Academic literature on the topic 'Emergency gate closure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Emergency gate closure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Emergency gate closure"
Holder, Graham K. "Sault Ste. Marie Lock reconstruction: hydraulic model studies of the stop log emergency closure and lock filling and emptying systems." Canadian Journal of Civil Engineering 25, no. 6 (December 1, 1998): 1003–40. http://dx.doi.org/10.1139/l98-033.
Full textJohnson, Michael C., M. Leslie Boyd, and Dustin G. Mortensen. "Closure to “Stop Logs for Emergency Spillway Gate Dewatering” by Derek R. Freckleton, Michael C. Johnson, M. Leslie Boyd, and Dustin G. Mortensen." Journal of Hydraulic Engineering 138, no. 6 (June 2012): 578. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0000556.
Full textYap, Christopher Michael, Youki Kadobayashi, and Suguru Yamaguchi. "Conceptualizing Player-Side Emergence in Interactive Games." International Journal of Gaming and Computer-Mediated Simulations 7, no. 3 (July 2015): 1–21. http://dx.doi.org/10.4018/ijgcms.2015070101.
Full textNie, Yan-hua, Ling-min Liao, and Guo-bing Huang. "Research on emergency control mode of sluice gates in water delivery canal." MATEC Web of Conferences 246 (2018): 01005. http://dx.doi.org/10.1051/matecconf/201824601005.
Full textKong, Lingzhong, Xiaohui Lei, Qian Yang, Hezhen zheng, and Hao Wang. "Automatic feedback control algorithm for canal for a quick upstream water supply interruption in the case of an emergency." MATEC Web of Conferences 246 (2018): 02026. http://dx.doi.org/10.1051/matecconf/201824602026.
Full textKoken, Mete, Ismail Aydin, and Akis Sahin. "Application of computational fluid dynamics to predict hydrodynamic downpull on high head gates." Engineering Computations 34, no. 4 (June 12, 2017): 1191–203. http://dx.doi.org/10.1108/ec-04-2016-0137.
Full textFanani, Ahwan. "Al-Suyutî Dan Kontroversi Strata Ijtihâd: Telaah atas Klaim Mujtahid Mutlaq al-Suyutî dan Landasan Normatifnya." ISLAMICA: Jurnal Studi Keislaman 2, no. 2 (January 22, 2014): 109. http://dx.doi.org/10.15642/islamica.2008.2.2.109-123.
Full textFaurot-Daniels, Ellen R., Julie T. Yamamoto, Randy H. Imai, and Susan A. Klasing. "California Marine Oil Spill Fisheries Closure: Key Processes of the Department of Fish and Game (DFG), Office of Spill Prevention and Response (OSPR), During a Fisheries Closure Event." International Oil Spill Conference Proceedings 2011, no. 1 (March 1, 2011): abs101. http://dx.doi.org/10.7901/2169-3358-2011-1-101.
Full textZhang, Zi-Xin, Liang Wang, and Ying-Ming Wang. "An Emergency Decision Making Method for Different Situation Response Based on Game Theory and Prospect Theory." Symmetry 10, no. 10 (October 11, 2018): 476. http://dx.doi.org/10.3390/sym10100476.
Full textBrusotti, Marco. "“What belongs to a language game is a whole culture.”." Wittgenstein-Studien 9, no. 1 (February 21, 2018): 51–73. http://dx.doi.org/10.1515/witt-2018-0005.
Full textDissertations / Theses on the topic "Emergency gate closure"
Pulle, Doreen. "Investigation of the sudden air release up the airshaft of the Berg river dam bottom outlet structure during emergency gate closure using numerical modelling methods." Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17798.
Full textENGLISH ABSTRACT: The design of the Berg River Dam bottom outlet structure with multitude draw offs was based on various hydraulic model tests on a 1:40 model that was used for original design and a 1 in 20 physical model which was used to produce the final design. These tests indicated no foreseeable malfunction and showed that the 1.8 m² air vent would provide sufficient air flow to minimize the negative pressures that would develop behind the emergency gate during its closure or opening. However, during the first trial commissioning of the dam outlet structure, air was unexpectedly expelled through the air vent at a velocity so high that the recta-grids covering the shaft were blown to a height of over 3m while the gate was closing at a rate of approximately 0.0035 m/s. The air flow velocity up the air vent was approximately 45m/s and occurred when the gate was approximately 78% closed. A brief report on the test indicated that the source of air may have been a vortex formation in the vertical intake tower upstream of the emergency gate entraining air which was drawn through the gate and released up the air vent. The purpose of this research was to utilize 3-dimensional numerical modelling employing Computational Fluid Dynamics (CFD) to carry out numerical simulations to investigate the above mentioned malfunction and thereby establishing whether the given hypotheses for the malfunction were valid. For purposes of validating the CFD modelling, a 1:14.066 physical model was constructed at the University of Stellenbosch hydraulics laboratory. The 3-dimensional CFD model was used to investigate the said incident, using steady state simulations that were run for various openings of the emergency gate. The intenetion was to establish whether there was an emergency gate opening which would reproduce the air release phenomenon. The results obtained from the numerical model showed a similar trend to those of the physical model although there were differences in values. Neither model, showed a sudden release of air through the vent. It was concluded that the unsteady air-water flow out of the air vent may have been caused by the variation of the discharge with time causing unbalanced negative pressures in the outlet structure. Therefore, it was recommended that further CFD transient simulations should be undertaken incorporating a moving emergency gate.
AFRIKAANSE OPSOMMING: Die ontwerp van die bodemuitlaat van die Bergrivierdam met multivlakuitlate is gebaseer op verskeie hidrouliese modeltoetse op a 1:40 fisiese model wat vir die oorspronklike ontwerp gebruik is, asook „n 1 tot 20 fisisiese model wat gebruik is om die finale ontwerp te lewer in 2003. Hierdie toetse het geen beduidende afwykings aangedui nie en het bewys dat die 1.8mª lugskag voldoende lugvloei sal toevoer om die negatiewe drukking wat stroomaf van die noodsluis ontstaan gedurende die sluitingsproses, sal minimaliseer. Gedurende die inlywingtoets in die veld in 2008 van die noodsluis, is lug onverwags teen 'n hoë snelheid deur die lugskag opwaarts uitgelaat, wat die rooster wat die skag beskerm teen 'n hoogte van oor 3m geblaas het terwyl die sluis teen 'n tempo van ongeveer 0.0035 m/s toegemaak het. Die lugvloeisnelheid in die lugskag was ongeveer 45m/s en het plaasgevind toe die sluis ongeveer 78% toe was. 'n Kort verslag oor die veldtoets dui aan dat die bron van die lug dalk werwelvorming in die vertikale inlaattoring stroomop van die noodsluis was, met lug wat deur die sluis getrek was en opwaarts in die lugskag vrygelaat is. Die doel van die navorsing was om drie-dimensionele numeriese modellering met rekenaar vloeidinamika (RVD) te benut om numeriese similasies uit te voer om die bogenoemde abnormale werking van die lugskag te ondersoek en daarmee vas te stel of die gegewe aannames van krag is. Vir die doel om die RVD modellering te verifieer is 'n 1:14.066 fisiese model gebou by die Universiteit van Stellenbosch se waterlaboratorium. Die 3-dimensionele RVD model is gebruik om die genoemde probleem te ondersoek, deur stasionêre simulasies wat vir verskillende openinge van die noodsluis geloop is te gebruik. Die doel was om vas te stel of daar 'n spesifieke noodsluisopening is wat die vrylating van die lug veroorsaak het. Die uitslag verkry deur die numeriese model het dieselfde windrigting soos die van die fisiese model gewys, alhoewel daar verskille in die waardes was. Nie een van die modelle het .n skielike vrystelling van lug deur die lugskag gewys nie. 'n Afleiding is gemaak dat die nie stasionêre lug-water vloei uit die lugskag moontlik veroorsaak was deur die verandering van die vloei met tyd veroorsaak deur ongebalanseerde negatiewe druk in die uitlaatstruktuur. Daarom is daar voorgestel dat verdere RVD nie stasionêre simulasies gedoen word met 'n bewegende noodsluis.
Málek, Miroslav. "Nestacionární CFD simulace toku uzavírajícím se tabulovým uzávěrem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444633.
Full textBooks on the topic "Emergency gate closure"
United States. Bureau of Reclamation., ed. Emergency closures of guard gates with unbalanced heads: High-pressure slide gates. Denver, Colo: U.S. Bureau of Reclamation, 1993.
Find full textBook chapters on the topic "Emergency gate closure"
Piecka, Debra C. Burkey, and Manetta Calinger. "Using a Live Simulation to Teach Human Anatomy and the Diagnostic Process to High School Students." In Advances in Game-Based Learning, 307–25. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9629-7.ch015.
Full textDavies, Peter N. "A Guide to the Emergence of Japan's Modern Shipping Industries." In International Merchant Shipping in the Nineteenth and Twentieth Centuries. Liverpool University Press, 2008. http://dx.doi.org/10.5949/liverpool/9780973893472.003.0004.
Full textHillewaert, Sarah. "Senses of Morality and Morality of the Senses." In Morality at the Margins, 191–232. Fordham University Press, 2019. http://dx.doi.org/10.5422/fordham/9780823286515.003.0009.
Full textHallam, Tony. "The evolutionary significance of mass extinctions." In Catastrophes and Lesser Calamities. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198524977.003.0013.
Full textMitchell, Peter. "The Triumph of the Mule." In The Donkey in Human History. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198749233.003.0012.
Full textConference papers on the topic "Emergency gate closure"
Schohl, Gerald A. "Transient Analyses for Great Falls Hydro Plant." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45258.
Full textEverline, Chester, Gregory Gromov, Igor Lola, Stanislav Sholomitsky, Victor Mukoid, Steve Meyer, and Alexander Sevbo. "Assessment of Potential Negative Impacts of the Main Gate Valve Closure Under Loss of Coolant Accident at VVER-440 Model 213 Nuclear Power Plant." In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49342.
Full textKing, Graeme, Dan Hoang, Victoria Stranzinger, and David Thom. "Hot Bitumen Pipeline Valve Replacement: Pipe Prop Anchoring Design With Mechanical Tensioning." In 2020 13th International Pipeline Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ipc2020-9391.
Full textMoussafir, J., C. Olry, M. Nibart, A. Albergel, P. Armand, C. Duchenne, F. Mahé, L. Thobois, S. Loaëc, and O. Oldrini. "AIRCITY: A Very High Resolution Atmospheric Dispersion Modeling System for Paris." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21820.
Full text