Academic literature on the topic 'Emissive cathode'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Emissive cathode.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Emissive cathode"
Chaharsoughi, Mina Shiran, Mohammad Jafar Hadianfard, and Mohammad Mahdi Shiezadeh. "Study the Effect of Nanoemissive Materials on M-Type Cathode Performance." Advanced Materials Research 829 (November 2013): 772–77. http://dx.doi.org/10.4028/www.scientific.net/amr.829.772.
Full textStępińska, Izabela, Elżbieta Czerwosz, Mirosław Kozłowski, Halina Wronka, and Piotr Dłużewski. "Studies of field emission process influence on changes in CNT films with different CNT superficial density." Materials Science-Poland 36, no. 1 (May 18, 2018): 27–33. http://dx.doi.org/10.1515/msp-2018-0001.
Full textIsakova, Yulia I., Galina E. Kholodnaya, and Alexander I. Pushkarev. "Influence of Cathode Diameter on the Operation of a Planar Diode with an Explosive Emission Cathode." Advances in High Energy Physics 2011 (2011): 1–14. http://dx.doi.org/10.1155/2011/649828.
Full textChen, Jing, Qianqian Huang, and Wei Lei. "Dual-Facets Emissive Quantum-Dot Light-Emitting Diode Based on AZO Electrode." Materials 15, no. 3 (January 19, 2022): 740. http://dx.doi.org/10.3390/ma15030740.
Full textYang, Yang, Wen Zheng Yang, Wei Dong Tang, and Chuan Dong Sun. "Temperature Dependent Study of Carrier Diffusion in Photon Enhanced Thermionic Emission Solar Converters." Advanced Materials Research 772 (September 2013): 634–39. http://dx.doi.org/10.4028/www.scientific.net/amr.772.634.
Full textNouzman, L., and G. L. Frey. "Directed migration of additives to form top interlayers in polymer light emitting diodes." Journal of Materials Chemistry C 5, no. 48 (2017): 12744–51. http://dx.doi.org/10.1039/c7tc04586g.
Full textSibbett, W., S. C. Douglas, M. I. Harbour, B. A. Kerr, S. N. Spark, and Y. M. Saveliev. "Effect of cathode end caps and a cathode emissive surface on relativistic magnetron operation." IEEE Transactions on Plasma Science 28, no. 3 (June 2000): 478–84. http://dx.doi.org/10.1109/27.887651.
Full textBecatti, G., F. Burgalassi, F. Paganucci, M. Zuin, and D. M. Goebel. "Resistive MHD modes in hollow cathodes external plasma." Plasma Sources Science and Technology 31, no. 1 (January 1, 2022): 015016. http://dx.doi.org/10.1088/1361-6595/ac43c4.
Full textYokoo, Kuniyoshi. "Experiments of highly emissive metal–oxide–semiconductor electron tunneling cathode." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 3 (May 1996): 2096. http://dx.doi.org/10.1116/1.588878.
Full textHartmann, W., G. Kirkman, V. Dominic, and M. A. Gundersen. "A super-emissive self-heated cathode for high-power applications." IEEE Transactions on Electron Devices 36, no. 4 (April 1989): 825–26. http://dx.doi.org/10.1109/16.22493.
Full textDissertations / Theses on the topic "Emissive cathode"
Asselin, Daniel Joseph. "Characterization of the Near-Plume Region of a Low-Current Hollow Cathode." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/438.
Full textSary, Gaétan. "Modélisation d'une cathode creuse pour propulseur à plasma." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30182/document.
Full textA hollow cathode is a critical component of plasma thrusters. In a plasma thruster, a propellant gas is ionized in a discharge chamber and accelerated out of it so as to generate thrust. In Hall thrusters in particular, the ionization of the gas is caused by an intense electron current (from a few to hundred amps) which flows through the discharge chamber. The hollow cathode is the device which is responsible for providing the discharge current. This key element is often idealized in thruster numerical models and its physical behavior is rarely studied for its own sake. Yet, developing high power Hall thrusters, designed to propel in the long run every type of space mission, requires new hollow cathodes able to supply an intense electron current (over 100 A) over a duration on the order of ten thousand hours. So far, designing new cathodes proved difficult because of the lack of model capable of predicting the performance of a cathode based on its design. In this work, we build up a predictive model of a hollow cathode capable of simulating the physics relevant to the operation of the cathode. In the end, we aim at using this model to associate design characteristics of the cathode to key aspects of the cathode performance during operation. Our goal with this model is to guide the development of future high power hollow cathodes. We will first briefly describe the range of application of hollow cathodes related to space propulsion. Then we will give a brief account of the working principles of the cathode and we will set the numerical models available in the literature prior to this one out. The numerical model developed in this work will then be described. It includes a fluid treatment of the plasma as well as an account of the heat fluxes to the walls which largely control the performance of the cathode. Simulation results will be thoroughly compared to experimental measurements available in the literature and specific aspects of the model will be refined to match up simulation results with the physical reality. For instance, a model that specifically represents the transition region between the internal plasma of the cathode and the plume of the cathode will be described. This model will enable us to highlight plasma instability phenomena which were so far observed experimentally, yet never properly included in hollow cathode models. Using the model just developed, we will analyze the physics of a particular hollow cathode which has been developed by NASA at the Jet Propulsion Laboratory, the NSTAR hollow cathode. Then, thanks to the numerical model, we will be able to carry out a parametric study revolving around the design of the NSTAR cathode. This will allow us to bring out the influence of the design on the cathode performance and we will eventually express recommendations regarding the design of future high power cathodes. To conclude, the versatility of the numerical model built up here will also be displayed through simulations of the behavior of a hollow cathode based on an alternate geometry
Pagaud, Francis. "Control and stability of magnetised plasma columns : plasma-cathode interactions and helicon plasma operation." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0016.
Full textRadial transport, azimuthal waves and instabilities are common features in magnetised plasmas, causing major challenges for plasma propulsion, plasma wakefield particle acceleration or fusion devices. Plasma properties control is desirable yet complex. This PhD thesis follows two goals, one being the use of an emissive cathode as a new parameter control and the other being the fundamental understanding of the helicon plasma operational stability. Firstly, the role of the injection of electrons inside a magnetised plasma column has been studied experimentally and numerically. The experimental set-up is a 80 cm long and 20 cm diameter vacuum vessel connected to a 11 cm wide glass tube. The argon gas at a base pressure of 0.13 Pa is ionised by a 3-turns inductive radio-frequency antenna supplied at 1 kW. Magnetic field ranging from 170 G to 340 G, ensures a weak magnetisation of the plasma. A large tungsten hot cathode was placed at the end of the plasma column to inject an important thermionic current. Electrical and optical measurements of the cathode temperature revealed a highly inhomogeneous cathode temperature profile due to plasma–cathode interactions. A detailed thermal modelling solved numerically accurately reproduces the heterogeneous rise in temperature witnessed experimentally. The operating regime was predicted in excellent agreement with experimental results.The fine understanding of the emissive cathode behaviour in presence of a surrounding magnetised plasma permitted to explore its influence on the plasma properties, and especially the plasma potential. An analytical approach based on a two-fluids plasma model and anisotropic electrical conductivities, predicting plasma potential control and plasma rotation regulation as a function of thermionic emission, has been applied and compared to a wide experimental dataset of plasma properties. The works presented confront the role of cross-field ion transport to experimental radial plasma potential scans with a semi-quantitative agreement, highlighting a new major application of emissive cathodes.Finally, a state-of-the-art helicon plasma source has been implemented to produce higher ionization rates. This new system required a complete characterisation of plasma properties through electrostatic probes and high-speed camera imaging. It reproduced well-known helicon plasma features such as E-H-W mode transitions, bistability and hysteresis, chirality emerging from the external magnetic field direction and the propagation of m = +1 whistler waves. Besides, it displayed complex behaviours such as H-W and W-W oscillations, or coexisting low-frequency Kelvin-Helmholtz and Rayleigh-Taylor instabilities. A strong multiscale core instability at 1080 G was also briefly investigated. Wave-mode identification based on theoretical growth rates, 2DFT modal decomposition and POD has been conducted, unravelling the physical mechanisms at stake
Taillefer, Zachary R. "Characterization of the Near Plume Region of Hexaboride and Barium Oxide Hollow Cathodes operating on Xenon and Iodine." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/44.
Full textPopov, M. Yu, A. P. Volkov, S. G. Buga, V. S. Bormashov, K. V. Kondrashov, R. L. Lomakin, N. V. Lyparev, V. V. Medvedev, S. A. Tarelkin, and S. A. Perfilov. "Nanostructured metal-fullerene field emission cathode." Thesis, Sumy State University, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20585.
Full textVaughn, Joel M. "Thermionic Electron Emission Microscopy Studies of Barium and Scandium Oxides on Tungsten." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1279814656.
Full textLee, Kon Jiun. "Current limiting of field emitter array cathodes." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/19629.
Full textShen, Xiangqian. "Novel processing routes for oxide cathode emission materials." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/10822.
Full textMollart, T. P. "Electron emission processes in cold cathode thermal arcs." Thesis, Durham University, 1993. http://etheses.dur.ac.uk/5546/.
Full textJones, Randolph D. "Circuit model of a low-voltage field emission cathode." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/15631.
Full textBooks on the topic "Emissive cathode"
Kapustin, Vladimir, and Illarion Li. Theory, electronic structure and physical chemistry of materials cathodes for microwave devices. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1041298.
Full textKapustin, Vladimir, Aleksandr Sigov, Illarion Li, and Vladimir Mel'nikov. Point defects in oxides and emission properties. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1846464.
Full textDanilov, Vladimir, Roman Gaydukov, and Vadim Kretov. Mathematical Modeling of Emission in Small-Size Cathode. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0195-1.
Full textS, MacRae Gregory, and United States. National Aeronautics and Space Administration., eds. Requirements for long-life operation of inert gas hollow cathodes--preliminary report. [Washington, DC: National Aeronautics and Space Administration, 1990.
Find full textS, MacRae Gregory, and United States. National Aeronautics and Space Administration., eds. Requirements for long-life operation of inert gas hollow cathodes--preliminary report. [Washington, DC: National Aeronautics and Space Administration, 1990.
Find full textS, MacRae Gregory, and United States. National Aeronautics and Space Administration., eds. Requirements for long-life operation of inert gas hollow cathodes--preliminary report. [Washington, DC: National Aeronautics and Space Administration, 1990.
Find full textGordeev, V. F. Termoėmissionnye dugovye katody. Moskva: Ėnergoatomizdat, 1988.
Find full textMesi︠a︡t︠s︡, G. A. Explosive electron emission. Ekaterinburg: URO-Press, 1998.
Find full textCenter, NASA Glenn Research, ed. Ferroelectric emission cathodes for low-power electric propulsion. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textBajic, Stevan. "Non-metallic" cold-cathode electron emission from composite metal-insulator microstructures. Birmingham: AstonUniversity. Department of Electrical and Electronic Engineering and Applied Physics., 1989.
Find full textBook chapters on the topic "Emissive cathode"
Egorov, Nikolay, and Evgeny Sheshin. "Field Emission Cathodes." In Field Emission Electronics, 229–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56561-3_5.
Full textEgorov, Nikolay, and Evgeny Sheshin. "Field Emission Cathode-Based Devices and Equipment." In Field Emission Electronics, 427–538. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56561-3_8.
Full textEgorov, Nikolay, and Evgeny Sheshin. "Carbon-Based Field-Emission Cathodes." In Field Emission Electronics, 295–367. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56561-3_6.
Full textEgorov, Nikolay, and Evgeny Sheshin. "Computation of Field-Emission Cathode-Based Electron Guns." In Field Emission Electronics, 369–426. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56561-3_7.
Full textEgorov, Nikolay, and Evgeny Sheshin. "Simulation of Structure and Parameters of Field Emission Cathodes." In Field Emission Electronics, 171–228. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56561-3_4.
Full textOhkawa, Yasushi. "CNT Field-Emission Cathode for Space Applications." In Nanostructured Carbon Electron Emitters and Their Applications, 315–30. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141990-15.
Full textMesyats, Gennady A., and Dimitri I. Proskurovsky. "Formation of New Emission Centers on the Cathode." In Pulsed Electrical Discharge in Vacuum, 159–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83698-5_8.
Full textBaumann, Peter K., and Robert J. Nemanich. "Electron Emission from CVD-Diamond Cold Cathodes." In Low-Pressure Synthetic Diamond, 281–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71992-9_15.
Full textFursey, Georgiy N. "Explosive Electron Emission of Carbon-Based Cathodes, and Applications." In Modern Developments in Vacuum Electron Sources, 529–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47291-7_11.
Full textLv, Wenmei, Lian Wang, Yiwei Lu, Dong Wang, Hui Wang, Yuxin Hao, Yuanpeng Zhang, Zeqi Sun, and Yongliang Tang. "Field Emission Properties of Wrinkled Multi-layer Graphene Cathodes." In Springer Proceedings in Physics, 280–84. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3913-4_54.
Full textConference papers on the topic "Emissive cathode"
Wang, L. "Research on Pulsed High-Current Secondary Electron Emission Cathode." In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627566.
Full textLin, Ming-Wei, Chin-Hsin Yeh, Ten-Chin Wen, and Tzung-Fang Guo. "Blue-emissive polymer light-emitting diodes through anode/cathode interfacial modification." In SPIE Organic Photonics + Electronics, edited by Franky So and Chihaya Adachi. SPIE, 2012. http://dx.doi.org/10.1117/12.929449.
Full textGallardo, Juan, Eduardo Ahedo, and Manuel Martinez-Sanchez. "Effects of an Intermediate Emissive Cathode on the Hall Thruster Discharge." In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-4112.
Full textLitvinov, E., M. Yalandin, V. Shpak, S. Rukin, G. Mesyats, S. Korovin, and V. Rostov. "Special Features of Emissive Characteristics of Cold Graphite Cathode with an Increase in the Repetition Rate of Nanosecond Accelerating Pulses." In 2005 IEEE Pulsed Power Conference. IEEE, 2005. http://dx.doi.org/10.1109/ppc.2005.300505.
Full textUdhiarto, Arief, Layina Maula Haryanto, Bobi Khoerun, and Djoko Hartanto. "Effect of anode and cathode workfunction on the operating voltage and luminance of a single emissive layer organic light emitting diode." In 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering. IEEE, 2017. http://dx.doi.org/10.1109/qir.2017.8168453.
Full textScheeline, Alexander, and M. A. Lovik. "Light scattering from particulates in high voltage sparks." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.tha9.
Full textMarrese-Reading, Colleen, Bill Mackie, Jay Polk, and Kevin Jensen. "Field emission cathodes for electrodynamic tethers: Identifying compatible cathode materials." In SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM- STAIF 2002. AIP, 2002. http://dx.doi.org/10.1063/1.1449748.
Full textRand, Lauren P., Ryne M. Waggoner, and John D. Williams. "Hollow Cathode With Low Work Function Electride Insert." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65785.
Full textKoval, N. N., V. N. Devyatkov, and M. S. Vorobyev. "GRID PLASMA CATHODES: HISTORY, CONDITION, PROSPECTS." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-34-41.
Full textAstrelin, V. T. "INFLUENCE OF ELECTRON BEAM SOURCE PARAMETERS ON ELECTRON EMISSION FROM PLASMA CATHODE." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-56-63.
Full textReports on the topic "Emissive cathode"
Lee, Bo. A knife-edge array field emission cathode. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/515571.
Full textThangaraj, Charles. Gated Field-Emission Cathode Radio-Frequency (RF) Gun. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1433861.
Full textSampayan, S. E., G. J. Caporaso, C. L. Holmes, E. J. Lauer, D. Prosnitz, D. O. Trimble, and G. A. Westenskow. Emission from ferroelectric cathodes. Revision 1. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10124125.
Full textOhlinger, Wayne L., and D. N. Hill. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada253846.
Full textOhlinger, Wayne L., and D. N. Hill. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada253847.
Full textJay L. Hirshfield. Rf Gun with High-Current Density Field Emission Cathode. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861455.
Full textRocca, J. J., B. Szapiro, and C. Murray. Electron Beam Generation by Electron Bombardment Induced Cathode Emission. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada218203.
Full textMelton, C., N. Pogue, and T. Watson. 1013209497 - Cathode Side-emission Mitigation for Linear Induction Accelerators (AA). Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1988208.
Full textGundersen, Martin. Pulsed Power Plasma Devices Based on Hollow and Super-Emissive Cathodes. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada303960.
Full textHirshfield, Jay L. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1058891.
Full text