung, dass die organischen Bauteile selbige überdauern werden
APA, Harvard, Vancouver, ISO, and other styles
9

Diouf, Maïmouna Wagane. "Low-temperature synthesis of alumina and titania by atomic layer deposition for application to the encapsulation of organic devices." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0373.

Full text
Abstract:
L’objectif scientifique de ce travail de thèse était de proposer des structures de films d’encapsulation améliorées et bon marché, fabriquées par dépôt de couches atomiques (Atomic Layer Deposition, ALD) à basse température. Des oxydes largement utilisés, l'alumine (oxide d'aluminium) et l'oxyde de titane, ont été étudiés en utilisant des précurseurs chimiques bon marché (triméthyl aluminium – TMA, tetraisopropoxide de titane – TTIP). L'utilisation d’un traitement plasma pour améliorer les propriétés barrière intrinsèques des couches d'oxydes a été proposée et testée sur de l'alumine. Le traitement plasma consiste en une exposition périodique au plasma argon/oxygène durant un dépôt thermique. Il a permis de produire des films présentant de meilleures propriétés barrière que les films déposés en mode thermique pure ou en mode plasma pure.Un effort a été porté sur la compréhension de l’origine de la faible résistance chimique des films en oxyde de titane faits à basse température avec du TTIP. Il a été démontré que la perméabilité de ces films est liée à l’incorporation de ligands du TTIP dans la couche lors des synthèses à basse température. L’utilisation d’un traitement thermique à une température supérieure au seuil de cristallisation du TiO2 (ca. 340°C) s’est révélée efficace pour éliminer les ligands et restaurer la résistance chimique. Une méthode rapide de caractérisation des macro-défauts, déjà utilisée à Encapsulix, a été davantage développée: la décoration des macro-défauts à l'acide sulfurique.Ces travaux constituent une contribution à l'amélioration des propriétés barrière intrinsèques des oxydes utilisés dans les films de type nanolaminés
The scientific goal of this work was to propose improved, cost-efficient encapsulation film structures with the use of atomic layer deposition at low temperature. Widely used oxides, alumina and titania, have been investigated with the use of low-cost chemical precursors (trimethyl aluminum – TMA, titanium tetraisopropoxide – TTIP).The use of plasma treatment to improve the intrinsic barrier properties of the oxide layers has been proposed and tested on alumina. Alumina has been synthesized at 80°C, using TMA and water (thermal mode) or TMA and an argon / oxygen plasma (plasma-enhanced mode).Plasma treatment consists of periodic exposure to an argon / oxygen plasma during a thermal deposition. It has made it possible to produce films having better barrier properties than films deposited in pure thermal mode or in pure plasma-enhanced mode.An effort has been made on the understanding of the reason for the very low barrier performances of titania made at low-temperature. The permeability of these films has been shown to be related to the incorporation of TTIP ligands into the layer during low-temperature syntheses. The use of heat treatment at a temperature above the crystallization threshold of TiO2 (ca. 340 ° C.) has proved effective in eliminating ligands and restoring chemical resistance.It has been necessary to also work on the characterization methods to evaluate the barrier properties. A rapid method of macro-defects characterization, already used at Encapsulix, has been further developed: defects decoration with sulfuric acid.This work is a contribution to the improvement of the intrinsic barrier properties of the oxides used in nanolaminates for encapsulation
APA, Harvard, Vancouver, ISO, and other styles
10

Nehm, Frederik Verfasser], Karl [Akademischer Betreuer] [Gutachter] [Leo, and Volker [Gutachter] Kirchhoff. "Encapsulation and stability of organic devices upon water ingress / Frederik Nehm ; Gutachter: Karl Leo, Volker Kirchhoff ; Betreuer: Karl Leo." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://d-nb.info/1130092909/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Encapsulation devices"

1

Encapsulation of electronic devices and components. New York: M. Dekker, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Encapsulation devices"

1

Maki, Takashi, Anthony P. Monaco, Claudy J. P. Mullon, and Barry A. Solomon. "Vascular Devices." In Cell Encapsulation Technology and Therapeutics, 193–98. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1586-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Potje-Kamloth, Karin, and Mira Josowicz. "Electrochemical Encapsulation of Solid State Devices." In Heterostructures on Silicon: One Step Further with Silicon, 281–88. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0913-7_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Su, Wenming. "Encapsulation Technology for Organic Electronic Devices." In Printed Electronics, 287–315. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016. http://dx.doi.org/10.1002/9781118920954.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gautam, Sudarshan, and H. David Humes. "Renal Replacement Devices: The Development of the Bioartificial Kidney." In Cell Encapsulation Technology and Therapeutics, 287–99. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1586-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, Christian. "Direct Encapsulation of OLED on CMOS." In Bio and Nano Packaging Techniques for Electron Devices, 581–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28522-6_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Quintana, Gabriel, Esteban Gerbino, and Andrea Gómez-Zavaglia. "Microfluidic Glass Capillary Devices: An Innovative Tool to Encapsulate Lactiplantibacillus plantarum." In Basic Protocols in Encapsulation of Food Ingredients, 69–77. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1649-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jana, S., S. Das, D. De, S. Garain, S. Ray, U. Gangopadhyay, P. Ghosh, and A. Mondal. "Encapsulation of SiNWs Array with Diamond-like Nanocomposite Thin Film for Ultra-low Reflection." In Physics of Semiconductor Devices, 327–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Raj, Milan, Shyamal Patel, Chi Hwan Lee, Yinji Ma, Anthony Banks, Ryan McGinnis, Bryan McGrane, et al. "Multifunctional Epidermal Sensor SystemsEpidermal Electronics Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation PackagingUltraThin Encapsulation Packaging for Health MonitoringMultifunctional Epidermal Sensor Systems." In Stretchable Bioelectronics for Medical Devices and Systems, 193–205. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28694-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kinjo, Noriyuki, Masatsugu Ogata, Kunihiko Nishi, Aizou Kaneda, and K. Dušek. "Epoxy Molding Compounds as Encapsulation Materials for Microelectronic Devices." In Speciality Polymers/Polymer Physics, 1–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0017963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsai, Wen-Chung, Nien-Ting Huang, Ting-Ming Tsai, and Te-Jen Wang. "Performance Evaluations of Packet Encapsulation Using Scatter-Gather Direct Memory Access to Support Massive Devices Accesses for NB-IoT Small Cell." In Innovative Mobile and Internet Services in Ubiquitous Computing, 587–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22263-5_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Encapsulation devices"

1

Park, Woo-Tae, Rob N. Candler, Huimou J. Li, Junghwa Cho, Holden Li, Thomas W. Kenny, Aaron Partridge, Gary Yama, and Markus Lutz. "Wafer Scale Encapsulation of MEMS Devices." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35032.

Full text
Abstract:
MEMS packaging has always been a field of great importance since it can dominate the cost and size of a final working device. Considering this, we have concentrated on developing a wafer-scale encapsulation scheme which uses a thick epi-poly (epitaxially deposited poly silicon) layer as the sealing layer. This approach allows the use of conventional post processing, such as dicing, wire bonding, and other standard handling and mounting techniques. We also can minimize the chip area used for packaging, in some cases reducing the chip size by ×5 from what was required for silicon fusion bonded covers. This packaging scheme can be used for various MEMS devices and can be integrated with other electronics. This paper will discuss the packaging process and show some preliminary results.
APA, Harvard, Vancouver, ISO, and other styles
2

Ayanoor-Vitikkate, Vipin, Kuan-Lin Chen, Kuan-Tae Park, and Thomas W. Kenny. "Development of Process for Wafer Scale Encapsulation of Devices With Very Wide Trenches." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14549.

Full text
Abstract:
A Wafer scale encapsulation process has been developed for devices that require wide gaps. In this experiment, we focus on devices that have gaps or trenches 10-20μm wide. This process can also be applied to larger gaps of the order of 50-100μm. The chief focus of the process development is to achieve a wafer scale encapsulation technique, which can avoid deposition of very thick LPVCD oxide. Once the processing and encapsulation is carried out, SEM images are taken to ensure that the device is completely released and no sacrificial material is left behind.
APA, Harvard, Vancouver, ISO, and other styles
3

Kanagawa, Naoki, Daisuke Sasaki, and Shigeru Yamatsu. "Low Dielectric Properties Encapsulation for High Frequency Devices." In 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018. http://dx.doi.org/10.1109/ectc.2018.00285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lebouitz, K. S., A. Mazaheri, R. T. Howe, and A. P. Pisano. "Vacuum encapsulation of resonant devices using permeable polysilicon." In Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291). IEEE, 1999. http://dx.doi.org/10.1109/memsys.1999.746874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aridor, Yariv, David Carmel, Yoëlle S. Maarek, Aya Soffer, and Ronny Lempel. "Knowledge encapsulation for focused search from pervasive devices." In the tenth international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/371920.372195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Higgs, Daniel. "ALD-CAP® Encapsulation of Wafers, Devices, and Objects." In 64th Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2021. http://dx.doi.org/10.14332/svc21.proc.0082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ding, Peng, Renhui Liu, Yu Chen, Guanqiang Song, and Guanhua Li. "Study on encapsulation reliability." In 2014 Joint IEEE International Symposium on the Applications of Ferroelectrics, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy (ISAF/IWATMD/PFM). IEEE, 2014. http://dx.doi.org/10.1109/isaf.2014.6917977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abe, T., A. Uchiyama, K. Yoshizawa, Y. Nakazato, M. Miyawaki, and T. Ohmi. "Encapsulation of Surface Impurities by Silicon Wafer-Bonding." In 1990 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1990. http://dx.doi.org/10.7567/ssdm.1990.c-3-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kuwabara, Kei, Masami Urano, Junichi Kodate, Norio Sato, Tomomi Sakata, Hiromu Ishii, Toshikazu Kamei, Kazuhisa Kudou, Masaki Yano, and Katsuyuki Machida. "Integrated RF-MEMS Technology with Wafer-Level Encapsulation." In 2005 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2005. http://dx.doi.org/10.7567/ssdm.2005.d-2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hamzah, A. A., B. Y. Majlis, and I. Ahmad. "Deflection analysis of epitaxially deposited polysilicon encapsulation for MEMS devices." In 2004 IEEE International Conference on Semiconductor Electronics. IEEE, 2004. http://dx.doi.org/10.1109/smelec.2004.1620960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography