Academic literature on the topic 'Emissions of pollutant'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Emissions of pollutant.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Emissions of pollutant"
Purwanto, Christine Prita. "INVENTARISASI EMISI SUMBER BERGERAK DI JALAN (ON ROAD) KOTA DENPASAR." ECOTROPHIC : Jurnal Ilmu Lingkungan (Journal of Environmental Science) 9, no. 1 (May 1, 2015): 1. http://dx.doi.org/10.24843/ejes.2015.v09.i01.p01.
Full textXue, Yifeng, Xizi Cao, Yi Ai, Kangli Xu, and Yichen Zhang. "Primary Air Pollutants Emissions Variation Characteristics and Future Control Strategies for Transportation Sector in Beijing, China." Sustainability 12, no. 10 (May 18, 2020): 4111. http://dx.doi.org/10.3390/su12104111.
Full textRačić, Nikola, Branko Lalić, Ivan Komar, Frane Vidović, and Ladislav Stazić. "Air Pollutant Emission Measurement." Pedagogika-Pedagogy 93, no. 6s (August 31, 2021): 132–40. http://dx.doi.org/10.53656/ped21-6s.11air.
Full textBEBKIEWICZ, Katarzyna, Zdzisław CHŁOPEK, Jakub LASOCKI, Krystian SZCZEPAŃSKI, and Magdalena ZIMAKOWSKA-LASKOWSKA. "Characteristics of pollutant emission from motor vehicles for the purposes of the Central Emission Database in Poland." Combustion Engines 177, no. 2 (May 1, 2019): 165–71. http://dx.doi.org/10.19206/ce-2019-229.
Full textLiu, Weijiang, and Mingze Du. "Is Technological Progress Selective for Multiple Pollutant Emissions?" International Journal of Environmental Research and Public Health 18, no. 17 (September 2, 2021): 9286. http://dx.doi.org/10.3390/ijerph18179286.
Full textBao, Shuanghui, Osamu Nishiura, Shinichiro Fujimori, Ken Oshiro, and Runsen Zhang. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO2 Emissions in Asia." Sustainability 12, no. 18 (September 16, 2020): 7621. http://dx.doi.org/10.3390/su12187621.
Full textWang, Bing, Yifan Wang, and Yuqing Zhao. "Collaborative Governance Mechanism of Climate Change and Air Pollution: Evidence from China." Sustainability 13, no. 12 (June 15, 2021): 6785. http://dx.doi.org/10.3390/su13126785.
Full textCheng, Qianwen, Manchun Li, Feixue Li, and Haoqing Tang. "Response of Global Air Pollutant Emissions to Climate Change and Its Potential Effects on Human Life Expectancy Loss." Sustainability 11, no. 13 (July 4, 2019): 3670. http://dx.doi.org/10.3390/su11133670.
Full textChen, Yuyi, Yunong Li, and Jie Yan. "Tracing Air Pollutant Emissions in China: Structural Decomposition and GVC Accounting." Sustainability 11, no. 9 (May 2, 2019): 2551. http://dx.doi.org/10.3390/su11092551.
Full textWu, Jian, Shaofei Kong, Fangqi Wu, Yi Cheng, Shurui Zheng, Qin Yan, Huang Zheng, et al. "Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation." Atmospheric Chemistry and Physics 18, no. 16 (August 16, 2018): 11623–46. http://dx.doi.org/10.5194/acp-18-11623-2018.
Full textDissertations / Theses on the topic "Emissions of pollutant"
Gonçalves, Cátia Vanessa Maio. "Contribution of biomass combustion to air pollutant emissions." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/8104.
Full textIn Portugal, it was estimated that around 1.95 Mton/year of wood is used in residential wood burning for heating and cooking. Additionally, in the last decades, burnt forest area has also been increasing. These combustions result in high levels of toxic air pollutants and a large perturbation of atmospheric chemistry, interfere with climate and have adverse effects on health. Accurate quantification of the amounts of trace gases and particulate matter emitted from residential wood burning, agriculture and garden waste burning and forest fires on a regional and global basis is essential for various purposes, including: the investigation of several atmospheric processes, the reporting of greenhouse gas emissions, and quantification of the air pollution sources that affect human health at regional scales. In Southern Europe, data on detailed emission factors from biomass burning are rather inexistent. Emission inventories and source apportionment, photochemical and climate change models use default values obtained for US and Northern Europe biofuels. Thus, it is desirable to use more specific locally available data. The objective of this study is to characterise and quantify the contribution of biomass combustion sources to atmospheric trace gases and aerosol concentrations more representative of the national reality. Laboratory (residential wood combustion) and field (agriculture/garden waste burning and experimental wildland fires) sampling experiments were carried out. In the laboratory, after the selection of the most representative wood species and combustion equipment in Portugal, a sampling program to determine gaseous and particulate matter emission rates was set up, including organic and inorganic aerosol composition. In the field, the smoke plumes from agriculture/garden waste and experimental wildland fires were sampled. The results of this study show that the combustion equipment and biofuel type used have an important role in the emission levels and composition. Significant differences between the use of traditional combustion equipment versus modern equipments were also observed. These differences are due to higher combustion efficiency of modern equipment, reflecting the smallest amount of particulate matter, organic carbon and carbon monoxide released. With regard to experimental wildland fires in shrub dominated areas, it was observed that the largest organic fraction in the samples studied was mainly composed by vegetation pyrolysis products. The major organic components in the smoke samples were pyrolysates of vegetation cuticles, mainly comprising steradienes and sterol derivatives, carbohydrates from the breakdown of cellulose, aliphatic lipids from vegetation waxes and methoxyphenols from the lignin thermal degradation. Despite being a banned practice in our country, agriculture/garden waste burning is actually quite common. To assess the particulate matter composition, the smoke from three different agriculture/garden residues have been sampled into 3 different size fractions (PM2.5, PM2.5-10 and PM>10). Despite distribution patterns of organic compounds in particulate matter varied among residues, the amounts of phenolics (polyphenol and guaiacyl derivatives) and organic acids were always predominant over other organic compounds in the organosoluble fraction of smoke. Among biomarkers, levoglucosan, β-sitosterol and phytol were detected in appreciable amounts in the smoke of all agriculture/garden residues. In addition, inositol may be considered as an eventual tracer for the smoke from potato haulm burning. It was shown that the prevailing ambient conditions (such as high humidity in the atmosphere) likely contributed to atmospheric processes (e.g. coagulation and hygroscopic growth), which influenced the particle size characteristics of the smoke tracers, shifting their distribution to larger diameters. An assessment of household biomass consumption was also made through a national scale survey. The information obtained with the survey combined with the databases on emission factors from the laboratory and field tests allowed us to estimate the pollutant amounts emitted in each Portuguese district. In addition to a likely contribution to the improvement of emission inventories, emission factors obtained for tracer compounds in this study can be applied in receptor models to assess the contribution of biomass burning to the levels of atmospheric aerosols and their constituents obtained in monitoring campaigns in Mediterranean Europe.
Em Portugal, estima-se que 1.95 Mton/ano de lenha sejam utilizadas na queima doméstica para aquecimento e confecção de alimentos. Em simultâneo, nas últimas décadas, a área de floresta ardida também tem vindo a aumentar. Estes tipos de combustão contribuem para a libertação de quantidades elevadas de poluentes tóxicos que perturbam a química da atmosfera, interferem com o clima e possuem efeitos nefastos na saúde. A quantificação rigorosa, à escala regional e global, das emissões de gases e matéria particulada associada à queima doméstica, queima de resíduos agrícolas e fogos florestais é fundamental para vários fins, nomeadamente na investigação dos diversos processos atmosféricos, na elaboração de relatórios de emissões de gases de estufa, e na quantificação de fontes de poluição atmosférica que afectam a saúde humana. No sul da Europa, as bases de dados com factores de emissão detalhados são praticamente inexistentes. Os modelos climáticos, a modelização fotoquímica, os inventários de emissões e os estudos de identificação de fontes emissoras utilizam valores típicos obtidos para biomassa norte-americana ou do norte da Europa. Assim, é conveniente utilizar valores mais específicos obtidos localmente. Este estudo teve como principal objectivo a caracterização e quantificação dos gases e aerossóis emitidos por fontes de queima de biomassa, englobando as espécies lenhosas mais representativas da realidade nacional. Foram realizadas experiências de amostragem em laboratório (queima doméstica) e no campo (queima de resíduos agrícolas/jardim e fogos florestais controlados). Em laboratório, após selecção das espécies de biomassa e dos equipamentos de queima mais representativos em Portugal, estabeleceu-se um programa de amostragem para determinar os factores de emissão de poluentes gasosos e particulados, incluindo a composição orgânica e inorgânica dos aerossóis. Ao nível do campo, efectuou-se a amostragem das plumas de fumo resultantes da queima de resíduos agrícolas/jardim e de fogos controlados numa área dominada por espécies arbustivas. Os resultados deste estudo mostram que o tipo de equipamento de combustão e o tipo de biomassa utilizados têm um papel importante nos níveis e composição dos poluentes emitidos. Diferenças significativas entre o uso de equipamentos de combustão tradicionais versus equipamentos modernos foram observadas. Estas diferenças devem-se à maior eficiência de combustão dos equipamentos modernos, reflectindo-se na menor quantidade de matéria particulada, carbono orgânico e monóxido de carbono libertados. No que diz respeito ao fogo controlado em áreas dominadas por espécies arbustivas observou-se que a fracção orgânica estudada nas amostras de fumo é composta essencialmente por produtos resultantes da pirólise da vegetação. Estes produtos são constituídos na sua maioria por esteredienos e derivados de esteróis, hidratos de carbono resultantes da quebra das moléculas de celulose, produtos alifáticos provenientes de ceras vegetais e metoxifenóis resultantes da degradação térmica da lenhina. A queima de resíduos agrícolas e de jardim, apesar de ser uma prática proibida no nosso país, é uma realidade bastante frequente. Para avaliar a composição das emissões de alguns tipos de resíduos foram recolhidas amostras de três tamanhos diferentes (PM2.5, PM2.5-10 and PM>10). Apesar de se poder observar uma grande variabilidade em termos de compostos orgânicos dependendo do tipo de resíduo queimado, os compostos fenólicos (derivados do polifenol e guaiacil) e os ácidos orgânicos foram sempre predominantes em relação à restante fracção orgânica. O levoglucosano, o β-sitosterol e o fitol foram os traçadores de queima de biomassa detectados em quantidades mais apreciáveis na generalidade dos resíduos agrícolas e de jardim. O inositol pode ser considerado um bom traçador para as emissões resultantes da queima de rama de batata. Observou-se que as condições ambientais (tais como valores elevados de humidade relativa na atmosfera) provavelmente contribuíram para processos de coagulação e de crescimento higroscópico que influenciaram as características dos traçadores de biomassa, mudando sua distribuição para diâmetros maiores. Foi também feita a avaliação do consumo doméstico de biomassa na forma de um inquérito aplicado à escala nacional. Os resultados obtidos, conjugados com as bases de dados sobre factores de emissão obtidas nos ensaios de queima laboratoriais, permitiram estimar as quantidades emitidas de vários poluentes em cada distrito de Portugal continental. Além de contribuir significativamente para o aperfeiçoamento dos inventários de emissões, os factores de emissão obtidos para vários compostos traçadores poderão ser aplicados em modelos no receptor de forma a avaliar a contribuição da queima de biomassa para os níveis de aerossóis atmosféricas e seus constituintes obtidos em campanhas de monitorização na Europa mediterrânea.
Rayfield, David. "Estimation of road traffic pollutant emissions in Greater Manchester." Thesis, Manchester Metropolitan University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364058.
Full textKassinis, Georgios Ioannis. "Towards an improved procedure for estimating industrial-pollutant emissions." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/67413.
Full textFranco, García Vicente. "Evaluation and improvement of road vehicle pollutant emission factors based on instantaneous emissions data processing." Doctoral thesis, Universitat Jaume I, 2014. http://hdl.handle.net/10803/146187.
Full textIntroduction
Current instrumentation makes it possible to measure vehicle emissions with high temporal resolution. But the increased resolution of emissions signals does not equate with increased accuracy. A prerequisite for the derivation of accurate emission factors from instantaneous vehicle emissions data is a fine allocation of measured mass emissions to recorded engine or vehicle states. This poses a technical challenge, because vehicle emission test facilities are not designed to support instantaneous emissions modelling, and they introduce distorting effects that compromise the instantaneous accuracy of the measured signals.
Methodology
These distorting effects can be compensated through a combination of physical modelling and data post-processing. The main original contribution of this dissertation is a novel methodology for the compensation of instantaneous emission signals, which is fully described herein. Whereas previous methodologies relied on systems theory modelling, and on comprehensive testing to model the sub-systems of the measurement setup, the alternative approach uses CO2 as a tracer of the distortions brought about by the measurement setup, which is modelled as a 'lump' system.
Conclusions The main benefits of this methodology are its low burden of experimental work and its flexibility. Furthermore, it has been fully implemented in the 'esto' software tool, which can perform the compensation of emission signals with minimal user intervention and speed up the creation of engine emission maps.
Ogunlaja, Olumuyiwa Omotola. "Measurement of Air Pollutant Emissions from a Confined Poultry Facility." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/392.
Full textUpton, Nigel Keith. "Algorithmic solution of air-pollutant cloud models." Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304572.
Full textGraville, Stephen Rhys. "Pollutant formation during the combustion of heavy liquid fuels." Thesis, University College London (University of London), 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262602.
Full textSakhrieh, Ahmad Hasan. "Reduction of pollutant emissions from high pressure flames using an electric field." Erlangen ESYTEC, Energie- und Systemtechnik GmbH, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?id=2959665&prov=M&dok_var=1&dok_ext=htm.
Full textTaylor, David. "Assessment of policies to reduce pollutant emissions from European Community freight transport." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246084.
Full textMashio, Tomoka 1973. "A study of ground-level air pollutant emissions from airport mobile sources." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/80650.
Full textBooks on the topic "Emissions of pollutant"
Stockton, Margie B. Criteria pollutant emission factors for the 1985 NAPAP emissions inventory. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1987.
Find full textStockton, Margie B. Criteria pollutant emission factors for the 1985 NAPAP emissions inventory. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1987.
Find full textE, Stelling John H., and Air and Energy Engineering Research Laboratory., eds. Criteria pollutant emission factors for the 1985 NAPAP emissions inventory: Project summary. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1987.
Find full textE, Stelling John H., and Air and Energy Engineering Research Laboratory, eds. Criteria pollutant emission factors for the 1985 NAPAP emissions inventory: Project summary. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1987.
Find full textUnited Nations. Economic and Social Commission for Asia and the Pacific. Task Force on Monitoring Air Pollutant Emissions, ed. Recommendations on methodologies of monitoring air pollutant emissions. New York: United Nations, 2002.
Find full textMeij, R. Air pollutant emissions from coal-fired power stations. Arnhem: N. V. Kema, 1986.
Find full textEnvironment, Alberta Alberta, ed. Alberta Environment summary report on 2004 NPRI air emissions. Edmonton: Alberta Environment, 2006.
Find full textKemme, Michael R. Reducing air pollutant emissions from solvent multi-base propellant production. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratory, 1999.
Find full textSung, Loh Poh. Computer simulation of pollutant and noise emissions from spark ignition engines. Manchester: UMIST, 1997.
Find full textG, Adams Rachel, Shareef Gunseli Sagun, and National Risk Management Research Laboratory (U.S.), eds. Criteria pollutant emissions from internal combustion engines in the natural gas industry. Washington, DC: The Agency, 1996.
Find full textBook chapters on the topic "Emissions of pollutant"
Połednik, Bernard, Sławomira Dumała, Łukasz Guz, and Adam Piotrowicz. "Pollutant characteristics and emissions." In Traffic-Related Air Pollution and Exposure in Urbanized Areas, 1–16. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003206149-1.
Full textRao, G. Amba Prasad, and T. Karthikeya Sharma. "Formation Mechanism of Pollutant Emissions." In Engine Emission Control Technologies, 85–127. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.4324/9780429322228-2.
Full textMcCormick, Warren. "Inventories of Air Pollutant Emissions." In Air Quality Management, 279–86. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7557-2_13.
Full textSturm, P. J. "Air Pollutant Emissions in Cities." In Air Quality in Cities, 31–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05217-4_4.
Full textBruno, Giuseppe, and Gennaro Improta. "Traffic Control under Pollutant Emissions Constraints." In Urban Traffic Networks, 187–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79641-8_7.
Full textThibodeaux, Louis J. "Theoretical Chemodynamic Models for Predicting Volatile Emissions to Air from Dredged Material Disposal." In Intermedia Pollutant Transport, 121–51. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0511-8_9.
Full textLezama, José Luis, Rodrigo Favela, Luis Miguel Galindo, María Eugenia Ibarrarán, Sergio Sánchez, Luisa T. Molina, Mario J. Molina, Stephen R. Connors, and Adrián Fernández Bremauntz. "Forces Driving Pollutant Emissions in the MCMA." In Air Quality in the Mexico Megacity, 61–104. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0454-1_3.
Full textChu, P., and D. B. Porcella. "Mercury Stack Emissions from U.S. Electric Utility Power Plants." In Mercury as a Global Pollutant, 135–44. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0153-0_16.
Full textConstantinou, E., X. A. Wu, and C. Seigneur. "Development and Application of a Reactive Plume Model for Mercury Emissions." In Mercury as a Global Pollutant, 325–35. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0153-0_36.
Full textGomes, J. F. P. "Monitoring of Pollutant Emissions Using Stack Sampling Techniques." In Industrial Air Pollution, 51–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76051-8_7.
Full textConference papers on the topic "Emissions of pollutant"
"Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project Summary." In Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39314.
Full text"MODELING AND ESTIMATION OF POLLUTANT EMISSIONS." In 5th International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001496102600263.
Full textCerdeira, R., C. Louro, L. Coelho, J. Garcia, C. Gouveia, P. J. Coelho, and T. Bertrand. "Traffic pollutant emissions in Barreiro city." In AIR POLLUTION 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/air070311.
Full text"Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project: Illinois Data." In Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39310.
Full text"Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project: Indiana Data." In Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39311.
Full text"Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project: Iowa Data." In Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39312.
Full text"Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project: Minnesota Data." In Air Pollutant Emissions from Confined Animal Buildings (APECAB) Project. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39313.
Full textVan Ruymbeke, Claire, Robert Joumard, Robert Vidon, and Christophe Pruvost. "Representativity of Exhaust Pollutant Concentrations for Measuring Pollutant Emissions from Passenger Cars." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950931.
Full textKoff, B. L. "Aircraft Gas Turbine Emissions Challenge." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-422.
Full textAndré, Michel, and Cristina Pronello. "Speed and Acceleration Impact on Pollutant Emissions." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961113.
Full textReports on the topic "Emissions of pollutant"
Maddalena, R. L., H. Destaillats, A. T. Hodgson, T. E. McKone, and C. Perino. Quantifying Pollutant Emissions from Office Equipment Phase IReport. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/918677.
Full textSeltzer, Michael D., Curtis Anderson, and Mark P. Nitzsche. A Continuous Emissions Monitor for Hazardous Air Pollutant Metals. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada607419.
Full textSharpless, Katherine S., and Stephen A. Wise. Measurements of indoor pollutant emissions from EPA Phase II wood stoves. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5575.
Full textMichael L. Fenger and Richard A. Winschel. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/896681.
Full textDr. Ala Qubbaj. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/810444.
Full textJeffries, H., K. Sexton, and J. Yu. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/924985.
Full textAla Qubbaj. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/833196.
Full textHasanbeigi, Ali, Nina Khanna, and Lynn Price. Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1372903.
Full textMa, Ding, Ali Hasanbeigi, and Wenying Chen. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1236781.
Full textKirchstetter, Thomas, Chelsea Preble, Odelle Hadley, and Ashok Gadgil. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1168602.
Full text