Academic literature on the topic 'Embryonic development'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Embryonic development.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Embryonic development"

1

Khairy, Khaled, and Philipp J. Keller. "Reconstructing embryonic development." genesis 49, no. 7 (January 24, 2011): 488–513. http://dx.doi.org/10.1002/dvg.20698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spina, Elena, and Pamela Cowin. "Embryonic mammary gland development." Seminars in Cell & Developmental Biology 114 (June 2021): 83–92. http://dx.doi.org/10.1016/j.semcdb.2020.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dahlen, Carl R., Pawel P. Borowicz, Alison K. Ward, Joel S. Caton, Marta Czernik, Luca Palazzese, Pasqualino Loi, and Lawrence P. Reynolds. "Programming of Embryonic Development." International Journal of Molecular Sciences 22, no. 21 (October 28, 2021): 11668. http://dx.doi.org/10.3390/ijms222111668.

Full text
Abstract:
Assisted reproductive techniques (ART) and parental nutritional status have profound effects on embryonic/fetal and placental development, which are probably mediated via “programming” of gene expression, as reflected by changes in their epigenetic landscape. Such epigenetic changes may underlie programming of growth, development, and function of fetal organs later in pregnancy and the offspring postnatally, and potentially lead to long-term changes in organ structure and function in the offspring as adults. This latter concept has been termed developmental origins of health and disease (DOHaD), or simply developmental programming, which has emerged as a major health issue in animals and humans because it is associated with an increased risk of non-communicable diseases in the offspring, including metabolic, behavioral, and reproductive dysfunction. In this review, we will briefly introduce the concept of developmental programming and its relationship to epigenetics. We will then discuss evidence that ART and periconceptual maternal and paternal nutrition may lead to epigenetic alterations very early in pregnancy, and how each pregnancy experiences developmental programming based on signals received by and from the dam. Lastly, we will discuss current research on strategies designed to overcome or minimize the negative consequences or, conversely, to maximize the positive aspects of developmental programming.
APA, Harvard, Vancouver, ISO, and other styles
4

Komiya, Yuko, Li-Ting Su, Hsiang-Chin Chen, Raymond Habas, and Loren W. Runnels. "Magnesium and embryonic development." Magnesium Research 27, no. 1 (January 2014): 1–8. http://dx.doi.org/10.1684/mrh.2014.0356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ferdous, Anwarul, and Joseph A. Hill. "FoxO1 in embryonic development." Transcription 3, no. 5 (September 2012): 221–25. http://dx.doi.org/10.4161/trns.21051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schubert, Michael, and Yann Gibert. "Retinoids in Embryonic Development." Biomolecules 10, no. 9 (September 4, 2020): 1278. http://dx.doi.org/10.3390/biom10091278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tzschentke, Barbara, and Marion Rumpf. "Embryonic development of endothermy." Respiratory Physiology & Neurobiology 178, no. 1 (August 2011): 97–107. http://dx.doi.org/10.1016/j.resp.2011.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scott Baldwin, H. "Early embryonic vascular development." Cardiovascular Research 31, supp1 (February 1, 1996): E34—E45. http://dx.doi.org/10.1016/s0008-6363(95)00215-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beloussov, L. V., N. N. Louchinskaia, and A. S. Yermakov. "Morphomechanics of embryonic development." Journal of Biomechanics 31 (July 1998): 172. http://dx.doi.org/10.1016/s0021-9290(98)80346-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moolenaar, Wouter H., Anna J. S. Houben, Shyh-Jye Lee, and Laurens A. van Meeteren. "Autotaxin in embryonic development." Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1831, no. 1 (January 2013): 13–19. http://dx.doi.org/10.1016/j.bbalip.2012.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Embryonic development"

1

Salanga, Matthew Charles. "EMBRYONIC VASCULAR DEVELOPMENT." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/203435.

Full text
Abstract:
The formation of the embryonic vasculature is essential for life. The components driving this process are well conserved across vertebrate species. At the core of vascular development is the specification of endothelial precursor cells from nascent mesoderm. Transcription factors of the ETS family are important regulators of endothelial specification. In this document we characterize the role of the ETS transcription factors, ETV2, during embryonic vascular development.Expression analysis shows that Etv2 is highly expressed in hematopoietic and endothelial precursor cells in the Xenopus embryo. In gain-of-function experiments, ETV2 is sufficient to activate ectopic expression of vascular endothelial markers. In addition, ETV2 activated expression of hematopoietic genes representing the myeloid but not the erythroid lineage. Loss-of-function studies indicate that ETV2 is required for expression of all endothelial markers examined. However, knockdown of ETV2 has no detectable effects on expression of either myeloid or erythroid markers. This contrasts with studies in mouse and zebrafish where ETV2 is required for development of the myeloid lineage. Our studies confirm an essential role for ETV2 in endothelial development, but also reveal important differences in hematopoietic development between organisms.Although ETV2 is a pivotal molecule in development it remains unidentified in the chicken genome. We hypothesize that chicken Etv2 is expressed in the early Gallus embryo, and is necessary for endothelial specification consistent with its role in other species. To test this hypothesis we attempted to amplify Etv2 transcripts from Gallus embryos using degenerate PCR. Disappointingly this strategy did not reveal a putative Etv2 candidate. However, some important findings were uncovered, including the cloning of a previously uncharacterized Gallus ETS protein, SPDEF. Additionally the identification of an annotation error mis-identifying Ets gene "Erf" as "Etv3" (also an Ets gene) provided details on gene arrangement previously unknown. The workflow described could be used in future studies for the identification of other members of gene families that exhibit gaps, keeping in mind the goal of the study and the limitations of each technology.
APA, Harvard, Vancouver, ISO, and other styles
2

Harrison, Sarah Ellys. "Utilising embryonic and extra-embryonic stem cells to model early mammalian embryogenesis in vitro." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275424.

Full text
Abstract:
Successful mammalian development to term requires that embryonic and extra-embryonic tissues communicate and grow in coordination, to form the body. After implanting into the uterus, the mouse embryo is comprised of three cell lineages: first, the embryonic epiblast (EPI) that forms the embryo proper, second, the extra-embryonic ectoderm (ExE) which contributes to the foetal portion of the placenta, and third, the visceral endoderm (VE) that contributes to the yolk sac. These three tissues form a characteristic ‘egg-cylinder’ structure, which allows signals to be exchanged between them and sets the stage for body axis establishment and subsequent tissue patterning. The mechanisms underlying this process are difficult to study in vivo because a different genetically manipulated mouse line must be generated to investigate each factor involved. This difficulty has prompted efforts to model mammalian embryogenesis in vitro, using cell lines, which are more amenable to genetic manipulation. The pluripotent state of the EPI can be captured in vitro as mammalian embryonic stem cells (ESCs). Although mouse ESCs have been shown to contribute to all adult tissues in chimeric embryos, they cannot undertake embryogenesis when allowed to differentiate in culture. Previous studies have shown that ESCs formed into three-dimensional (3D) aggregates, called embryoid bodies, can become patterned and express genes associated with early tissue differentiation. However, embryoid bodies cannot recapitulate embryonic architecture and therefore may not accurately reflect what happens in the embryo. In this study, a new technique was developed to model early mouse development which is more faithful to the embryo. ESCs were co-cultured with stem cells derived from the ExE, termed trophoblast stem cells (TSCs), embedded within extracellular matrix (ECM). These culture conditions lead to the self-assembly of embryo-like structures with similar architecture to the mouse egg cylinder. They were comprised of an embryonic compartment derived from ESCs abutting an extra-embryonic compartment derived from TSCs, and hence were named ‘ETS-embryos’. These structures developed a continuous cavity at their centre, which formed via a similar sequence of events to those that lead to pro-amniotic cavity formation in the mouse embryo, and required active Nodal/Activin signalling. After cavitation, ‘ETS-embryos’ developed regionalised mesodermal tissue and primordial germ cell-like cells originating at the boundary between embryonic and extra-embryonic compartments. Inhibitor studies revealed that this occurred in response to endogenous Wnt and BMP signalling, pathways which also govern these tissue specification events in the early mouse embryo. To demonstrate that ‘ETS-embryos’ were comparable to mouse embryos at the global transcriptional level, RNA-sequencing was then performed on different tissue regions of ‘ETS-embryos’ and the resulting transcriptomes were compared to datasets from mouse embryos. These data showed that ‘ETS-embryos’ were highly similar to mouse embryos at post-implantation stages in their overall gene expression patterns. Taken together, these results indicate that ‘ETS-embryos’ are an accurate in vitro model of mammalian embryogenesis, which can be used to complement studies undertaken in vivo to investigate early development.
APA, Harvard, Vancouver, ISO, and other styles
3

Losa, Llabata Marta. "Gene regulation in embryonic development." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/gene-regulation-in-embryonic-development(8a9efb79-1ca9-409e-89b9-9d66213e593f).html.

Full text
Abstract:
Branchial arches (BAs) are a series of transient structures that develop on the ventro-lateral surface of the head in vertebrate embryos. BAs initially appear as a series of similar segments; as development proceeds each BA will contribute to different structures. Here, it was investigated the transcriptional mechanisms that instruct the different fates of the BAs in development. Initially, each BA contains a blood vessel, known as aortic arch (AA) artery, that connects the dorsal aorta with the heart. Remodelling of the AAs is crucial to form the adult heart circulation. This process leads to regression of the anterior AAs, running though the first and second BAs (BA1 and BA2), and persistence of the AAs contained in more posterior BAs (PBA). To identify the mechanisms that control remodelling of the AAs, we compared the transcriptomes and epigenomic landscapes of different BAs. Using RNA-seq and H3K27Ac ChIP-seq, we uncovered the activation of a vascular smooth muscle cell (VSMC) differentiation transcriptional program exclusively in the PBAs (and not in BA1/BA2). In support of this finding, we show that VSMC differentiation occurs specifically in the PBAs, but not BA1-2 in mouse embryonic development. Despite the absence of VSMC differentiation in developing BA1-2, cells harvested from these tissues reveal a spontaneous tendency to differentiate towards VSMC fate when grown in vitro, and activate several VSMC-specific genes (Myocd, Acta2, Tagln, Jag1). Together, our results suggest that forming VSMCs is a key process for the persistence of AAs. We also showed that cells derived from all BAs have the potential to differentiate to VSMCs in vitro. However, only cells in the PBAs differentiate to VSMCs in vivo, resulting in the maintenance of posterior AAs. In this study, we also uncovered a novel transcriptional principle that specifies the fate of BA2. Using ChIP-seq, we found that binding of Meis transcription factors establish a ground pattern in the BAs. Hoxa2, which specifies BA2 identity, selects a subset of Meis-bound sites. Meis binding is strongly increased at these sites, which coincide with active enhancers, linked to genes highly expressed in the BA2 and regulated by Hoxa2. Thus, Hoxa2 modifies a ground state binding of Meis to instruct segment-specific transcriptional programs.
APA, Harvard, Vancouver, ISO, and other styles
4

Vaahtokari, Anne. "Molecular mechanisms in embryonic tooth development." Helsinki : Dept. of Dentistry, Division of Pedodontics and Orthodontics, Institute of Biotechnology and Dept. of Biosciences, Division of Biochemistry, University of Helsinki, 1996. http://catalog.hathitrust.org/api/volumes/oclc/35253532.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shivji, Nadia. "GnRH neuron migration during embryonic development." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jörg, David Josef. "Genetic Oscillations and Vertebrate Embryonic Development." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159034.

Full text
Abstract:
Recurrent processes are a general feature of living systems, from the cell cycle to circadian day-night rhythms to hibernation and flowering cycles. During development and life, numerous recurrent processes are controlled by genetic oscillators, a specific class of genetic regulatory networks that generates oscillations in the level of gene products. A vital mechanism controlled by genetic oscillators is the rhythmic and sequential segmentation of the elongating body axis of vertebrate embryos. During this process, a large collection of coupled genetic oscillators gives rise to spatio-temporal wave patterns of oscillating gene expression at tissue level, forming a dynamic prepattern for the precursors of the vertebrae. While such systems of genetic oscillators have been studied extensively over the past years, many fundamental questions about their collective behavior remain unanswered. In this thesis, we study the behavior and the properties of genetic oscillators from the single oscillator scale to the complex pattern forming system involved in vertebrate segmentation. Genetic oscillators are subject to fluctuations because of the stochastic nature of gene expression. To study the effects of noisy biochemical coupling on genetic oscillators, we propose a theory in which both the internal dynamics of the oscillators as well as the coupling process are inherently stochastic. We find that stochastic coupling of oscillators profoundly affects their precision and synchronization properties, key features for their viability as biological pacemakers. Moreover, stochasticity introduces phenomena not known from deterministic systems, such as stochastic switching between different modes of synchrony. During vertebrate segmentation, genetic oscillators play a key role in establishing a segmental prepattern on tissue scale. We study the spatio-temporal patterns of oscillating gene expression using a continuum theory of coupled phase oscillators. We investigate the effects of different biologically relevant factors such as delayed coupling due to complex signaling processes, local tissue growth, and tissue shortening on pattern formation and segmentation. We find that the decreasing tissue length induces a Doppler effect that contributes to the rate of segment formation in a hitherto unanticipated way. Comparison of our theoretical findings with experimental data reveals the occurrence of such a Doppler effect in vivo. To this end, we develop quantification methods for the spatio-temporal patterns of gene expression in developing zebrafish embryos. On a cellular level, tissues have a discrete structure. To study the interplay of cellular processes like cell division and random cell movement with pattern formation, we go beyond the coarse-grained continuum theories and develop a three-dimensional cell-based model of vertebrate segmentation, in which the dynamics of the segmenting tissue emerges from the collective behavior of individual cells. We show that this model is able to describe tissue formation and segmentation in a self-organized way. It provides the first step of theoretically describing pattern formation and tissue dynamics during vertebrate segmentation in a unified framework involving a three-dimensional tissue with cells as distinct mechanical entities. Finally, we study the synchronization dynamics of generic oscillator systems whose coupling is subject to phase shifts and time delays. Such phase shifts and time delays are induced by complex signaling processes as found, e.g., between genetic oscillators. We show how phase shifts and coupling delays can alter the synchronization dynamics while leaving the collective frequency of the synchronized oscillators invariant. We find that in globally coupled systems, fastest synchronization occurs for non-vanishing coupling delays while in spatially extended systems, fastest synchronization can occur on length scales larger than the coupling range, giving rise to novel synchronization scenarios. Beyond their potential relevance for biological systems, these results have implications for general oscillator systems, e.g., in physics and engineering. In summary, we use discrete and continuous theories of genetic oscillators to study their dynamic behavior, comparing our theoretical results to experimental data where available. We cover a wide range of different topics, contributing to the general understanding of genetic oscillators and synchronization and revealing a hitherto unknown mechanism regulating the timing of embryonic pattern formation.
APA, Harvard, Vancouver, ISO, and other styles
7

Abdullah, A. R. "Mathematical modelling of embryonic tissue development." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3028456/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cheung, Kwok Kuen. "Purinergic signaling during rat embryonic development." Thesis, University College London (University of London), 2004. http://discovery.ucl.ac.uk/1446895/.

Full text
Abstract:
Adenosine 5'-triphosphate (ATP) has been shown to be an important extracellular signaling molecule that mediates various physiological activities via the P2 (P2X and P2Y) receptors. However, information on the expression patterns of the P2 receptors during mammalian embryogenesis is limited. We therefore examined the expression patterns of different P2 receptor subtypes in rat embryos. In the hindbrain neural tube, the P2X3 receptor was transiently expressed at embryonic day E11 in the cranial motor neurons and the outgrowing axons. ATP significantly inhibited neurite outgrowth from neural tube explants. P2X3 receptors were also prominently expressed in sensory ganglia at this early stage and were coexpressed with P2X2 receptors in El6.5 embryos. Other P2X receptor subtypes were observed in different brain regions such as subventricular zones, the site of postnatal neurogenesis. In addition, the P2Y receptor expression was detected in the somites and subsequently in the developing skeletal muscle but was downregulated as development proceeded. While the P2Y1 receptor was no longer expressed in the adult skeletal muscle, the expression of P2Y2 receptor was present, although restricted in the satellite cells and the P2Y4 receptor showed reduced expression in adult skeletal muscle. Likewise, the expression of the P2Y receptors was initially expressed throughout the myocardium (El2) but was gradually restricted to the trabeculated myocardium (El4-18). Studies on Ca2+ influx showed that particular P2 receptor subtypes of P2X2, P2X4, P2Y1, P2Y2, P2Y4 and P2Y6 receptors responded to nucleotides in E14 cardiomyocytes. P2X7 receptor expression was detected in developing pancreatic islet cells and later coexpressed with glucagon in ?-cells. In addition, transient expression of the P2X7 receptor in insulin-expressing cells was observed in the embryonic, but not in adult, islet cells. Together, the results indicated that widespread and dynamic expression of P2 receptors was found in the three-germ layer-derived embryonic tissues, particularly in some transient embryonic structures during development, which suggested they may be important in embryonic organogenesis.
APA, Harvard, Vancouver, ISO, and other styles
9

Meadows, Stryder. "Transcriptional Regulation In Early Embryonic Development." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/194034.

Full text
Abstract:
Transcription factors are a class of proteins that function to regulate the expression of genes. During early development, their role is to provide the precise order of activation or suppression of genes that are required for the formation of an embryo. A major goal of a developing embryo is to establish a complete body plan that includes the development of all of the organ systems. Thus it is paramount that the correct genes are switched on or off to insure that all organ systems form.Our studies investigate the role of several transcription factors involved in coordinating the expression of genes that are essential for the development of skeletal muscle and blood vessels.In the formation of skeletal muscle, a class of transcription factors called the myogenic regulatory factors (MRFs) is known to promote the induction of the structural genes that comprise the skeletal muscle. In fact, the MRF family member, MyoD, has been termed the "master regulator" of skeletal muscle gene expression. However, a recently discovered transcription factor, MASTR, has been suggested to play a role in skeletal muscle development. Our studies of MASTR are the first to demonstrate that, in vivo, MASTR is necessary and sufficient to activate genes involved in the formation of skeletal muscle. Furthermore, MASTR cooperates with MRFs to induce skeletal muscle genes and therefore places MASTR among a group of transcription factors, such as the MRFs, that are essential regulators of skeletal muscle development.In vascular development, the Flk-1 gene is critical to the formation of blood vessels. Mice lacking Flk-1 do not produce angioblasts, the precursor cells that give rise to the endothelial cells that make up blood vessels. In our efforts to understand the regulation of this important vascular gene, we have discovered a new function of the Kruppel-like transcription factor 2 (KLF2) to activate Flk-1 expression. Moreover, we have identified a new Ets transcription factor (Etsrp) capable of inducing Flk-1 expression alone and in cooperation with KLF2. These findings uncover a novel mechanism by which KLF2 and Etsrp act to promote the expression of Flk-1 during embryonic vascular development.
APA, Harvard, Vancouver, ISO, and other styles
10

Sneesby, Kyra, and n/a. "Gene Expression in Embryonic Chick Heart Development." Griffith University. School of Biomolecular and Biomedical Science, 2003. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030924.153514.

Full text
Abstract:
Establishment of the biochemical and molecular nature of cardiac development is essential for us to understand the relationship between genetic and morphological aspects of heart formation. The molecular mechanisms that underly heart development are still not clearly defined. To address this issue we have used two approaches to identify genes involved in early chick cardiac development. Differential display previously conducted in our laboratory led to the identification of two gene fragments differentially expressed in the heart that are further described in this thesis. The full-length cDNA sequence of both eukaryotic translation initiation factor-2b (eIF-2b) and NADH cytochrome b5 reductase (b5R) were isolated using library screening. The upreglation of these genes during heart development is expected given the heart is the first functional organ to form in vertebrates and protein synthesis and cell metabolism at this stage of development is maximal. Limitations in the differential display approach led to the development and optimisation of a subtractive hybridisation approach for use with small amounts of cells or tissue. To focus on cardiac gene expression during the initial phases of heart development, subtractive hybridization was performed between the cardiogenic lateral plate mesoderm of Hamburger and Hamilton stage 4 embryos and the heart primordia of stage 9 embryos. Of the 87 independent clones identified by this procedure, 59 matched known sequences with high homology, 25 matched unknown expressed sequence tag (EST) sequences with high homology, and 3 did not match any known sequence on the database. Known genes isolated included those involved in transcription, translation, cell signalling, RNA processing, and energy production. Two of these genes, high mobility group phosphoprotein A2 (HMGA2) and C1-20C, an unknown gene, were chosen for further characterisation. The role of each gene in early chick heart development and indeed development in general, was addressed using techniques such as in situ hybridisation, transfection analysis, in ovo electroporation and RNAi. HMGA2 is a nuclear phosphoprotein commonly referred to as an architectural transcription factor due to its ability to modulate DNA conformation. In keeping with this function, HMGA2/GFP fusion protein was shown to localise to the nucleus and in particular, the nucleolus. In situ hybridisation analysis suggested a role for HMGA2 in heart and somite development. HMGA2 expression was first detected at HH stage 5 in the lateral plate mesoderm, a region synonymous with cells specified to the cardiac fate. HMGA2 was also strongly expressed in the presomitic segmental plate mesoderm and as somites developed from the segmental plate mesoderm, the expression of HMGA2 showed an increasingly more restricted domain corresponding to the level of maturation of the somite. Restriction of HMGA2 expression was first detected in the dorsal region of the epithelial somite, then the dorsomedial lip of the dermomyotome, and finally the migrating epaxial myotome cells. The novel intronless gene, C1-20C, predicts a protein of 148 amino acids containing a putative zinc finger binding domain and prenyl binding motif. Zinc binding assays showed that the zinc finger domain of C1-20C/MBP fusion protein bound over six times the quantity of zinc compared to MBP alone, although not in a 1:1 stoichiometric molar ratio. C1-20C/GFP fusion protein was shown to localise to as yet unidentified intracellular cytoplasmic vesicular compartments. These compartments did not colocalise with the endosome/lysosome pathway, aparently ruling out a role for C1-20C in protein trafficking, recycling or degradation. Expression of C1-20C in the chick embryo suggests a possible role in heart and notochord development and preliminary results using siRNA suggest that C1-20C is involved in normal heart looping.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Embryonic development"

1

Spemann, Hans. Embryonic development and induction. New York: Garland Pub., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

George, Lefevre, ed. Introduction to embryonic development. 3rd ed. Boston: Allyn and Bacon, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ormestad, Mattias. FoxF genes in embryonic development. Göteborg: Department of Cell and Molecular Biology, Göteborg University, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hennig, Wolfgang, ed. Early Embryonic Development of Animals. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-47191-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

S, Baranov V., ed. Cytogenetics of mammalian embryonic development. Oxford: Clarendon Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Janet, Rossant, and Pedersen Roger A, eds. Experimentalapproaches to mammalian embryonic development. Cambridge: Cambridge University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Campos-Ortega, José A., and Volker Hartenstein. The Embryonic Development of Drosophila melanogaster. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02454-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Campos-Ortega, José A., and Volker Hartenstein. The Embryonic Development of Drosophila melanogaster. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22489-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kavlock, Robert J., and George P. Daston, eds. Drug Toxicity in Embryonic Development I. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60445-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kavlock, Robert J., and George P. Daston, eds. Drug Toxicity in Embryonic Development II. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60447-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Embryonic development"

1

Gillott, Cedric. "Embryonic Development." In Entomology, 569–94. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-4380-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dancygier, Henryk. "Embryonic Development." In Clinical Hepatology, 7–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-93842-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weis, Judith S. "Embryonic Development." In Physiological, Developmental and Behavioral Effects of Marine Pollution, 169–214. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6949-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Punzo, Fred. "Embryonic Development." In Adaptations of Desert Organisms, 15–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04090-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dettlaff, Tatiana A., Anna S. Ginsburg, and Olga I. Schmalhausen. "Embryonic Development." In Sturgeon Fishes, 49–154. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77057-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baets, Kenneth De, Neil H. Landman, and Kazushige Tanabe. "Ammonoid Embryonic Development." In Topics in Geobiology, 113–205. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9630-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Landman, Neil H., Kazushige Tanabe, and Yasunari Shigeta. "Ammonoid Embryonic Development." In Topics in Geobiology, 343–405. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9153-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hall, Brian K. "Homology and Embryonic Development." In Evolutionary Biology, 1–37. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1847-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alvarez, Laura Macias, Jesus Revuelta-Cervantes, and Isabel Dominguez. "CK2 in Embryonic Development." In Protein Kinase CK2, 129–68. Oxford, UK: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118482490.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kuchling, Gerald. "Eggs and Embryonic Development." In The Reproductive Biology of the Chelonia, 141–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-80414-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Embryonic development"

1

Carraro, G., G. Turcatel, A. El-Hashash, and D. Warburton. "miR-17 Regulate Embryonic Lung Development." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a3276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Larina, Irina V. "Live biophotonic analysis of embryonic development." In Dynamics and Fluctuations in Biomedical Photonics XIX, edited by Valery V. Tuchin, Martin J. Leahy, and Ruikang K. Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2631528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saint-jeannet, Jean-Pierre, Atun Devotta, Hugo Juraver-Geslin, and Casey Griffin. "The functions of Npr3 during embryonic development." In cGMP: Generators, Effectors and Therapeutic Implications. ScienceOpen, 2024. http://dx.doi.org/10.14293/cgmp.24000042.v1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Changlei, Xiji Shu, Xiaoqing Chen, Yuwei Liu, Huiling Yi, and Baomiao Ma. "Effect of Methamphetamine on Embryonic Development in Rats." In 2017 7th International Conference on Applied Science, Engineering and Technology (ICASET 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icaset-17.2017.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Hydroxymethylation changes during early embryonic development in zebrafish." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Larina, Irina V. "In vivo biophotonic analysis of preimplantation embryonic development." In Biomedical Spectroscopy, Microscopy, and Imaging II, edited by Jürgen Popp and Csilla Gergely. SPIE, 2022. http://dx.doi.org/10.1117/12.2626872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Troyanova-Wood, Maria, Zhaokai Meng, Hannah Silverberg, and Vladislav V. Yakovlev. "Brillouin microspectroscopy assessment of tissue differentiation during embryonic development." In SPIE BiOS, edited by Melissa C. Skala and Paul J. Campagnola. SPIE, 2017. http://dx.doi.org/10.1117/12.2253377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matarese, Bruno F. E. "Embryonic development of fully biocompatible organic light-emitting diodes." In 2021 IEEE 21st International Conference on Nanotechnology (NANO). IEEE, 2021. http://dx.doi.org/10.1109/nano51122.2021.9514327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Csaba, Szasz. "Applied informatics: A paradigm shift in artificial embryonic systems development." In 2015 16th IEEE International Symposium on Computational Intelligence and Informatics (CINTI). IEEE, 2015. http://dx.doi.org/10.1109/cinti.2015.7382917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

HUISKEN, JAN. "RECONSTRUCTING EMBRYONIC DEVELOPMENT FROM HIGH-RESOLUTION LIGHT SHEET MICROSCOPY DATA." In 25th Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811228216_0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Embryonic development"

1

Harada, John J. Final Report for Regulation of Embryonic Development in Higher Plants. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1097049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gershon, Eran, and Alan Ealy. Fibroblast growth factor signaling requirements for embryonic and placental development in ruminants. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600044.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Browdy, Craig, and Esther Lubzens. Cryopreservation of Penaeid Shrimp Embryos: Development of a Germplasm Cryo-Bank for Preservation of High Health and Genetically Improved Stocks. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7695849.bard.

Full text
Abstract:
The objectives of the project were to develop a successful protocol for cryopreservation of penaeid germ plasm in order to preserve a pathogen-free broodstock nucleus for commercial exploitation of marine shrimp in aquaculture. The critical parameters to be characterized in the project were: 1. Determination of chill sensitivity and chill tolerant embryonic stages, including a full description and time course study of embryonic developmental stages. 2. Development of protocols for loading and removal of cryoprotectant agents (CPAs) from embryos; determination of optimal concentrations and duration of loading. 3. Characterization of the toxicity of the selected CP As and 4. Establishing optimal cooling and thawing procedures. Studies were performed on two penaeid species: Litopenaeus vannamei (in the USA) and P. semisulcatus (in Israel). The effect of incubation temperature on embryonic development rate and hatching success was studied in L. vannamei, showing that spawns maybe maintained at temperatures ranging from 24°C to 30°C, without compromising hatchability. Embryonic development extends from 12 hr to 19 hr at 30°C and 24°C, respectively. Studies showed that advanced embryonic developmental stages were chill tolerant in the two studied species, but P. semisulcatus could better endure lower temperatures than L. vannamei. A large number of experiments were performed to determine the optimal CP As, their concentration and duration of loading. Permeating (e.g. glycerol, methanol, DMSO, 1,2- propanediol, ethylene glycol, glucose) and non-permeating CPAs (sucrose, PVP, polyethylene glycol) were tested and several combinations of permeating and non-permeating CP As, on fertilized eggs (embryos), nauplii and protozoeae. In general, nauplii tolerated higher CPA concentrations than eggs and nauplii were also more permeable to radiolabeled methanol. Chlorine treatment intended to remove the chitinous envelop from eggs, did not increase dramatically the permeation of radiolabled methanol into eggs. Cooling eggs, nauplii or protozoeae to cryogenic temperatures, by either vitrification or slow cooling protocols, did not result in full survival of thawed samples, despite exhaustive attempts testing various protocols and CP As. Results seemed more encouraging in freezing of nauplii in comparison to eggs or protozoeae. Successful preliminary results in cryopreservation of spermatozoa of P. vannamei, will facilitate preservation of genetic specific to some extent.
APA, Harvard, Vancouver, ISO, and other styles
4

Wright, Elane C., Cai-Xia Yang, Christopher K. Tuggle, and Jason W. Ross. Heat Stress during Pig Oocyte In Vitro Maturation Impacts Embryonic Development and Gene Expression. Ames (Iowa): Iowa State University, January 2012. http://dx.doi.org/10.31274/ans_air-180814-1373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wenner, Mark D., and Sheirin Iravantchi. Microinsurance in Brazil, Colombia, Mexico, and Peru. Inter-American Development Bank, June 2012. http://dx.doi.org/10.18235/0009038.

Full text
Abstract:
The microinsurance market in Latin America is still in its embryonic phase. The purpose of this technical note is to better inform donors, national governments, and insurance companies interested in promoting financial inclusion about how they can accelerate the development of microinsurance markets. Four countries -Brazil, Colombia, Mexico, and Peru- are reviewed to glean lessons learned about paths taken to develop these markets and the interaction of key stakeholders.
APA, Harvard, Vancouver, ISO, and other styles
6

Halevy, Orna, Zipora Yablonka-Reuveni, and Israel Rozenboim. Enhancement of meat production by monochromatic light stimuli during embryogenesis: effect on muscle development and post-hatch growth. United States Department of Agriculture, June 2004. http://dx.doi.org/10.32747/2004.7586471.bard.

Full text
Abstract:
The original objectives were: A. To determine the critical embryonic age for monochromatic green light stimulation. B. To follow the ontogeny of embryos exposed to monochromatic green light vs. darkness. C. To investigate the effects of monochromatic green light illumination on myoblast and fiber development in the embryo. D. To investigate the stimulatory effect of light combinations during embryo and post-hatch periods on growth and meat production. E. To evaluate the direct effect of monochromatic green light on cultured embryonic and adult myoblasts. The overall purpose of this study was to investigate the effect of monochromatic light stimuli during incubation period of broilers on muscle development and satellite cell myogenesis. Based on previous studies (Halevy et al., 1998; Rozenboim et al., 1999) that demonstrated the positive effects of green-light illumination on body and muscle growth, we hypothesized that monochromatic light illumination accelerates embryo and muscle development and subsequently enhances muscle growth and meat production. Thus, further decreases management costs. Under the cooperation of the laboratories at the Hebrew University of Jerusalem and University of Washington we have conducted the following: 1. We have established the critical stage for exposure to green monochromatic light which has the maximal effect on body and muscle growth (Objective A). We report that embryonic day 5 is optimal for starting illumination. The optimal regime of lighting that will eliminate possible heat effects was evaluated by monitoring egg core temperature at various illumination periods. We found that intermitted lighting (15 min. on; 15 min. off) is optimal to avoid heat effects. 2. We have evaluated in detail gross changes in embryo development profile associated to green light stimuli vs. darkness. In addition, we have investigated the stimulatory effect of light combinations during embryo and post-hatch periods on body and muscle growth (Objective B,D). 3. We have studied the expression profile of muscle regulatory proteins during chicken muscle cell differentiation in cultures using newly developed antibodies. This study paved the way for analyzing the expression of these proteins in our photo stimulation experiments (Objective C). 4. We have studied the pattern ofPax7 expression during myogenesis in the posthatch chicken. Experimental chick pectoralis muscles as well adult myoblast cultures were used in this study and the results led us to propose a novel model for satellite cell differentiation and renewal. 5. The effects of monochromatic green light illumination during embryogenesis have been studied. These studies focused on fetal myoblast and satellite cell proliferation and differentiation at pre- and posthatch periods and on the effects on the expression of muscle regulatory proteins which are involved in these processes. In addition, we have analyzed the effect of photo stimulation in the embryo on myofiber development at early posthatch (Objective C). 6. In follow the reviewers' comments we have not conducted Objective E. The information gathered from these studies is of utmost importance both, for understanding the molecular basis of muscle development in the posthatch chicks and for applied approach for future broiler management. Therefore, the information could be beneficial to agriculture in the short term on the one hand and to future studies on chick muscle development in the embryo and posthatch on the other hand.
APA, Harvard, Vancouver, ISO, and other styles
7

Yahav, Shlomo, John Brake, and Orna Halevy. Pre-natal Epigenetic Adaptation to Improve Thermotolerance Acquisition and Performance of Fast-growing Meat-type Chickens. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7592120.bard.

Full text
Abstract:
: The necessity to improve broiler thermotolerance and performance led to the following hypothesis: (a) thethermoregulatory-response threshold for heat production can be altered by thermal manipulation (TM) during incubation so as to improve the acquisition of thermotolerance in the post-hatch broiler;and (b) TM during embryogenesis will improve myoblast proliferation during the embryonic and post-hatch periods with subsequent enhanced muscle growth and meat production. The original objectives of this study were as follow: 1. to assess the timing, temperature, duration, and turning frequency required for optimal TM during embryogenesis; 2. to evaluate the effect of TM during embryogenesis on thermoregulation (heat production and heat dissipation) during four phases: (1) embryogenesis, (2) at hatch, (3) during growth, and (4) during heat challenge near marketing age; 3. to investigate the stimulatory effect of thermotolerance on hormones that regulate thermogenesis and stress (T₄, T₃, corticosterone, glucagon); 4. to determine the effect of TM on performance (BW gain, feed intake, feed efficiency, carcass yield, breast muscle yield) of broiler chickens; and 5. to study the effect of TM during embryogenesis on skeletal muscle growth, including myoblast proliferation and fiber development, in the embryo and post-hatch chicks.This study has achieved all the original objectives. Only the plasma glucagon concentration (objective 3) was not measured as a result of technical obstacles. Background to the topic: Rapid growth rate has presented broiler chickens with seriousdifficulties when called upon to efficiently thermoregulate in hot environmental conditions. Being homeotherms, birds are able to maintain their body temperature (Tb) within a narrow range. An increase in Tb above the regulated range, as a result of exposure to environmental conditions and/or excessive metabolic heat production that often characterize broiler chickens, may lead to a potentially lethal cascade of irreversible thermoregulatory events. Exposure to temperature fluctuations during the perinatal period has been shown to lead to epigenetic temperature adaptation. The mechanism for this adaptation was based on the assumption that environmental factors, especially ambient temperature, have a strong influence on the determination of the “set-point” for physiological control systems during “critical developmental phases.” In order to sustain or even improve broiler performance, TM during the period of embryogenesis when satellite cell population normally expand should increase absolute pectoralis muscle weight in broilers post-hatch. Major conclusions: Intermittent TM (39.5°C for 12 h/day) during embryogenesis when the thyroid and adrenal axis was developing and maturing (E7 to E16 inclusive) had a long lasting thermoregulatory effect that improved thermotolerance of broiler chickens exposed to acute thermal stress at market age by lowering their functional Tb set point, thus lowering metabolic rate at hatch, improving sensible heat loss, and significantly decreasing the level of stress. Increased machine ventilation rate was required during TM so as to supply the oxygen required for the periods of increased embryonic development. Enhancing embryonic development was found to be accomplished by a combination of pre-incubation heating of embryos for 12 h at 30°C, followed by increasing incubation temperature to 38°C during the first 3 days of incubation. It was further facilitated by increasing turning frequency of the eggs to 48 or 96 times daily. TM during critical phases of muscle development in the late-term chick embryo (E16 to E18) for 3 or 6 hours (39.5°C) had an immediate stimulatory effect on myoblast proliferation that lasted for up to two weeks post-hatch; this was followed by increased hypertrophy at later ages. The various incubation temperatures and TM durations focused on the fine-tuning of muscle development and growth processes during late-term embryogenesis as well as in post-hatch chickens.
APA, Harvard, Vancouver, ISO, and other styles
8

Agresar, Grenmarie, and Michael A. Savageau. Final Report, December, 1999. Sloan - US Department of Energy joint postdoctoral fellowship in computational molecular biology [Canonical nonlinear methods for modeling and analyzing gene circuits and spatial variations during pattern formation in embryonic development]. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/811376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wong, E. A., and Z. Uni. Modulating intestinal cellular maturation and differentiation in broilers by in ovo feeding. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2018. http://dx.doi.org/10.32747/2018.8134161.bard.

Full text
Abstract:
Mortality in a broiler flock will typically range from 4-5% of the population over the course of 6- 7 weeks in the U.S. and 7-8% of the population in Israel. Suboptimal intestinal maturation and functionality are one of the major factors that contribute to early age mortality and hinder flock body weight uniformity. The development of absorptive and secretory functions is orchestrated by differentiation of cells that arise from stem cells. Supplying compounds by in ovo feeding (IOF) during late embryogenesis provides nutrients that may change the dynamics of stem cell differentiation. We hypothesize that the introduction of specific nutrients or probiotics to the late embryonic chick via IOF will result in an acceleration of the maturation of the small intestine as measured by villus/crypt morphology and the number and distribution of absorptive and secretory cells. A chick that can absorb nutrients more efficiently by increasing the number of cells expressing nutrient transporters and resist enteric pathogens by increasing the number of cells expressing mucin and host defense peptides will be healthier at hatch. This chick may have less need for antibiotics and may show reduced early mortality. The objectives of this proposal are to: 1) develop a model for the development of putative stem cells and absorptive/secretory cells in the small intestine of the late embryonic and early post hatch broiler. 2) determine the ability of IOF of nutrients to modulate the population of differentiated cells in the intestine. 3) determine the ability of IOF of probiotics to modulate the population of differentiated cells in the intestine. 4) reduce early mortality and increase body weight uniformity by IOF of selected nutrients or probiotics. This proposal combines the IOF expertise of Zehava Uni (Hebrew University) with the RNAscope in situ hybridization technique of Eric Wong (Virginia Tech). Previous studies using quantitative PCR to examine expression of genes in the intestine were unable to identify specific cells expressing these genes. RNAscope allows the ability to identify putative stem, absorptive and secretory cells in the small intestine. Thus, we will be able to investigate the effect of IOF on the presence of intestinal absorptive and secretory cells at the cellular level. Understanding the mechanisms for intestinal development and function are key to maintaining peak growth and health of chickens and thus would be of great economic benefit to the poultry industry.
APA, Harvard, Vancouver, ISO, and other styles
10

Wolfenson, David, William W. Thatcher, Rina Meidan, Charles R. Staples, and Israel Flamenbaum. Hormonal and Nutritional Stretegies to Optimize Reproductive Function and Improve Fertility of Dairy Cattle during Heat Stress in Summer. United States Department of Agriculture, August 1994. http://dx.doi.org/10.32747/1994.7568773.bard.

Full text
Abstract:
The BARD program includes two main parts. In the first, experiments were conducted to complete our understanding of the mechanisms responsible for the impairment of reproductive functions under heat stress. Experiments focused on follicular development and function, since results obtained in our previous BARD project indicate that the preovulatory follicle is susceptible to heat stress. The theca cells, sensitive to thermal stress, produced less androgen during the summer, as well as during the autumn. Similarly, luteinized theca cells obtained from cows in summer produced much less progesterone than in winter. Granulosa cells and luteinized granulosa cells were less susceptible to heat stress. A delayed effect of heat stress on follicular development, on suppression of dominance and on steroid production by theca and granulosa cells was noted. This may be related to the low fertility of cows during the cool months of autumn. In the second part, experiments were conducted aiming to improve fertility in summer. The timed AI program was developed using two injections of GnRH coupled with PGF2a. It was found effective in improving reproductive performance in lactating cows. Limitations induced by heat stress on estrus detection were eliminated with the timed AI management program. Replacing the second injection of GnRH with hCG instead of GnRH agonist increased plasma progesterone levels post ovulation but did not improve fertility. Use of the timed AI program in summer, shortened days open and increased the net revenue per cow, however, it did not protect the embryo fiom temperature-induced embryonic mortality. Incorporation of a GnRH-agonist implant into the timed AJ program was examined. The implant increased plasma progesterone and LH concentrations and altered follicular dynamics. The use of a GnRH-implant enhanced pregnancy rate in cows with low body conditions. In a timed embryo transfer experiment, the use of fresh or frozen in vitro produced embryos was compared in the summer to improve fertility. The use of flesh embryos (but not frozen ones) improved pregnancy rate, however, substantial embryonic death occurred between 21 and 45 days. The timed AI program, which is now being used commercially, shortened days open, and increased pregnancy rate during summer. Other approaches which were found to improve fertility in small-scale studies, need to be tested again in large-scale field trials.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography