To see the other types of publications on this topic, follow the link: Embryonic chick spinal cord; Expression; Binding.

Journal articles on the topic 'Embryonic chick spinal cord; Expression; Binding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 48 journal articles for your research on the topic 'Embryonic chick spinal cord; Expression; Binding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Park, Sang Wook, Ha Seong Lim, Eun Jung Roh, Dong Woon Kim, Gye Sun Jeon, and Sa Sun Cho. "Developmental Expression of Transferrin Binding Protein in Oligodendrocyte Lineage Cells of the Embryonic Chick Spinal Cord." Neurochemical Research 32, no. 1 (December 6, 2006): 11–18. http://dx.doi.org/10.1007/s11064-006-9216-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trupp, M., M. Rydén, H. Jörnvall, H. Funakoshi, T. Timmusk, E. Arenas, and C. F. Ibáñez. "Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons." Journal of Cell Biology 130, no. 1 (July 1, 1995): 137–48. http://dx.doi.org/10.1083/jcb.130.1.137.

Full text
Abstract:
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic polypeptide, distantly related to transforming growth factor-beta (TGF-beta), originally isolated by virtue of its ability to induce dopamine uptake and cell survival in cultures of embryonic ventral midbrain dopaminergic neurons, and more recently shown to be a potent neurotrophic factor for motorneurons. The biological activities and distribution of this molecule outside the central nervous system are presently unknown. We report here on the mRNA expression, biological activities and initial receptor binding characterization of GDNF and a shorter spliced variant termed GDNF beta in different organs and peripheral neurons of the developing rat. Both GDNF mRNA forms were found to be most highly expressed in developing skin, whisker pad, kidney, stomach and testis. Lower expression was also detected in developing skeletal muscle, ovary, lung, and adrenal gland. Developing spinal cord, superior cervical ganglion (SCG) and dorsal root ganglion (DRG) also expressed low levels of GDNF mRNA. Two days after nerve transection, GDNF mRNA levels increased dramatically in the sciatic nerve. Overall, GDNF mRNA expression was significantly higher in peripheral organs than in neuronal tissues. Expression of either GDNF mRNA isoform in insect cells resulted in the production of indistinguishable mature GDNF polypeptides. Purified recombinant GDNF promoted neurite outgrowth and survival of embryonic chick sympathetic neurons. GDNF produced robust bundle-like, fasciculated outgrowth from chick sympathetic ganglion explants. Although GDNF displayed only low activity on survival of newborn rat SCG neurons, this protein was found to increase the expression of vasoactive intestinal peptide and preprotachykinin-A mRNAs in cultured SCG neurons. GDNF also promoted survival of about half of the neurons in embryonic chick nodose ganglion and a small subpopulation of embryonic sensory neurons in chick dorsal root and rat trigeminal ganglia. Embryonic chick sympathetic neurons expressed receptors for GDNF with Kd 1-5 x 10(-9) M, as measured by saturation and displacement binding assays. Our findings indicate GDNF is a new neurotrophic factor for developing peripheral neurons and suggest possible non-neuronal roles for GDNF in the developing reproductive system.
APA, Harvard, Vancouver, ISO, and other styles
3

Goodearl, A. D., A. G. Yee, A. W. Sandrock, G. Corfas, and G. D. Fischbach. "ARIA is concentrated in the synaptic basal lamina of the developing chick neuromuscular junction." Journal of Cell Biology 130, no. 6 (September 15, 1995): 1423–34. http://dx.doi.org/10.1083/jcb.130.6.1423.

Full text
Abstract:
ARIA is a member of a family of polypeptide growth and differentiation factors that also includes glial growth factor (GGF), neu differentiation factor, and heregulin. ARIA mRNA is expressed in all cholinergic neurons of the central nervous systems of rats and chicks, including spinal cord motor neurons. In vitro, ARIA elevates the rate of acetylcholine receptor incorporation into the plasma membrane of primary cultures of chick myotubes. To study whether ARIA may regulate the synthesis of junctional synaptic acetylcholine receptors in chick embryos, we have developed riboprobes and polyclonal antibody reagents that recognize isoforms of ARIA that include an amino-terminal immunoglobulin C2 domain and examined the expression and distribution of ARIA in motor neurons and at the neuromuscular junction. We detected significant ARIA mRNA expression in motor neurons as early as embryonic day 5, around the time that motor axons are making initial synaptic contacts with their target muscle cells. In older embryos and postnatal animals, we found ARIA protein concentrated in the synaptic cleft at neuromuscular junctions, consistent with transport down motor axons and release at nerve terminals. At high resolution using immunoelectron microscopy, we detected ARIA immunoreactivity exclusively in the synaptic basal lamina in a pattern consistent with binding to synapse specific components on the presynaptic side of the basal lamina. These results support a role for ARIA as a trophic factor released by motor neuron terminals that may regulate the formation of mature neuromuscular synapses.
APA, Harvard, Vancouver, ISO, and other styles
4

Chilton, John K., and Andrew W. Stoker. "Expression of Receptor Protein Tyrosine Phosphatases in Embryonic Chick Spinal Cord." Molecular and Cellular Neuroscience 16, no. 4 (October 2000): 470–80. http://dx.doi.org/10.1006/mcne.2000.0887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ono, K., R. Bansal, J. Payne, U. Rutishauser, and R. H. Miller. "Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord." Development 121, no. 6 (June 1, 1995): 1743–54. http://dx.doi.org/10.1242/dev.121.6.1743.

Full text
Abstract:
Oligodendrocytes, the myelinating cells of the vertebrate CNS, originally develop from cells of the neuroepithelium. Recent studies suggest that spinal cord oligodendrocyte precursors are initially localized in the region of the ventral ventricular zone and subsequently disperse throughout the spinal cord. The characteristics of these early oligodendrocyte precursors and their subsequent migration has been difficult to assay directly in the rodent spinal cord due to a lack of appropriate reagents. In the developing chick spinal cord, we show that oligodendrocyte precursors can be specifically identified by labeling with O4 monoclonal antibody. In contrast to rodent oligodendrocyte precursors, which express O4 immunoreactivity only during the later stages of maturation, in the chick O4 immunoreactivity appears very early and its expression is retained through cellular maturation. In embryos older than stage 35, O4+ cells represent the most immature, self-renewing, cells of the chick spinal cord oligodendrocyte lineage. In the intact chick spinal cord, the earliest O4+ cells are located at the ventral ventricular zone where they actually contribute to the ventricular lining of the central canal. The subsequent migration of O4+ cells into the dorsal region of the spinal cord temporally correlates with the capacity of isolated dorsal spinal cord to generate oligodendrocytes in vitro. Biochemical analysis suggests O4 labels a POA-like antigen on the surface of chick spinal cord oligodendrocyte precursors. These studies provide direct evidence for the ventral ventricular origin of spinal cord oligodendrocytes, and suggest that this focal source of oligodendrocytes is a general characteristic of vertebrate development.
APA, Harvard, Vancouver, ISO, and other styles
6

Berki, �gnes Cs, Michael J. O'Donovan, and Mikl�s Antal. "Developmental expression of glycine immunoreactivity and its colocalization with gaba in the embryonic chick lumbosacral spinal cord." Journal of Comparative Neurology 362, no. 4 (November 27, 1995): 583–96. http://dx.doi.org/10.1002/cne.903620411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dodd, J., and T. M. Jessell. "Cell surface glycoconjugates and carbohydrate-binding proteins: possible recognition signals in sensory neurone development." Journal of Experimental Biology 124, no. 1 (September 1, 1986): 225–38. http://dx.doi.org/10.1242/jeb.124.1.225.

Full text
Abstract:
Dorsal root ganglion (DRG) neurones transmit cutaneous sensory information from the periphery to the dorsal horn of the spinal cord. Subpopulations of DRG neurones that subserve distinct sensory modalities project to discrete regions in the dorsal horn. The formation of specific sensory connections during development may involve cell-surface interactions with spinal cord cells. Molecules that are expressed on the surface of functional subpopulations of DRG and dorsal horn neurones have therefore been identified. Distinct subsets of DRG neurones express globo- or lactoseries carbohydrate differentiation antigens. The expression of defined carbohydrate structures correlates with the embryonic lineage, peptide phenotype and the central termination site of DRG neurones. Similar or identical glycoconjugates have been implicated in cellular interactions that contribute to preimplantation embryonic development. Small-diameter DRG neurones that project to the superficial dorsal horn express N-acetyllactosamine backbone structures that are potential ligands for beta-galactoside-specific binding proteins (lectins). Two lectins have been identified that are expressed early in development in the superficial dorsal horn. These complementary molecules may contribute to the development of sensory afferent projections in the spinal cord.
APA, Harvard, Vancouver, ISO, and other styles
8

Wenner, Peter, Michael J. O'Donovan, and Michael P. Matise. "Topographical and Physiological Characterization of Interneurons That Express Engrailed-1 in the Embryonic Chick Spinal Cord." Journal of Neurophysiology 84, no. 5 (November 1, 2000): 2651–57. http://dx.doi.org/10.1152/jn.2000.84.5.2651.

Full text
Abstract:
A number of homeodomain transcription factors have been implicated in controlling the differentiation of various types of neurons including spinal motoneurons. Some of these proteins are also expressed in spinal interneurons, but their function is unknown. Progress in understanding the role of transcription factors in interneuronal development has been slow because the synaptic connections of interneurons, which in part define their identity, are difficult to establish. Using whole cell recording in the isolated spinal cord of chick embryos, we assessed the synaptic connections of lumbosacral interneurons expressing the Engrailed-1 (En1) transcription factor. Specifically we established whether En1-expressing interneurons made direct connections with motoneurons and whether they constitute a single interneuron class. Cells were labeled with biocytin and subsequently processed for En1 immunoreactivity. Our findings indicate that the connections of En1-expressing cells with motoneurons and with sensory afferents were diverse, suggesting that the population was heterogeneous. In addition, the synaptic connections we tested were similar in interneurons that expressed the En1 protein and in many that did not. The majority of sampled En1 cells did, however, exhibit a direct synaptic connection to motoneurons that is likely to be GABAergic. Because our physiological methods underestimate the number of direct connections with motoneurons, it is possible that the great majority, perhaps all, En1-expressing cells make direct synaptic connections with motoneurons. Our results raise the possibility that En1 could be involved in interneuron-motoneuron connectivity but that its expression is not restricted to a distinct functional subclass of ventral interneuron. These findings constrain hypotheses about the role of En-1 in interneuron development and function.
APA, Harvard, Vancouver, ISO, and other styles
9

Lance-Jones, Cynthia, Natalia Omelchenko, Anya Bailis, Stephen Lynch, and Kamal Sharma. "Hoxd10 induction and regionalization in the developing lumbosacral spinal cord." Development 128, no. 12 (June 15, 2001): 2255–68. http://dx.doi.org/10.1242/dev.128.12.2255.

Full text
Abstract:
We have used Hoxd10 expression as a primary marker of the lumbosacral region to examine the early programming of regional characteristics within the posterior spinal cord of the chick embryo. Hoxd10 is uniquely expressed at a high level in the lumbosacral cord, from the earliest stages of motor column formation through stages of motoneuron axon outgrowth. To define the time period when this gene pattern is determined, we assessed Hoxd10 expression after transposition of lumbosacral and thoracic segments at early neural tube stages. We present evidence that there is an early prepattern for Hoxd10 expression in the lumbosacral neural tube; a prepattern that is established at or before stages of neural tube closure. Cells within more posterior lumbosacral segments have a greater ability to develop high level Hoxd10 expression than the most anterior lumbosacral segments or thoracic segments. During subsequent neural tube stages, this prepattern is amplified and stabilized by environmental signals such that all lumbosacral segments acquire the ability to develop high levels of Hoxd10, independent of their axial environment. Results from experiments in which posterior neural segments and/or paraxial mesoderm segments were placed at different axial levels suggest that signals setting Hoxd10 expression form a decreasing posterior-to-anterior gradient. Our experiments do not, however, implicate adjacent paraxial mesoderm as the only source of graded signals. We suggest, instead, that signals from more posterior embryonic regions influence Hoxd10 expression after the early establishment of a regional prepattern. Concurrent analyses of patterns of LIM proteins and motor column organization after experimental surgeries suggest that the programming of these characteristics follows similar rules.
APA, Harvard, Vancouver, ISO, and other styles
10

Loeb, J. A., T. S. Khurana, J. T. Robbins, A. G. Yee, and G. D. Fischbach. "Expression patterns of transmembrane and released forms of neuregulin during spinal cord and neuromuscular synapse development." Development 126, no. 4 (February 15, 1999): 781–91. http://dx.doi.org/10.1242/dev.126.4.781.

Full text
Abstract:
We mapped the distribution of neuregulin and its transmembrane precursor in developing, embryonic chick and mouse spinal cord. Neuregulin mRNA and protein were expressed in motor and sensory neurons shortly after their birth and levels steadily increased during development. Expression of the neuregulin precursor was highest in motor and sensory neuron cell bodies and axons, while soluble, released neuregulin accumulated along early motor and sensory axons, radial glia, spinal axonal tracts and neuroepithelial cells through associations with heparan sulfate proteoglycans. Neuregulin accumulation in the synaptic basal lamina of neuromuscular junctions occurred significantly later, coincident with a reorganization of muscle extracellular matrix resulting in a relative concentration of heparan sulfate proteoglycans at endplates. These results demonstrate an early axonal presence of neuregulin and its transmembrane precursor at developing synapses and a role for heparan sulfate proteoglycans in regulating the temporal and spatial sites of soluble neuregulin accumulation during development.
APA, Harvard, Vancouver, ISO, and other styles
11

Unsicker, Klaus, Carola Meier, Kerstin Krieglstein, Birgit M. Sartor, and Kathleen C. Flanders. "Expression, localization, and function of transforming growth factor-?s in embryonic chick spinal cord, hindbrain, and dorsal root ganglia." Journal of Neurobiology 29, no. 2 (February 1996): 262–76. http://dx.doi.org/10.1002/(sici)1097-4695(199602)29:2<262::aid-neu10>3.0.co;2-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Haimson, Baruch, Oren Meir, Reut Sudakevitz-Merzbach, Gerard Elberg, Samantha Friedrich, Peter V. Lovell, Sónia Paixão, Rüdiger Klein, Claudio V. Mello, and Avihu Klar. "Natural loss of function of ephrin-B3 shapes spinal flight circuitry in birds." Science Advances 7, no. 24 (June 2021): eabg5968. http://dx.doi.org/10.1126/sciadv.abg5968.

Full text
Abstract:
Flight in birds evolved through patterning of the wings from forelimbs and transition from alternating gait to synchronous flapping. In mammals, the spinal midline guidance molecule ephrin-B3 instructs the wiring that enables limb alternation, and its deletion leads to synchronous hopping gait. Here, we show that the ephrin-B3 protein in birds lacks several motifs present in other vertebrates, diminishing its affinity for the EphA4 receptor. The avian ephrin-B3 gene lacks an enhancer that drives midline expression and is missing in galliforms. The morphology and wiring at brachial levels of the chicken embryonic spinal cord resemble those of ephrin-B3 null mice. Dorsal midline decussation, evident in the mutant mouse, is apparent at the chick brachial level and is prevented by expression of exogenous ephrin-B3 at the roof plate. Our findings support a role for loss of ephrin-B3 function in shaping the avian brachial spinal cord circuitry and facilitating synchronous wing flapping.
APA, Harvard, Vancouver, ISO, and other styles
13

Kimura, Yoshishige, Komei Shirabe, Mikiko Fukushima, Masazumi Takeshita, and Hideaki Tanaka. "CEPU-1, an immunoglobulin superfamily molecule, has cell adhesion activity and shows dynamic expression patterns in chick embryonic spinal cord." Neuroscience Research 34, no. 4 (September 1999): 245–55. http://dx.doi.org/10.1016/s0168-0102(99)00057-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

England, Samantha J., Gustavo A. Cerda, Angelica Kowalchuk, Taylor Sorice, Ginny Grieb, and Katharine E. Lewis. "Hmx3a Has Essential Functions in Zebrafish Spinal Cord, Ear and Lateral Line Development." Genetics 216, no. 4 (October 19, 2020): 1153–85. http://dx.doi.org/10.1534/genetics.120.303748.

Full text
Abstract:
Transcription factors that contain a homeodomain DNA-binding domain have crucial functions in most aspects of cellular function and embryonic development in both animals and plants. Hmx proteins are a subfamily of NK homeodomain-containing proteins that have fundamental roles in development of sensory structures such as the eye and the ear. However, Hmx functions in spinal cord development have not been analyzed. Here, we show that zebrafish (Danio rerio) hmx2 and hmx3a are coexpressed in spinal dI2 and V1 interneurons, whereas hmx3b, hmx1, and hmx4 are not expressed in spinal cord. Using mutational analyses, we demonstrate that, in addition to its previously reported role in ear development, hmx3a is required for correct specification of a subset of spinal interneuron neurotransmitter phenotypes, as well as correct lateral line progression and survival to adulthood. Surprisingly, despite similar expression patterns of hmx2 and hmx3a during embryonic development, zebrafish hmx2 mutants are viable and have no obviously abnormal phenotypes in sensory structures or neurons that require hmx3a. In addition, embryos homozygous for deletions of both hmx2 and hmx3a have identical phenotypes to severe hmx3a single mutants. However, mutating hmx2 in hypomorphic hmx3a mutants that usually develop normally, results in abnormal ear and lateral line phenotypes. This suggests that while hmx2 cannot compensate for loss of hmx3a, it does function in these developmental processes, although to a much lesser extent than hmx3a. More surprisingly, our mutational analyses suggest that Hmx3a may not require its homeodomain DNA-binding domain for its roles in viability or embryonic development.
APA, Harvard, Vancouver, ISO, and other styles
15

Sharp, Andrew A., and Sylvia Fromherz. "Optogenetic regulation of leg movement in midstage chick embryos through peripheral nerve stimulation." Journal of Neurophysiology 106, no. 5 (November 2011): 2776–82. http://dx.doi.org/10.1152/jn.00712.2011.

Full text
Abstract:
Numerous disorders that affect proper development, including the structure and function of the nervous system, are associated with altered embryonic movement. Ongoing challenges are to understand in detail how embryonic movement is generated and to understand better the connection between proper movement and normal nervous system function. Controlled manipulation of embryonic limb movement and neuronal activity to assess short- and long-term outcomes can be difficult. Optogenetics is a powerful new approach to modulate neuronal activity in vivo. In this study, we have used an optogenetics approach to activate peripheral motor axons and thus alter leg motility in the embryonic chick. We used electroporation of a transposon-based expression system to produce ChIEF, a channelrhodopsin-2 variant, in the lumbosacral spinal cord of chick embryos. The transposon-based system allows for stable incorporation of transgenes into the genomic DNA of recipient cells. ChIEF protein is detectable within 24 h of electroporation, largely membrane-localized, and found throughout embryonic development in both central and peripheral processes. The optical clarity of thin embryonic tissue allows detailed innervation patterns of ChIEF-containing motor axons to be visualized in the living embryo in ovo, and pulses of blue light delivered to the thigh can elicit stereotyped flexures of the leg when the embryo is at rest. Continuous illumination can disrupt full extension of the leg during spontaneous movements. Therefore, our results establish an optogenetics approach to alter normal peripheral axon function and to probe the role of movement and neuronal activity in sensorimotor development throughout embryogenesis.
APA, Harvard, Vancouver, ISO, and other styles
16

Ethell, Douglas W., and John D. Steeves. "Changes in protein expression associated with the developmental transition from permissive to restrictive states of spinal cord repair in embryonic chick." Developmental Brain Research 76, no. 2 (December 1993): 163–69. http://dx.doi.org/10.1016/0165-3806(93)90204-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Loeb, J. A., and G. D. Fischbach. "ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain." Journal of Cell Biology 130, no. 1 (July 1, 1995): 127–35. http://dx.doi.org/10.1083/jcb.130.1.127.

Full text
Abstract:
ARIA, or acetylcholine receptor-inducing activity, is a polypeptide that stimulates the synthesis of acetylcholine receptors in skeletal muscle. Here we demonstrate that the ability of ARIA to induce phosphorylation of its receptor in muscle is blocked by highly charged glycosaminoglycans. ARIA constructs lacking the NH2-terminal portion, containing an immunoglobulin-like domain, are fully active and are not inhibited by glycosaminoglycans. Limited proteolysis of ARIA with subtilisin blocks the glycosaminoglycan interaction by degrading this NH2-terminal portion, but preserves the active, EGF-like domain. We also show that ARIA can be released from freshly dissociated cells from embryonic chick spinal cord and cerebellum by either heparin, high salt or limited proteolysis with subtilisin, suggesting that ARIA is bound to the extracellular matrix through charged interactions. We present a model of how ARIA may be stored in extracellular matrix at developing synapses and how its release may be mediated by local proteolysis.
APA, Harvard, Vancouver, ISO, and other styles
18

Momose-Sato, Yoko, Naohisa Miyakawa, Hiraku Mochida, Shinichi Sasaki, and Katsushige Sato. "Optical Analysis of Depolarization Waves in the Embryonic Brain: A Dual Network of Gap Junctions and Chemical Synapses." Journal of Neurophysiology 89, no. 1 (January 1, 2003): 600–614. http://dx.doi.org/10.1152/jn.00337.2002.

Full text
Abstract:
Correlated neuronal activity plays a fundamental role in the development of the CNS. Using a multiple-site optical recording technique with a voltage-sensitive dye, we previously described a novel type of depolarization wave that was evoked by cranial or spinal nerve stimulation and spread widely over the whole brain region in the chick embryo. We have now investigated developmental expression and neuronal network mechanisms of this depolarization wave by applying direct stimulation to the brain stem or upper cervical cord of E5–E11 embryos, which elicited wave activity similar to that evoked by nerve stimulation. Spatial distribution patterns of the depolarization wave changed dynamically with development, and this change appeared to be related to the regional differences in neuronal differentiation. The depolarization wave was completely eliminated by application of either gap junction blockers or an N-methyl-d-aspartate (NMDA)-receptor antagonist, indicating that functions of both gap junctions and NMDA receptors are indispensable for wave propagation. A possible interpretation of the results is that dual networks of gap junctions and chemical synaptic coupling mediate large-scale depolarization waves in the developing chick CNS.
APA, Harvard, Vancouver, ISO, and other styles
19

Kirilovsky, J., A. Duclert, B. Fontaine, A. Devillers-thiery, M. Österlund, and J. P. Changeux. "Acetylcholine receptor expression in primary cultures of embryonic chick myotubes—II. Comparison between the effects of spinal cord cells and calcitonin gene-related peptide." Neuroscience 32, no. 2 (January 1989): 289–96. http://dx.doi.org/10.1016/0306-4522(89)90079-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lutz, B., S. Kuratani, A. J. Cooney, S. Wawersik, S. Y. Tsai, G. Eichele, and M. J. Tsai. "Developmental regulation of the orphan receptor COUP-TF II gene in spinal motor neurons." Development 120, no. 1 (January 1, 1994): 25–36. http://dx.doi.org/10.1242/dev.120.1.25.

Full text
Abstract:
Members of the steroid/thyroid hormone receptor superfamily are involved in the control of cell identity and of pattern formation during embryonic development. Chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) can act as regulators of various steroid/thyroid hormone receptor pathways. To begin to study the role of COUP-TFs during embryogenesis, we cloned a chicken COUP-TF (cCOUP-TF II) which is highly homologous to human COUP-TF II. Northern analysis revealed high levels of cCOUP-TF II transcripts during organogenesis. Nuclear extracts from whole embryos and from embryonic spinal cords were used in electrophoretic mobility shift assays. These assays showed that COUP-TF protein is present in these tissues and is capable of binding to a COUP element (a direct repeat of AGGTCA with one base pair spacing). Analysis of cCOUP-TF expression by in situ hybridization revealed high levels of cCOUP-TF II mRNA in the developing spinal motor neurons. Since the ventral properties of the spinal cord, including the development of motor neurons, is in part established by inductive signals from the notochord, we transplanted an additional notochord next to the dorsal region of the neural tube in order to induce ectopic motor neurons. We observed that an ectopic notochord induced cCOUP-TF II gene expression in the dorsal spinal cord in a region coextensive with ectopic domains of SC1 and Islet-1, two previously identified motor neuron markers. Collectively, our studies raise the possibility that cCOUP-TF II is involved in motor neuron development.
APA, Harvard, Vancouver, ISO, and other styles
21

Holst, B. D., Y. Wang, F. S. Jones, and G. M. Edelman. "A binding site for Pax proteins regulates expression of the gene for the neural cell adhesion molecule in the embryonic spinal cord." Proceedings of the National Academy of Sciences 94, no. 4 (February 18, 1997): 1465–70. http://dx.doi.org/10.1073/pnas.94.4.1465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, A., K. Losos, and A. L. Joyner. "FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate." Development 126, no. 21 (November 1, 1999): 4827–38. http://dx.doi.org/10.1242/dev.126.21.4827.

Full text
Abstract:
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66–68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959–969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.
APA, Harvard, Vancouver, ISO, and other styles
23

Dubreuil, V., M. Hirsch, A. Pattyn, J. Brunet, and C. Goridis. "The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity." Development 127, no. 23 (December 1, 2000): 5191–201. http://dx.doi.org/10.1242/dev.127.23.5191.

Full text
Abstract:
In the vertebrate neural tube, cell cycle exit of neuronal progenitors is accompanied by the expression of transcription factors that define their generic and sub-type specific properties, but how the regulation of cell cycle withdrawal intersects with that of cell fate determination is poorly understood. Here we show by both loss- and gain-of-function experiments that the neuronal-subtype-specific homeodomain transcription factor Phox2b drives progenitor cells to become post-mitotic. In the absence of Phox2b, post-mitotic neuronal precursors are not generated in proper numbers. Conversely, forced expression of Phox2b in the embryonic chick spinal cord drives ventricular zone progenitors to become post-mitotic neurons and to relocate to the mantle layer. In the neurons thus generated, ectopic expression of Phox2b is sufficient to initiate a programme of motor neuronal differentiation characterised by expression of Islet1 and of the cholinergic transmitter phenotype, in line with our previous results showing that Phox2b is an essential determinant of cranial motor neurons. These results suggest that Phox2b coordinates quantitative and qualitative aspects of neurogenesis, thus ensuring that neurons of the correct phenotype are generated in proper numbers at the appropriate times and locations.
APA, Harvard, Vancouver, ISO, and other styles
24

Biffo, S., N. Offenhauser, B. D. Carter, and Y. A. Barde. "Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development." Development 121, no. 8 (August 1, 1995): 2461–70. http://dx.doi.org/10.1242/dev.121.8.2461.

Full text
Abstract:
The tyrosine kinase receptor trkB is thought to mediate the biological actions of brain-derived neurotrophic factor. This receptor is expressed by a large variety of neurons during development. Truncated trkB molecules lacking the tyrosine kinase domain have also been described, but their functions remain elusive. In order to gain insight into their role, we studied the pattern of expression and properties of these truncated receptors in the chick embryo. mRNA coding for truncated trkB was detected already early during neurogenesis and in situ hybridisation experiments indicated that the expression was in non-neuronal cells, as previously observed in the brain of adult rodents. Ependymal and leptomeningeal cells expressing high levels of truncated trkB were found to completely surround the developing brain and the spinal cord throughout development. In the otic vesicle, mesenchymal cells expressing truncated trkB surround cells producing brain-derived neurotrophic factor, as well as neurons expressing trkB with its tyrosine kinase domain. Non-neuronal cells were found not to express trkB mRNA coding for the tyrosine kinase domain. Studies with radioiodinated brain-derived neurotrophic factor performed on frozen sections of the chick embryo revealed that non-neuronal cells expressing truncated trkB bind brain-derived neurotrophic factor with high affinity and selectivity. In addition, experiments with dissociated leptomeningeal cells revealed that binding is rapidly followed by selective internalisation of the ligand. These results suggest that truncated trkB molecules form an efficient and selective barrier preventing the diffusion of brain-derived neurotrophic factor and eliminating it by internalisation.(ABSTRACT TRUNCATED AT 250 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
25

Casavant, Reema H., Costa M. Colbert, and Stuart E. Dryer. "A-Current Expression is Regulated by Activity but not by Target Tissues in Developing Lumbar Motoneurons of the Chick Embryo." Journal of Neurophysiology 92, no. 5 (November 2004): 2644–51. http://dx.doi.org/10.1152/jn.00307.2004.

Full text
Abstract:
The functional expression of A-type K+ channels ( IA) was examined in chick lumbar motoneurons (LMNs) at embryonic days 6 and 11 (E6 and E11). We observed a threefold increase in IA density between E6 and E11 in spinal cord slices and acutely dissociated LMNs. There was no change in current density, kinetics, or voltage dependence of IA in E11 homozygous limbless mutants or in E11 embryos in which hindlimbs were surgically removed at E6. Moreover, chronic in ovo administration of d-tubocurarine, which causes an increase in motoneuron branching on the surface of target muscles, had no effect on IA. Electrical activity played an important role in IA regulation in LMNs in vitro and in ovo. Blocking spontaneous electrical activity of LMNs by chronic in ovo application of mecamylamine or muscimol reduced IA by 80%. LMNs cultured in the presence of TTX also failed to express normal densities of IA, even when the cultures also contained target tissues. The portion of IA that remained after in ovo or in vitro blockade of activity inactivated more quickly than the IA of LMNs that were allowed to discharge spikes. The developmental expression of LMN IA increases significantly during development, and this increase is activity dependent but does not require interactions with target tissues. Ongoing activity also seems to regulate the kinetics of IA inactivation.
APA, Harvard, Vancouver, ISO, and other styles
26

Lamar, E., C. Kintner, and M. Goulding. "Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation." Development 128, no. 8 (April 15, 2001): 1335–46. http://dx.doi.org/10.1242/dev.128.8.1335.

Full text
Abstract:
The proneural basic helix-loop-helix proteins play a crucial role in promoting the differentiation of postmitotic neurons from neural precursors. However, recent evidence from flies and frogs indicates that additional factors act together with the proneural bHLH proteins to promote neurogenesis. We have identified a novel zinc finger protein, neuronal Kruppel-like protein (NKL), that positively regulates neurogenesis in vertebrates. NKL is expressed in Xenopus primary neurons and in differentiating neuronal precursors in the intermediate zone of the mouse and chick neural tube. In frog embryos, NKL is induced by overexpression of Neurogenin (Ngn), arguing that NKL is downstream of the proneural determination genes. Our results show that NKL and a NKL/VP16 fusion protein promote differentiation of neuronal precursors in the embryonic chick spinal cord. Following in ovo misexpression of NKL, neuroepithelial cells exit the cell cycle and differentiate into neurons. Similarly, NKL/VP16 induces extra primary neurons in frogs and upregulates expression of the neural differentiation factors, Xath3 and MyT1, as well as the neuronal markers, N-tubulin and elrC. Our findings establish NKL as a novel positive regulator of neuronal differentiation and provide further evidence that non-bHLH transcription factors function in the neuronal differentiation pathway activated by the vertebrate neuronal determination genes.
APA, Harvard, Vancouver, ISO, and other styles
27

White, Robert B., and Melanie R. Ziman. "Genome-wide discovery of Pax7 target genes during development." Physiological Genomics 33, no. 1 (March 2008): 41–49. http://dx.doi.org/10.1152/physiolgenomics.00256.2007.

Full text
Abstract:
Pax7 plays critical roles in development of brain, spinal cord, neural crest, and skeletal muscle. As a sequence-specific DNA-binding transcription factor, any direct functional role played by Pax7 during development is mediated through target gene selection. Thus, we have sought to identify genes targeted by Pax7 during embryonic development using an unbiased chromatin immunoprecipitation (ChIP) cloning assay to isolate cis-regulatory regions bound by Pax7 in vivo. Sequencing and genomic localization of a library of chromatin-DNA fragments bound by Pax7 has identified 34 candidate Pax7 target genes, with occupancy of a selection confirmed with independent chromatin enrichment tests (ChIP-PCR). To assess the capacity of Pax7 to regulate transcription from these loci, we have cloned alternate transcripts of Pax7 (differing significantly in their DNA binding domain) into expression vectors and transfected cultured cells with these constructs, then analyzed target gene expression levels using RT-PCR. We show that Pax7 directly occupies sites within genes encoding transcription factors Gbx1 and Eya4, the neurogenic cytokine receptor ciliary neurotrophic factor receptor, the neuronal potassium channel Kcnk2, and the signal transduction kinase Camk1d in vivo and regulates the transcriptional state of these genes in cultured cells. This analysis gives us greater insight into the direct functional role played by Pax7 during embryonic development.
APA, Harvard, Vancouver, ISO, and other styles
28

Gonzalez Curto, Gloria, Audrey Der Vartanian, Youcef El-Mokhtar Frarma, Line Manceau, Lorenzo Baldi, Selene Prisco, Nabila Elarouci, et al. "The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition." PLOS Genetics 16, no. 11 (November 11, 2020): e1009164. http://dx.doi.org/10.1371/journal.pgen.1009164.

Full text
Abstract:
The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.
APA, Harvard, Vancouver, ISO, and other styles
29

Masui, Toshihiko, Galvin H. Swift, Michael A. Hale, David M. Meredith, Jane E. Johnson, and Raymond J. MacDonald. "Transcriptional Autoregulation Controls Pancreatic Ptf1a Expression during Development and Adulthood." Molecular and Cellular Biology 28, no. 17 (July 7, 2008): 5458–68. http://dx.doi.org/10.1128/mcb.00549-08.

Full text
Abstract:
ABSTRACT The basic helix-loop-helix (bHLH) transcription factor PTF1a is critical to the development of the embryonic pancreas. It is required early for the formation of the undifferentiated tubular epithelium of the nascent pancreatic rudiment and then becomes restricted to the differentiating acinar cells, where it directs the transcriptional activation of the secretory digestive enzyme genes. Here we report that the complex temporal and spatial expression of Ptf1a is controlled by at least three separable gene-flanking regions. A 14.8-kb control domain immediately downstream of the last Ptf1a exon is highly conserved among mammals and directs expression in the dorsal part of the spinal cord but has very little activity in the embryonic or neonatal pancreas. A 13.4-kb proximal promoter domain initiates limited expression in cells that begin the acinar differentiation program. The activity of the proximal promoter domain is complemented by an adjacent 2.3-kb autoregulatory enhancer that is able to activate a heterologous minimal promoter with high-level penetrance in the pancreases of transgenic mice. During embryonic development, the enhancer initiates expression in the early precursor epithelium and then superinduces expression in acinar cells at the onset of their development. The enhancer contains two evolutionarily conserved binding sites for the active form of PTF1a, a trimeric complex composed of PTF1a, one of the common bHLH E proteins, and either RBPJ or RBPJL. The two sites are essential for acinar cell-specific transcription in transfected cell lines and mice. In mature acinar cells, the enhancer and PTF1a establish an autoregulatory loop that reinforces and maintains Ptf1a expression. Indeed, the trimeric PTF1 complex forms dual autoregulatory loops with the Ptf1a and Rbpjl genes that may maintain the stable phenotype of pancreatic acinar cells.
APA, Harvard, Vancouver, ISO, and other styles
30

Roztocil, T., L. Matter-Sadzinski, C. Alliod, M. Ballivet, and J. M. Matter. "NeuroM, a neural helix-loop-helix transcription factor, defines a new transition stage in neurogenesis." Development 124, no. 17 (September 1, 1997): 3263–72. http://dx.doi.org/10.1242/dev.124.17.3263.

Full text
Abstract:
Genes encoding transcription factors of the helix-loop-helix family are essential for the development of the nervous system in Drosophila and vertebrates. Screens of an embryonic chick neural cDNA library have yielded NeuroM, a novel neural-specific helix-loop-helix transcription factor related to the Drosophila proneural gene atonal. The NeuroM protein most closely resembles the vertebrate NeuroD and Nex1/MATH2 factors, and is capable of transactivating an E-box promoter in vivo. In situ hybridization studies have been conducted, in conjunction with pulse-labeling of S-phase nuclei, to compare NeuroM to NeuroD expression in the developing nervous system. In spinal cord and optic tectum, NeuroM expression precedes that of NeuroD. It is transient and restricted to cells lining the ventricular zone that have ceased proliferating but have not yet begun to migrate into the outer layers. In retina, NeuroM is also transiently expressed in cells as they withdraw from the mitotic cycle, but persists in horizontal and bipolar neurons until full differentiation, assuming an expression pattern exactly complementary to NeuroD. In the peripheral nervous system, NeuroM expression closely follows cell proliferation, suggesting that it intervenes at a similar developmental juncture in all parts of the nervous system. We propose that availability of the NeuroM helix-loop-helix factor defines a new stage in neurogenesis, at the transition between undifferentiated, premigratory and differentiating, migratory neural precursors.
APA, Harvard, Vancouver, ISO, and other styles
31

Kinoshita, Y., C. Kinoshita, J. G. Heuer, and M. Bothwell. "Basic fibroblast growth factor promotes adhesive interactions of neuroepithelial cells from chick neural tube with extracellular matrix proteins in culture." Development 119, no. 3 (November 1, 1993): 943–56. http://dx.doi.org/10.1242/dev.119.3.943.

Full text
Abstract:
Fibroblast growth factors have been increasingly assigned mitogenic and trophic roles in embryonic and postnatal development of the nervous system. Little is known, however, of their functional roles in early embryonic neural development at the neural tube stage. We have examined the effect of basic fibroblast growth factor (bFGF) on the adhesive behavior in culture of dissociated brachio-thoracic neural tube cells from 26- to 30-somite stage chick embryos. Cells plated on collagen-coated substratum at a low density attach to the substratum but show poor cell spreading. Addition of bFGF markedly promotes cell spreading, yielding an epithelial morphology. This effect becomes discernible 6–8 hours after cell plating with bFGF and is completed by 24 hours, with half-maximal and maximal effects attained at around 0.4 and 10 ng/ml, respectively. The number of cells remain largely constant up to 24 hours, and then cell survival and/or mitogenic effects of bFGF become apparent. The cell spreading effect is abolished by cycloheximide treatment, inhibited by the anti-beta 1-integrin antibody CSAT, and accompanied by about twofold increases in the expression of beta 1-integrin and vinculin, components of focal adhesion complexes. Cells cultured with bFGF for 24 hours exhibit enhanced cell attachment and cell spreading with little time lag following cell plating. In earlier embryonic stages, developmentally less mature cells depend much more on bFGF for their cell spreading and survival, while in later stages the cell spreading response to bFGF becomes undetectable as neural tube develops to spinal cord. The cell spreading effect of bFGF is realized on specific extracellular matrix proteins including laminin, fibronectin and collagen, but not on vitronectin, arg-gly-asp peptide (PepTite-2000), poly-L-ornithine or others. These results suggest that, in an early stage of neural tube development, bFGF is involved in the developmental regulation of adhesive interactions between neuroepithelial cells and the extracellular matrix, thereby controlling their proliferation, migration and differentiation.
APA, Harvard, Vancouver, ISO, and other styles
32

Bloch-Gallego, E., I. Le Roux, A. H. Joliot, M. Volovitch, C. E. Henderson, and A. Prochiantz. "Antennapedia homeobox peptide enhances growth and branching of embryonic chicken motoneurons in vitro." Journal of Cell Biology 120, no. 2 (January 15, 1993): 485–92. http://dx.doi.org/10.1083/jcb.120.2.485.

Full text
Abstract:
Spinal motoneuron development is regulated by a variety of intrinsic and extrinsic factors. Among these, a possible role for homeoproteins is suggested by their expression in the motoneuron at relatively late stages. To investigate their possible involvement in motoneuron growth, we adapted a novel technique recently developed in this laboratory, based on the ability of the 60 amino acid-long homeobox of Antennapedia (pAntp) to translocate through the neuronal membrane and to accumulate in the nucleus (Joliot, A. H., C. Pernelle, H. Deagostini-Bazin, and A. Prochiantz. 1991. Proc. Natl. Acad. Sci. USA. 88:1864-1868; Joliot, A. H., A. Triller, M. Volovitch, C. Pernelle, and A. Prochiantz. 1991. New Biol. 3:1121-1134). Motoneurons from E5 chicken spinal cord were incubated with pAntp, purified by panning on SC1 antibody and plated on polyornithine/laminin substrata without further addition of pAntp. After 24 h, neurite outgrowth was already extensive in controls. In cultures of motoneurons that had been preincubated with 10(-7) M pAntp, neurite length was doubled; a similar effect was obtained using postnatal muscle extracts. Morphological analysis using a neurofilament marker specific for axons indicated that the homeobox peptide enhances primarily axonal elongation and branching. To test the hypothesis that the biological activity of pAntp involves its specific attachment to cognate homeobox binding sites present in the genome, we generated a mutant of pAntp called pAntp40P2, that was still able to translocate through the motoneuron membrane and to reach the nucleus, but had lost the specific DNA-binding properties of the wild-type peptide. Preincubation of pAntp40P2 with purified motoneurons failed to increase neurite outgrowth. This finding raises the possibility that motoneuron growth is controlled by homeobox proteins.
APA, Harvard, Vancouver, ISO, and other styles
33

Harvey, S., M. Kakebeeke, A. E. Murphy, and E. J. Sanders. "Growth hormone in the nervous system: autocrine or paracrine roles in retinal function?" Canadian Journal of Physiology and Pharmacology 81, no. 4 (April 1, 2003): 371–84. http://dx.doi.org/10.1139/y03-034.

Full text
Abstract:
Growth hormone (GH) is primarily produced in the pituitary gland, although GH gene expression also occurs in the central and autonomic nervous systems. GH-immunoreactive proteins are abundant in the brain, spinal cord, and peripheral nerves. The appearance of GH in these tissues occurs prior to the ontogenic differentiation of the pituitary gland and prior to the presence of GH in systemic circulation. Neural GH is also present in neonates, juveniles, and adults and is independent of changes in pituitary GH secretion. Neural GH is therefore likely to have local roles in neural development or neural function, especially as GH receptors (GHRs) are widespread in the nervous system. In recent studies, GH mRNA and GH immunoreactive proteins have been identified in the neural retina of embryonic chicks. GH immunoreactivity is present in the optic cup of chick embryos at embryonic day (ED) 3 of the 21-d incubation period. It is widespread in the neural retina by ED 7 but also present in the nonpigmented retina, choroid, sclera, and cornea. This immunoreactivity is associated with proteins in the neural retina comparable in size with those in the adult pituitary gland, although it is primarily associated with 15–16 kDa moieties rather than with the full-length molecule of approximately 22 kDa. These small GH moieties may reflect proteolytic fragments of "monomer" GH and (or) the presence of different GH gene transcripts, since full-length and truncated GH cDNAs are present in retinal tissue extracts. The GH immunoreactivity in the retina persists throughout embryonic development but is not present in juvenile birds (after 6 weeks of age). This immunoreactivity is also associated with the presence of GH receptor (GHR) immunoreactivity and GHR mRNA in ocular tissues of chick embryos. The retina is thus an extrapituitary site of GH gene expression during early development and is probably an autocrine or paracrine site of GH action. The marked ontogenic pattern of GH immunoreactivity in the retina suggests hitherto unsuspected roles for GH in neurogenesis or ocular development.Key words: growth hormone, growth hormone receptor, nervous system, retina, autocrine, paracrine.
APA, Harvard, Vancouver, ISO, and other styles
34

Maden, M., P. Hunt, U. Eriksson, A. Kuroiwa, R. Krumlauf, and D. Summerbell. "Retinoic acid-binding protein, rhombomeres and the neural crest." Development 111, no. 1 (January 1, 1991): 35–43. http://dx.doi.org/10.1242/dev.111.1.35.

Full text
Abstract:
We have investigated by immunocytochemistry the spatial and temporal distribution of cellular retinoic acid-binding protein (CRABP) in the developing nervous system of the chick embryo in order to answer two specific questions: do neural crest cells contain CRABP and where and when do CRABP-positive neuroblasts first arise in the neural tube? With regard to the neural crest, we have compared CRABP staining with HNK-1 staining (a marker of migrating neural crest) and found that they do indeed co-localise, but cephalic and trunk crest behave slightly differently. In the cephalic region in tissues such as the frontonasal mass and branchial arches, HNK-1 immunoreactivity is intense at early stages, but it disappears as CRABP immunoreactivity appears. Thus the two staining patterns do not overlap, but are complementary. In the trunk, HNK-1 and CRABP stain the same cell populations at the same time, such as those migrating through the anterior halves of the somites. In the neural tube, CRABP-positive neuroblasts first appear in the rhombencephalon just after the neural folds close and then a particular pattern of immunoreactivity appears within the rhombomeres of the hindbrain. Labelled cells are present in the future spinal cord, the posterior rhombencephalon up to rhombomere 6 and in rhombomere 4 thus producing a single stripe pattern. This pattern is dynamic and gradually changes as anterior rhombomeres begin to label. The similarity of this initial pattern to the arrangement of certain homeobox genes in the mouse stimulated us to examine the expression of the chicken Hox-2.9 gene. We show that at stage 15 the pattern of expression of this gene is closely related to that of CRABP. The relationship between retinoic acid, CRABP and homeobox genes is discussed.
APA, Harvard, Vancouver, ISO, and other styles
35

BULLOCK, SIMON L., TANYA M. JOHNSON, QI BAO, R. COLIN HUGHES, PAUL J. D. WINYARD, and ADRIAN S. WOOLF. "Galectin-3 Modulates Ureteric Bud Branching in Organ Culture of the Developing Mouse Kidney." Journal of the American Society of Nephrology 12, no. 3 (March 2001): 515–23. http://dx.doi.org/10.1681/asn.v123515.

Full text
Abstract:
Abstract. Galectin-3 is a mammalian β-galactoside—specific lectin with functions in cell growth, adhesion, and neoplastic transformation. On the basis of expression patterns in humans, it is proposed that galectin-3 modulates fetal collecting duct growth. This article provides evidence that galectin-3 can modulate branching morphogenesis of the mouse ureteric bud/collecting duct lineage. With the use of immunohistochemistry, galectin-3 was not detected in early metanephrogenesis but was upregulated later in fetal kidney maturation when the protein was prominent in basal domains of medullary collecting ducts. Addition of galectin-3 to embryonic days 11 and 12 whole metanephric cultures inhibited ureteric bud branching, whereas galectin-1 did not perturb morphogenesis, nor did a galectin-3 mutant lacking wild-type high-affinity binding to extended oligosaccharides. Exogenous galectin-3 retarded conversion of renal mesenchyme to nephrons in whole metanephric explants but did not affect nephron induction by spinal cord in isolated renal mesenchymes. Finally, addition of a blocking antiserum to galectin-3 caused dilation and distortion of developing epithelia in embryonic day 12 metanephroi cultured for 1 wk. The upregulation of galectin-3 protein during kidney maturation, predominantly at sites where it could mediate cell/matrix interactions, seems to modulate growth of the ureteric tree.
APA, Harvard, Vancouver, ISO, and other styles
36

Ruberte, E., V. Friederich, P. Chambon, and G. Morriss-Kay. "Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development." Development 118, no. 1 (May 1, 1993): 267–82. http://dx.doi.org/10.1242/dev.118.1.267.

Full text
Abstract:
We have studied the transcript distribution of the retinoic acid receptors (RARs) and the cytoplasmic retinoid binding proteins during embryonic development of the mouse nervous system. Of the three retinoic acid receptors, only RAR-gamma was not expressed in developing neural structures. RAR-beta and RAR-alpha both showed rostral limits of expression in the medulla oblongata equivalent to their patterns of expression in the neuroepithelium of the early hindbrain neural tube. Within their expression domains in the spinal cord and brain, RAR-alpha was ubiquitously expressed, whereas RAR-beta transcripts showed very specific patterns of expression, suggesting that this receptor is involved in mediating retinoic acid-induced gene expression in relation to the development of specific neural structures or pathways. The cytoplasmic binding proteins, cellular retinoic acid binding proteins type I and II (CRABP I and CRABP II) and cellular retinol binding protein type I (CRBP I), were widely distributed in developing neural structures. Their differential spatiotemporal patterns of expression suggest that fine regional control of availability of retinoic acid (RA) to the nuclear receptors plays an important role in organization and differentiation of the nervous system. For instance, expression of CRABP I in the migrating cells that give rise to the olivary and pontine nuclei, which develop abnormally in conditions of retinoid excess, is consistent with observations from a variety of other systems indicating that CRABP I limits the access of RA to the nuclear receptors in normal physiological conditions. Similarly, expression of CRBP I in the choroid plexuses, which develop abnormally in conditions of vitamin A deficiency, is consistent with observations indicating that this binding protein mediates the synthesis of RA in tissues requiring high levels of RA for their normal developmental programme. RAR-beta and CRABP II, which are both RA-inducible, were coexpressed with CRBP I in the choroid plexus and in many other sites, perhaps reflecting the fact that all three genes are RA-inducible. The function of CRABP II is not well understood; its domains of expression showed overlaps with both CRABP I and CRBP I.
APA, Harvard, Vancouver, ISO, and other styles
37

Hao, Aijun, Veronica Novotny-Diermayr, Wei Bian, Baohong Lin, Cheh Peng Lim, Naihe Jing, and Xinmin Cao. "The LIM/Homeodomain Protein Islet1 Recruits Janus Tyrosine Kinases and Signal Transducer and Activator of Transcription 3 and Stimulates Their Activities." Molecular Biology of the Cell 16, no. 4 (April 2005): 1569–83. http://dx.doi.org/10.1091/mbc.e04-08-0664.

Full text
Abstract:
Islet1 (Isl1) belongs to the LIM homeodomain transcription factor family. Its roles in differentiation of motor neurons and organogenesis of pancreas and heart have been revealed. However, less is known about its regulatory mechanism and the target genes. In this study, we identified interactions between Isl1 and Janus tyrosine kinase (JAK), as well as signal transducer and activator of transcription (Stat)3, but not Stat1 and Stat5, in mammalian cells. We found that Isl1 not only forms a complex with Jak1 and Stat3 but also triggers the tyrosine phosphorylation of Jak1 and its kinase activity, thereby elevating the tyrosine phosphorylation, DNA binding activity, and target gene expression of Stat3. In vivo, the tyrosine-phosphorylated Stat3 was colocalized with Isl1 in the nucleus of the mouse motor neurons in spinal cord after nerve injury. Correspondingly, electroporation of Isl1 and Stat3 into the neural tube of chick embryos resulted in the activation of a reporter gene expression controlled by a Stat3 regulatory sequence, and cotransfection of Isl1 and Stat3 promoted the proliferation of the mouse motor neuron cells. Our data suggest a novel role of Isl1 as an adaptor for Jak1 and Stat3 and reveal a possible functional link between LIM homeodomain transcription factors and the Jak-Stat pathway.
APA, Harvard, Vancouver, ISO, and other styles
38

Tanaka, Shinya, Yusuke Kamachi, Aki Tanouchi, Hiroshi Hamada, Naihe Jing, and Hisato Kondoh. "Interplay of SOX and POU Factors in Regulation of the Nestin Gene in Neural Primordial Cells." Molecular and Cellular Biology 24, no. 20 (October 15, 2004): 8834–46. http://dx.doi.org/10.1128/mcb.24.20.8834-8846.2004.

Full text
Abstract:
ABSTRACT Intermediate-filament Nestin and group B1 SOX transcription factors (SOX1/2/3) are often employed as markers for neural primordium, suggesting their regulatory link. We have identified adjacent and essential SOX and POU factor binding sites in the Nestin neural enhancer. The 30-bp sequence of the enhancer including these sites (Nes30) showed a nervous system-specific and SOX-POU-dependent enhancer activity in multimeric forms in transfection assays and was utilized in assessing the specificity of the synergism; combinations of either group B1 or group C SOX (SOX11) with class III POU proved effective. In embryonic day 13.5 mouse spinal cord, Nestin was expressed in the cells with nuclei in the ventricular and subventricular zones. SOX1/2/3 expression was confined to the nuclei of the ventricular zone; SOX11 localized to the nuclei of both subventricular (high-level expression) and intermediate (low-level expression) zones. Class III POU (Brn2) was expressed at high levels, localizing to the nucleus in the ventricular and subventricular zones; moderate expression was observed in the intermediate zone, distributed in the cytoplasm. These data support the model that synergic interactions between group B1/C SOX and class III POU within the nucleus determine Nestin expression. Evidence also suggests that such interactions are involved in the regulation of neural primordial cells.
APA, Harvard, Vancouver, ISO, and other styles
39

Wehrle, B., and M. Chiquet. "Tenascin is accumulated along developing peripheral nerves and allows neurite outgrowth in vitro." Development 110, no. 2 (October 1, 1990): 401–15. http://dx.doi.org/10.1242/dev.110.2.401.

Full text
Abstract:
The extracellular matrix protein, tenascin, appears in a restricted pattern during organ morphogenesis. Here we studied the expression of tenascin along developing peripheral nerves in chick embryos and tested its activity as a substrate for cultured neurons. Motor axons grow out through the tenascin-rich, anterior part of the sclerotome. Shortly after, tenascin surrounds axon fascicles of ventral roots. At the limb levels, outgrowing axons accumulate in the tenascin-containing girdle region forming a plexus. In the limb, tenascin first appears in bracket-like structures that surround the precartilage cell condensations of the femur and humerus, respectively. These regions coincide with the channels along which axons first grow in from the girdle plexus to form the limb nerves. Later, the major tenascin staining is associated with the cartilage and tendon primordia, and not with the limb nerves. We used tenascin as a substrate for cultured neural explants and single cells in order to test for its function in neurite outgrowth. Dissociated embryonic neurons of various types attached to mixed polylysine/tenascin substrates and sprouted rapidly after a lag of several hours. Outgrowth was inhibited and neurites were detached by anti-tenascin antibodies. On substrates coated with tenascin alone, neurite outgrowth was achieved from 3 day spinal cord explants. Whereas growth cones were well spread and rapidly moving, the neurites were poorly attached, straight and rarely branched. We speculate that in vivo tenascin allows axonal outgrowth, but inhibits branching and supports fasciculation of newly formed axons.
APA, Harvard, Vancouver, ISO, and other styles
40

Stronati, Eleonora, Stefano Biagioni, Mario Fiore, Mauro Giorgi, Giancarlo Poiana, Camilla Toselli, and Emanuele Cacci. "Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells." International Journal of Molecular Sciences 22, no. 14 (July 15, 2021): 7566. http://dx.doi.org/10.3390/ijms22147566.

Full text
Abstract:
Nervous system development involves proliferation and cell specification of progenitor cells into neurons and glial cells. Unveiling how this complex process is orchestrated under physiological conditions and deciphering the molecular and cellular changes leading to neurological diseases is mandatory. To date, great efforts have been aimed at identifying gene mutations associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the RNA/DNA binding protein Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) have been associated with motor neuron degeneration in rodents and humans. Furthermore, increased levels of the wild-type protein can promote neuronal cell death. Despite the well-established causal link between FUS mutations and ALS, its role in neural cells remains elusive. In order to shed new light on FUS functions we studied its role in the control of neural stem progenitor cell (NSPC) properties. Here, we report that human wild-type Fused in Sarcoma (WT FUS), exogenously expressed in mouse embryonic spinal cord-derived NSPCs, was localized in the nucleus, caused cell cycle arrest in G1 phase by affecting cell cycle regulator expression, and strongly reduced neuronal differentiation. Furthermore, the expression of the human mutant form of FUS (P525L-FUS), associated with early-onset ALS, drives the cells preferentially towards a glial lineage, strongly reducing the number of developing neurons. These results provide insight into the involvement of FUS in NSPC proliferation and differentiation into neurons and glia.
APA, Harvard, Vancouver, ISO, and other styles
41

Umbhauer, M., A. Penzo-Mendez, L. Clavilier, J. Boucaut, and J. Riou. "Signaling specificities of fibroblast growth factor receptors in early Xenopus embryo." Journal of Cell Science 113, no. 16 (August 15, 2000): 2865–75. http://dx.doi.org/10.1242/jcs.113.16.2865.

Full text
Abstract:
Formation of mesoderm and posterior structures in early Xenopus embryos is dependent on fibroblast growth factor (FGF) signaling. Although several FGF receptors (FGFRs) are expressed in the early embryo, their respective role in these processes remains poorly understood. We provide evidence that FGFR-1 and FGFR-4 signals elicit distinct responses both in naive and neuralized ectodermal cells. We show that naive ectodermal cells expressing a constitutively active chimeric torso-FGFR-1 (t-R1) are converted into mesoderm in a Ras-dependent manner, while those expressing torso-FGFR-4 (t-R4) differentiate into epidermis without significant activation of Erk-1. In neuralized ectoderm, expression of t-R4 causes the up-regulation of the midbrain markers En-2 and Wnt-1, but not of the hindbrain nor the spinal cord markers Krox20 and Hoxb9. Mutation of tyr(776) in the phospholipase C-(gamma) binding consensus sequence YLDL of t-R4 completely abolishes En-2 and Wnt-1 induction. In contrast to t-R4, platelet derived growth factor (PDGF)-dependent FGFR-1 activation in neuralized ectodermal cells expressing a chimeric PDGFR-FGFR-1 receptor results in the expression of Krox20 and Hoxb9. A similar effect is observed when an inducible form of oncogenic Raf is expressed, therefore implicating FGFR-1 and Raf in the transduction of FGF-caudalizing signals in neural tissue. Our results suggest that FGFR-1 and FGFR-4 transduce distinct signals in embryonic cells, and mainly differ in their ability to activate the Ras/MAPK pathway.
APA, Harvard, Vancouver, ISO, and other styles
42

López-Sánchez, Noelia, Zaira González-Fernández, Michio Niinobe, Kazuaki Yoshikawa, and José María Frade. "Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins." Physiological Genomics 30, no. 2 (July 2007): 156–71. http://dx.doi.org/10.1152/physiolgenomics.00249.2006.

Full text
Abstract:
In mammals, the type II melanoma antigen (Mage) protein family is constituted by at least 10 closely related members that are expressed in different tissues, including the nervous system. These proteins are believed to regulate cell cycle withdrawal, neuronal differentiation, and apoptosis. However, the analysis of their specific function has been complicated by functional redundancy. In accordance with previous studies in teleosts and Drosophila, we present evidence that only one mage gene exists in genomes from protists, fungi, plants, nematodes, insects, and nonmammalian vertebrates. We have identified the chicken mage gene and cloned the cDNA encoding the chick Mage protein (CMage). CMage shares close homology with the type II Mage protein family, and, as previously shown for the type II Mage proteins Necdin and Mage-G1, it can interact with the transcription factor E2F-1. CMage is expressed in specific regions of the developing nervous system including the retinal ganglion cell layer, the ventral horn of the spinal cord, and the dorsal root ganglia, coinciding with the expression of the neurotrophin receptor p75 (p75NTR) in these regions. We show that the intracellular domain of p75NTR can interact with both CMage and Necdin, thus preventing the binding of the latter proteins to the transcription factor E2F-1, and facilitating the proapoptotic activity of E2F-1 in N1E-115 differentiating neurons. The presence of a single mage gene in the chicken genome, together with the close functional resemblance between CMage and Necdin, makes this species ideal to further analyze signal transduction through type II Mage proteins.
APA, Harvard, Vancouver, ISO, and other styles
43

Olsen, C. L., and W. R. Jeffery. "A forkhead gene related to HNF-3beta is required for gastrulation and axis formation in the ascidian embryo." Development 124, no. 18 (September 15, 1997): 3609–19. http://dx.doi.org/10.1242/dev.124.18.3609.

Full text
Abstract:
We have isolated a member of the HNF-3/forkhead gene family in ascidians as a means to determine the role of winged-helix genes in chordate development. The MocuFH1 gene, isolated from a Molgula oculata cDNA library, exhibits a forkhead DNA-binding domain most similar to zebrafish axial and rodent HNF-3beta. MocuFH1 is a single copy gene but there is at least one other related forkhead gene in the M. oculata genome. The MocuFH1 gene is expressed in the presumptive endoderm, mesenchyme and notochord cells beginning during the late cleavage stages. During gastrulation, MocuFH1 expression occurs in the prospective endoderm cells, which invaginate at the vegetal pole, and in the presumptive notochord and mesenchyme cells, which involute over the anterior and lateral lips of the blastopore, respectively. However, this gene is not expressed in the presumptive muscle cells, which involute over the posterior lip of the blastopore. MocuFH1 expression continues in the same cell lineages during neurulation and axis formation, however, during the tailbud stage, MocuFH1 is also expressed in ventral cells of the brain and spinal cord. The functional role of the MocuFH1 gene was studied using antisense oligodeoxynucleotides (ODNs), which transiently reduce MocuFH1 transcript levels during gastrulation. Embryos treated with antisense ODNs cleave normally and initiate gastrulation. However, gastrulation is incomplete, some of the endoderm and notochord cells do not enter the embryo and undergo subsequent movements, and axis formation is abnormal. In contrast, the prospective muscle cells, which do not express MocuFH1, undergo involution and later express muscle actin and acetylcholinesterase, markers of muscle cell differentiation. The results suggest that MocuFH1 is required for morphogenetic movements of the endoderm and notochord precursor cells during gastrulation and axis formation. The effects of inhibiting MocuFH1 expression on embryonic axis formation in ascidians are similar to those reported for knockout mutations of HNF-3beta in the mouse, suggesting that HNF-3/forkhead genes have an ancient and fundamental role in organizing the body plan in chordates.
APA, Harvard, Vancouver, ISO, and other styles
44

Feijen, A., M. J. Goumans, A. J. van den, and Eijnden-van Raaij. "Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins." Development 120, no. 12 (December 1, 1994): 3621–37. http://dx.doi.org/10.1242/dev.120.12.3621.

Full text
Abstract:
Using in situ hybridization we have studied the localization of the messenger RNAs encoding the inhibin/activin subunits (alpha, beta A, beta B), the activin-binding protein follistatin and activin receptors (IIA, IIB) in mouse embryos during postimplantation development. From 6.5- to 9.5-days post coitum (p.c.) activin beta A and beta B subunit expression was restricted to the decidua, while activin receptor type IIB messages were exclusively detected in the embryo. Expression of activin receptor type IIA was apparent in the embryo as early as 9.5 days p.c. In contrast, follistatin transcripts were present in both the decidua and the embryo at the early postimplantation stages. In particular, the primitive streak region, specific rhombomeres in the developing hindbrain, somites, paraxial mesoderm and parietal endoderm cells attached to the Reichert's membrane showed strong expression of follistatin. In 10.5- and 12.5-day embryos expression of the beta A subunit message was abundant in mesenchymal tissue, in particular in the developing face, the body wall, the heart, precartilage condensations in the limb and in the mesenchyme of structures that show both epithelial and mesenchymal components, including tissues of the embryonic digestive, respiratory and genital tracts. The distribution of beta B transcripts was quite different from that observed for beta A. beta B is strongly expressed in selected regions of the brain, in particular the fore- and hindbrain, and in the spinal cord. Specific hybridization signals were also present in the epithelium of the stomach and oesophagus. Common sites of beta A and beta B expression are blood vessels, intervertebral disc anlagen, mesenchymal condensations in the flank region and the gonad primordium. The latter organ is the only site in the embryo where the alpha subunit is expressed, and thus where inhibit activity may be present. During the period of organogenesis the sites of expression of activin receptors type IIA and IIB messenger RNA (mRNA) generally coincide with or are adjacent to the sites of beta subunit expression. Differences in the expression patterns of the receptor RNAs are the whisker follicles, where type IIA is expressed, and the metanephros and the forebrain where type IIB transcripts are present. Taken together, the present data suggest that follistatin, but not one of the known activin forms (A,B,AB) is involved in early postimplantation development.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
45

Vieceli, Felipe M., and C. Y. Irene Yan. "RNA-Seq Analysis of Differential Gene Expression in Electroporated Chick Embryonic Spinal Cord." Journal of Visualized Experiments, no. 93 (November 1, 2014). http://dx.doi.org/10.3791/51951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Armijo-Weingart, Lorena, Andrea Ketschek, Rajiv Sainath, Almudena Pacheco, George M. Smith, and Gianluca Gallo. "Neurotrophins induce fission of mitochondria along embryonic sensory axons." eLife 8 (December 2, 2019). http://dx.doi.org/10.7554/elife.49494.

Full text
Abstract:
Neurotrophins are growth factors that have a multitude of roles in the nervous system. We report that neurotrophins induce the fission of mitochondria along embryonic chick sensory axons driven by combined PI3K and Mek-Erk signaling. Following an initial burst of fission, a new steady state of neurotrophin-dependent mitochondria length is established. Mek-Erk controls the activity of the fission mediator Drp1 GTPase, while PI3K may contribute to the actin-dependent aspect of fission. Drp1-mediated fission is required for nerve growth factor (NGF)-induced collateral branching in vitro and expression of dominant negative Drp1 impairs the branching of axons in the developing spinal cord in vivo. Fission is also required for NGF-induced mitochondria-dependent intra-axonal translation of the actin regulatory protein cortactin, a previously determined component of NGF-induced branching. Collectively, these observations unveil a novel biological function of neurotrophins; the regulation of mitochondrial fission and steady state mitochondrial length and density in axons.
APA, Harvard, Vancouver, ISO, and other styles
47

Hoeppner, Luke H., Resham Bhattacharya, Ying Wang, Ramcharan Singh Angom, Enfeng Wang, Shamit Dutta, Heike R. Doeppler, Isobel A. Scarisbrick, Peter Storz, and Debabrata Mukhopadhyay. "Abstract 633: Protein Kinase D Regulates VEGFR-2 Transcriptional Activity in Endothelial Cells Through AP-2β." Arteriosclerosis, Thrombosis, and Vascular Biology 37, suppl_1 (May 2017). http://dx.doi.org/10.1161/atvb.37.suppl_1.633.

Full text
Abstract:
Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGFR-2 to control vasculogenesis and angiogenesis. Dysregulation of these physiological processes contributes to the pathologies of heart disease, stroke, and cancer. Protein kinase D (PKD) plays a crucial role in the regulation of angiogenesis by modulating endothelial cell proliferation and migration. In human umbilical vein endothelial cells (HUVEC) and human blood outgrowth endothelial cells (BOEC), knockdown of PKD-1 or PKD-2 downregulates VEGFR-2 and significantly inhibits VEGF-induced endothelial cell proliferation and migration. We sought to determine the molecular mechanism through which PKD modulates VEGFR-2 expression. Based on bioinformatics data, activating enhancer binding protein 2 (AP2) binding sites exist within the VEGFR-2 promoter. Thus, we hypothesized PKD may downregulate VEGFR-2 through AP2-mediated transcriptional repression of the VEGFR-2 promoter. Indeed, AP2β binds the VEGFR-2 promoter upon PKD knockdown in HUVEC as evident by chromatin immunoprecipitation assay. Luciferase reporter assays using serial deletions of AP2β binding sites within the VEGFR-2 promoter revealed transcriptional activity negatively correlated with the number of AP2β binding sites, thus confirming negative regulation of VEGFR-2 transcription by AP2β. Next, using siRNA, we demonstrated that upregulation of AP2β decreased VEGFR-2 expression and loss of AP2β enhanced VEGFR-2 expression. In vivo studies confirmed this finding as we observed increased VEGFR-2 immunostaining in the dorsal horn of the spinal cord of embryonic day 13 AP2β knockout mice. We hypothesize that PKD directly regulates AP2β function by serine phosphorylation and ongoing studies are being conducted to determine phosphorylation sites in AP2β directly regulated by PKD. Taken together, we demonstrate AP2β negatively regulates VEGFR-2 transcription and VEGFR-2 is a major downstream target of PKD. Our findings describing how PKD regulates angiogenesis may contribute to the development of therapies to improve the clinical outcome of patients afflicted by heart disease, stroke, and cancer.
APA, Harvard, Vancouver, ISO, and other styles
48

Hu, Wenquan, Ujala Rana, Zhong Liu, Baofeng Zhao, Suresh Kumar, Paula North, and Qing (Robert) Miao. "Abstract 327: Blood Vessels Need Ras Signaling to Maintain the Structure Integrity." Arteriosclerosis, Thrombosis, and Vascular Biology 37, suppl_1 (May 2017). http://dx.doi.org/10.1161/atvb.37.suppl_1.327.

Full text
Abstract:
The localization of prenylated Ras at the plasma membrane promotes activation of Ras by receptor tyrosine kinases, such as VEGF and FGF receptors. Although Ras has been implicated in angiogenesis, the exact regulatory mechanisms controlling Ras translocation and activation are currently unclear because little is known regarding molecules that control Ras translocation. Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B, a cell surface ligand involved in blood vessel remodeling. Our recent study demonstrated that NgBR has a conserved hydrophobic pocket that promotes the membrane accumulation of Ras by directly binding prenylated Ras at the plasma membrane. As we expected, NgBR knockdown in endothelial cells diminishes the membrane localization of Ras and consequently abolishes VEGF/FGF-stimulated activation of Ras and Ras-mediated signalings such as phosphorylation of Akt and ERK. Therefore, NgBR knockout mouse is a unique animal model for examining the effects of Ras plasma membrane localization and Ras signaling on the morphogenesis of endothelial cells. Genetic deletion of NgBR in endothelial cells resulted in embryonic lethality and dilated cerebral blood vessels with fewer pericytes, which resembles the vascular lesion happened in cerebral cavernous malformation (CCM). CCM is characterized by an abnormal cluster of enlarged blood vessels in the brain and spinal cord and caused by dysfunction of three CCM genes (CCM1/2/3), which are required for maintaining endothelial cell (EC) junctions and pericyte recruitment. Our studies showed that NgBR transcript levels decrease in human CCM lesion, and NgBR endothelial specific knockout in mice results in decreased transcription of CCM1/2 in the yolk sac. Additional support for NgBR-CCM1/2 connections comes from studies using cultured human brain microvascular ECs, where loss of NgBR expression also decreases CCM1/2 transcription via NgBR-mediated Ras pathway, which is required for the expression of key transcription factors that are involved in regulating transcription of CCM1/2 genes. Our findings suggest that NgBR-Ras signaling pathway regulates CCM1/2 expression, and that disrupting this signaling pathway results in cerebrovascular malformation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography