Academic literature on the topic 'Embedding Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Embedding Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Embedding Network"
Bandyopadhyay, Sambaran, N. Lokesh, and M. N. Murty. "Outlier Aware Network Embedding for Attributed Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 12–19. http://dx.doi.org/10.1609/aaai.v33i01.330112.
Full textArmandpour, Mohammadreza, Patrick Ding, Jianhua Huang, and Xia Hu. "Robust Negative Sampling for Network Embedding." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 3191–98. http://dx.doi.org/10.1609/aaai.v33i01.33013191.
Full textHe, Tao, Lianli Gao, Jingkuan Song, Xin Wang, Kejie Huang, and Yuanfang Li. "SNEQ: Semi-Supervised Attributed Network Embedding with Attention-Based Quantisation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4091–98. http://dx.doi.org/10.1609/aaai.v34i04.5832.
Full textLi, Yu, Yuan Tian, Jiawei Zhang, and Yi Chang. "Learning Signed Network Embedding via Graph Attention." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4772–79. http://dx.doi.org/10.1609/aaai.v34i04.5911.
Full textWang, Yueyang, Ziheng Duan, Binbing Liao, Fei Wu, and Yueting Zhuang. "Heterogeneous Attributed Network Embedding with Graph Convolutional Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 10061–62. http://dx.doi.org/10.1609/aaai.v33i01.330110061.
Full textZhong, Jianan, Hongjun Qiu, and Benyun Shi. "Dynamics-Preserving Graph Embedding for Community Mining and Network Immunization." Information 11, no. 5 (May 2, 2020): 250. http://dx.doi.org/10.3390/info11050250.
Full textZhuo, Wei, Qianyi Zhan, Yuan Liu, Zhenping Xie, and Jing Lu. "Context Attention Heterogeneous Network Embedding." Computational Intelligence and Neuroscience 2019 (August 21, 2019): 1–15. http://dx.doi.org/10.1155/2019/8106073.
Full textLu, Ruili, Pengfei Jiao, Yinghui Wang, Huaming Wu, and Xue Chen. "Layer Information Similarity Concerned Network Embedding." Complexity 2021 (August 26, 2021): 1–10. http://dx.doi.org/10.1155/2021/2260488.
Full textMakarov, Ilya, Mikhail Makarov, and Dmitrii Kiselev. "Fusion of text and graph information for machine learning problems on networks." PeerJ Computer Science 7 (May 11, 2021): e526. http://dx.doi.org/10.7717/peerj-cs.526.
Full textJi, Fujiao, Zhongying Zhao, Hui Zhou, Heng Chi, and Chao Li. "A comparative study on heterogeneous information network embeddings." Journal of Intelligent & Fuzzy Systems 39, no. 3 (October 7, 2020): 3463–73. http://dx.doi.org/10.3233/jifs-191796.
Full textDissertations / Theses on the topic "Embedding Network"
Bays, Leonardo Richter. "Virtual network embedding in software-defined networks." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/178658.
Full textResearch on network virtualization has been active for a number of years, during which a number of virtual network embedding (VNE) approaches have been proposed. These approaches, however, neglect important operational requirements imposed by the underlying virtualization platforms. In the case of SDN/OpenFlow-based virtualization, a crucial example of an operational requirement is the availability of enough memory space for storing flow rules in OpenFlow devices. Due to these circumstances, we advocate that VNE must be performed with some degree of knowledge of the underlying physical networks, otherwise the deployment may suffer from unpredictable or even unsatisfactory performance. Considering SDN/OpenFlow-based physical networks as an important virtualization scenario, we propose a framework based on VNE and OpenFlow coordination for proper deployment of virtual networks (VNs). The proposed approach unfolds in the following main contributions a virtual infrastructure abstraction that allows a service provider to represent the details of his/her VN requirements in a comprehensive manner; a privacy-aware compiler that is able to preprocess this detailed VN request in order to obfuscate sensitive information and derive computable operational requirements; a model for embedding requested VNs that aims at maximizing their feasibility at the physical level. Results obtained through an evaluation of our framework demonstrate that taking such operational requirements into account, as well as accurately assessing them, is of paramount importance to ensure the “health” of VNs hosted on top of the virtualization platform.
Ghazar, Tay. "Efficient Virtual Network Embedding onto A Hierarchical-Based Substrate Network Framework." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23932.
Full textChochlidakis, Georgios. "Mobility-aware virtual network embedding techniques for next-generation mobile networks." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/mobilityaware-virtual-network-embedding-techniques-for-nextgeneration-mobile-networks(174e714f-2a4a-447a-bcd5-d526170377fd).html.
Full textDietrich, David [Verfasser]. "Multi-provider network service embedding / David Dietrich." Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/109909643X/34.
Full textWåhlin, Lova. "Towards Machine Learning Enabled Automatic Design of IT-Network Architectures." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249213.
Full textDet är många maskininlärningstekniker som inte kan appliceras på data i form av en graf. Tekniker som graph embedding, med andra ord att mappa en graf till ett vektorrum, can öppna upp för en större variation av maskininlärningslösningar. Det här examensarbetet evaluerar hur väl statiska graph embeddings kan fånga viktiga säkerhetsegenskaper hos en IT-arkitektur som är modellerad som en graf, med syftet att användas i en reinforcement learning algoritm. Dom egenskaper i grafen som används för att validera embedding metoderna är hur lång tid det skulle ta för en obehörig attackerare att penetrera IT-arkitekturen. Algorithmerna som implementeras är node embedding metoderna node2vec och gat2vec, samt graph embedding metoden graph2vec. Dom prediktiva resultaten är jämförda med två basmetoder. Resultaten av alla tre metoderna visar tydliga förbättringar relativt basmetoderna, där F1 värden i några fall uppvisar en fördubbling. Det går alltså att dra slutsatsen att att alla tre metoder kan fånga upp säkerhetsegenskaper i en IT-arkitektur. Dock går det inte att säga att statiska graph embeddings är den bästa lösningen till att representera en graf i en reinforcement learning algoritm, det finns andra komplikationer med statiska metoder, till exempel att embeddings från dessa metoder inte kan generaliseras till data som inte var använd till träning. För att kunna dra en absolut slutsats krävs mer undersökning, till exempel av dynamiska graph embedding metoder.
Moura, Leonardo Fernando dos Santos. "Branch & price for the virtual network embedding problem." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/115213.
Full textVirtualization allows one or more virtual networks to share physical infrastructures. The Virtual Network Embedding problem (VNEP) is one of the main challenges in the virtualization of physical networks. This problem consists in mapping a virtual network into a physical network while respecting capacity constraints. This work shows that finding a feasible solution for this problem is NP-Hard. However, many instances can be solved up to optimality in practice by exploiting the problem structure. We present a Branch & Price algorithm applied to instances of different topologies and sizes. The experimental results suggest that the proposed algorithm is superior to the Integer Linear Programming model solved by CPLEX.
DeFreeuw, Jonathan Daniel. "Embedding Network Information for Machine Learning-based Intrusion Detection." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/99342.
Full textMS
Boutigny, François. "Multidomain virtual network embedding under security-oriented requirements applied to 5G network slices." Electronic Thesis or Diss., Institut polytechnique de Paris, 2019. http://www.theses.fr/2019IPPAS002.
Full text5G brings a new concept called network slicing. This technology makes it possible to generalize the business model of MVNOs to companies in need to operate a network, without it being their core business. Each slice is an end-to-end, dedicated and customized virtual network, over a shared infrastructure; this infrastructure itself is provided by the interconnection of infrastructure providers: we refer to this case as a multi-domain infrastructure.The objective of this thesis is to study the allocation of these slices in such a multi-domain infrastructure. The problem is known as Virtual Network Embedding (VNE). It is an NP-hard problem. Practically, the VNE problem looks for which physical resources to associate a set of virtual elements. Physical resources describe what they can offer. Virtual elements describe what they require. Linking these offers and requests is the key to solve the VNE problem.In this thesis, we focused on modeling and implementing security requirements. Indeed, we expect that the initiators of the slices belong to areas distant from telecommunications. In the same way that they know little about this field, we can expect that their needs, especially in security, are novel in the slice context.This thesis presents an algorithm able to handling various requirements, according to an extensible model based on a Satisfiability Modulo Theories (SMT) solver. Compared to Integer Linear Programming (ILP), more common in the VNE field, this formulation allows to express the satisfaction constraints in a more transparent way, and allows to audit all the constraints.Moreover, being aware that infrastructure providers are reluctant to disclose information about their physical resources, we propose a resolution limiting this disclosure. This system has been successfully implemented and tested during the Ph.D
Törnegren, Viktor. "Applying Similarity Condition Embedding Network to an industrial fashion dataset." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283351.
Full textFör att skapa en mode riktigt klädes outfit behöver man ta hänsyn till flertalet olika faktoer, som t.ex. säsong, färg samt i vilken typ av sammanghang klädesutstyrseln är tänkt att bäras inom etc. Detta är naturligtvis en svår uppgift för en människa att göra men det är ett ännu svårare problem för en dator att lösa. För att lära en algorithm att ta hänsyn till olika likhetsvillkor introducerade Veit, Belongie och Karaletsos [1] och Vasileva m. fl. [2] två olika modeller som använder sig av förbestämda likhetsvillkor. Vidare blev Tan m. fl. [3] inspirerad av [1, 2] och skapade en algorithm som kan lära sig likhetsvillkor via oövervakad inlärning, denna modell testade dom på ett dataset som innehåller klädesutstyrsal som är skapade av vanliga människor. I detta examensarbete presenterar vi ett nytt modedataset som har skapats med hjälp av modeexperter från Henns & Mauritz AB. Vidare bevisar vi att våran implementering av Similarity Condition Embedding Network (SCE-net) från [3] kan välja ut ett klädesplagg som tillsammans med tidigare utvalda plagg skapar en outfit samt utvärdera om klädesplaggen i en outfit är kompatibla eller inte. Vi utför dessa tester på data som innehåller kläder för både män och kvinnor. Vi visar också att SCE-net tränas med data som innehåller kläder för ett kön för att senare prediktera kläder i outfits för ett annat kön. Vidare tillhandahåller vi resultat som påvisar att SCE-net generaliserar väl till osedda kategorier genom att träna modellen på outfits som inte innehåller accessoarer och sedan testar vi modellen på klädes utstyrslar som innehåller accessoarer. Utöver detta introducerar vi även ett dataset som innehåller artiklar från kunders kundvagnar från Hennes & Mauritz onlinebutiker samt deras fysiska butiker. Med hjälp av denna data visar vi att våran implementering av SCE-net kan prediktera nästa vara i en kunds varukorg.
Okuno, Akifumi. "Studies on Neural Network-Based Graph Embedding and Its Extensions." Kyoto University, 2020. http://hdl.handle.net/2433/259075.
Full textBooks on the topic "Embedding Network"
Wijers, Jean Paul, ed. Managing Authentic Relationships. NL Amsterdam: Amsterdam University Press, 2019. http://dx.doi.org/10.5117/9789462988613.
Full textCampbell, Roy Harold. The embedded operating system project: Mid-year report, May 1985. Urbana, Ill: Software Systems Research Group, University of Illinois at Urbana-Champaign, Dept. of Computer Science, 1985.
Find full textUnger, Herwig, and Wolfgang A. Halang, eds. Autonomous Systems 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783186848109.
Full textKwon, Younggeun. Embeddings in parallel systems. 1993.
Find full textRowley, Robert A. Fault-tolerant ring embedding in De Bruijn networks. 1993.
Find full textRowley, Robert A. Fault-tolerant ring embedding in De Bruijn networks. 1993.
Find full textKubek, Maria M., and Zhong Li, eds. Autonomous Systems 2018. VDI Verlag, 2018. http://dx.doi.org/10.51202/9783186862105.
Full textSchäfer, Anne, and Rüdiger Schmitt-Beck. A Vicious Circle of Demobilization? Context Effects on Turnout at the 2009 and 2013 German Federal Elections. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198792130.003.0006.
Full textUnited States. National Aeronautics and Space Administration., ed. The embedded operating system project: Mid-year report, May 1985. Urbana, Ill: Software Systems Research Group, University of Illinois at Urbana-Champaign, Dept. of Computer Science, 1985.
Find full textBook chapters on the topic "Embedding Network"
Zhang, Jiawei, and Philip S. Yu. "Network Embedding." In Broad Learning Through Fusions, 385–413. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12528-8_11.
Full textChen, Weizheng, Xianling Mao, Xiangyu Li, Yan Zhang, and Xiaoming Li. "PNE: Label Embedding Enhanced Network Embedding." In Advances in Knowledge Discovery and Data Mining, 547–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57454-7_43.
Full textMakarov, Ilya, Olga Gerasimova, Pavel Sulimov, and Leonid E. Zhukov. "Co-authorship Network Embedding and Recommending Collaborators via Network Embedding." In Lecture Notes in Computer Science, 32–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-11027-7_4.
Full textRahman, Muntasir Raihan, Issam Aib, and Raouf Boutaba. "Survivable Virtual Network Embedding." In NETWORKING 2010, 40–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12963-6_4.
Full textHuang, Xiao, Jundong Li, and Xia Hu. "Accelerated Attributed Network Embedding." In Proceedings of the 2017 SIAM International Conference on Data Mining, 633–41. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611974973.71.
Full textLi, Jundong, Chen Chen, Hanghang Tong, and Huan Liu. "Multi-Layered Network Embedding." In Proceedings of the 2018 SIAM International Conference on Data Mining, 684–92. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2018. http://dx.doi.org/10.1137/1.9781611975321.77.
Full textYuan, Shuhan, Xintao Wu, and Yang Xiang. "SNE: Signed Network Embedding." In Advances in Knowledge Discovery and Data Mining, 183–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57529-2_15.
Full textLi, Chaozhuo, Zhoujun Li, Senzhang Wang, Yang Yang, Xiaoming Zhang, and Jianshe Zhou. "Semi-Supervised Network Embedding." In Database Systems for Advanced Applications, 131–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55753-3_9.
Full textKong, Chao, Baoxiang Chen, Shaoying Li, Qi Zhou, Dongfang Wang, and Liping Zhang. "D2NE: Deep Dynamic Network Embedding." In Advanced Data Mining and Applications, 168–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65390-3_14.
Full textZhang, Xia, Weizheng Chen, and Hongfei Yan. "TLINE: Scalable Transductive Network Embedding." In Information Retrieval Technology, 98–110. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48051-0_8.
Full textConference papers on the topic "Embedding Network"
Zhang, Yizhou, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. "DANE: Domain Adaptive Network Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/606.
Full textShen, Xiaobo, Shirui Pan, Weiwei Liu, Yew-Soon Ong, and Quan-Sen Sun. "Discrete Network Embedding." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/493.
Full textSun, Yiwei, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant Honavar. "MEGAN: A Generative Adversarial Network for Multi-View Network Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/489.
Full textGuo, Junliang, Linli Xu, and Jingchang Liu. "SPINE: Structural Identity Preserved Inductive Network Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/333.
Full textHuang, Hong, Ruize Shi, Wei Zhou, Xiao Wang, Hai Jin, and Xiaoming Fu. "Temporal Heterogeneous Information Network Embedding." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/203.
Full textZhang, Jie, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. "ProNE: Fast and Scalable Network Representation Learning." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/594.
Full textYang, Liang, Yuexue Wang, Junhua Gu, Chuan Wang, Xiaochun Cao, and Yuanfang Guo. "JANE: Jointly Adversarial Network Embedding." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/192.
Full textHuang, Hong, Zixuan Fang, Xiao Wang, Youshan Miao, and Hai Jin. "Motif-Preserving Temporal Network Embedding." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/172.
Full textDong, Yuxiao, Ziniu Hu, Kuansan Wang, Yizhou Sun, and Jie Tang. "Heterogeneous Network Representation Learning." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/677.
Full textZhang, Hongming, Liwei Qiu, Lingling Yi, and Yangqiu Song. "Scalable Multiplex Network Embedding." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/428.
Full textReports on the topic "Embedding Network"
Bano, Masooda, and Zeena Oberoi. Embedding Innovation in State Systems: Lessons from Pratham in India. Research on Improving Systems of Education (RISE), December 2020. http://dx.doi.org/10.35489/bsg-rise-wp_2020/058.
Full textChakraborty, I., B. Kelley, B. Gallagher, and D. Merl. Performance Evaluation of Network Flow and Device Classification using Network Features and Device Embeddings. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668490.
Full textKelly, Luke. Lessons Learned on Cultural Heritage Protection in Conflict and Protracted Crisis. Institute of Development Studies (IDS), April 2021. http://dx.doi.org/10.19088/k4d.2021.068.
Full text