Academic literature on the topic 'Embedding de graph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Embedding de graph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Embedding de graph"
Liang, Jiongqian, Saket Gurukar, and Srinivasan Parthasarathy. "MILE: A Multi-Level Framework for Scalable Graph Embedding." Proceedings of the International AAAI Conference on Web and Social Media 15 (May 22, 2021): 361–72. http://dx.doi.org/10.1609/icwsm.v15i1.18067.
Full textDuong, Chi Thang, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen, and Karl Aberer. "Scalable robust graph embedding with Spark." Proceedings of the VLDB Endowment 15, no. 4 (December 2021): 914–22. http://dx.doi.org/10.14778/3503585.3503599.
Full textZhou, Houquan, Shenghua Liu, Danai Koutra, Huawei Shen, and Xueqi Cheng. "A Provable Framework of Learning Graph Embeddings via Summarization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 4 (June 26, 2023): 4946–53. http://dx.doi.org/10.1609/aaai.v37i4.25621.
Full textFang, Peng, Arijit Khan, Siqiang Luo, Fang Wang, Dan Feng, Zhenli Li, Wei Yin, and Yuchao Cao. "Distributed Graph Embedding with Information-Oriented Random Walks." Proceedings of the VLDB Endowment 16, no. 7 (March 2023): 1643–56. http://dx.doi.org/10.14778/3587136.3587140.
Full textMao, Yuqing, and Kin Wah Fung. "Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts." Journal of the American Medical Informatics Association 27, no. 10 (October 1, 2020): 1538–46. http://dx.doi.org/10.1093/jamia/ocaa136.
Full textMakarov, Ilya, Dmitrii Kiselev, Nikita Nikitinsky, and Lovro Subelj. "Survey on graph embeddings and their applications to machine learning problems on graphs." PeerJ Computer Science 7 (February 4, 2021): e357. http://dx.doi.org/10.7717/peerj-cs.357.
Full textFRIESEN, TYLER, and VASSILY OLEGOVICH MANTUROV. "EMBEDDINGS OF *-GRAPHS INTO 2-SURFACES." Journal of Knot Theory and Its Ramifications 22, no. 12 (October 2013): 1341005. http://dx.doi.org/10.1142/s0218216513410058.
Full textMohar, Bojan. "Combinatorial Local Planarity and the Width of Graph Embeddings." Canadian Journal of Mathematics 44, no. 6 (December 1, 1992): 1272–88. http://dx.doi.org/10.4153/cjm-1992-076-8.
Full textChen, Mingyang, Wen Zhang, Zhen Yao, Yushan Zhu, Yang Gao, Jeff Z. Pan, and Huajun Chen. "Entity-Agnostic Representation Learning for Parameter-Efficient Knowledge Graph Embedding." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 4 (June 26, 2023): 4182–90. http://dx.doi.org/10.1609/aaai.v37i4.25535.
Full textXie, Anze, Anders Carlsson, Jason Mohoney, Roger Waleffe, Shanan Peters, Theodoros Rekatsinas, and Shivaram Venkataraman. "Demo of marius." Proceedings of the VLDB Endowment 14, no. 12 (July 2021): 2759–62. http://dx.doi.org/10.14778/3476311.3476338.
Full textDissertations / Theses on the topic "Embedding de graph"
Zhang, Zheng. "Explorations in Word Embeddings : graph-based word embedding learning and cross-lingual contextual word embedding learning." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS369/document.
Full textWord embeddings are a standard component of modern natural language processing architectures. Every time there is a breakthrough in word embedding learning, the vast majority of natural language processing tasks, such as POS-tagging, named entity recognition (NER), question answering, natural language inference, can benefit from it. This work addresses the question of how to improve the quality of monolingual word embeddings learned by prediction-based models and how to map contextual word embeddings generated by pretrained language representation models like ELMo or BERT across different languages.For monolingual word embedding learning, I take into account global, corpus-level information and generate a different noise distribution for negative sampling in word2vec. In this purpose I pre-compute word co-occurrence statistics with corpus2graph, an open-source NLP-application-oriented Python package that I developed: it efficiently generates a word co-occurrence network from a large corpus, and applies to it network algorithms such as random walks. For cross-lingual contextual word embedding mapping, I link contextual word embeddings to word sense embeddings. The improved anchor generation algorithm that I propose also expands the scope of word embedding mapping algorithms from context independent to contextual word embeddings
Ahmed, Algabli Shaima. "Learning the Graph Edit Distance through embedding the graph matching." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669612.
Full textLos gráficos son estructuras de datos abstractas que se utilizan para modelar problemas reales con dos entidades básicas: nodos y aristas. Cada nodo o vértice representa un punto de interés relevante de un problema, y cada borde representa la relación entre estos puntos. Se podrían atribuir nodos y bordes para aumentar la precisión del modelo, lo que significa que estos atributos podrían variar de vectores de características a etiquetas de descripción. Debido a esta versatilidad, se han encontrado muchas aplicaciones en campos como visión por computadora, biomédicos y análisis de redes, etc. La primera parte de esta tesis presenta un método general para aprender automáticamente los costos de edición involucrados en la Edición de Gráficos Distancia. El método se basa en incrustar pares de gráficos y su mapeo de nodo a nodo de verdad fundamental en un espacio euclidiano. De esta manera, el algoritmo de aprendizaje no necesita calcular ninguna coincidencia de gráfico tolerante a errores, que es el principal inconveniente de otros métodos debido a su complejidad computacional exponencial intrínseca. Sin embargo, el método de aprendizaje tiene la principal restricción de que los costos de edición deben ser constantes. Luego probamos este método con varias bases de datos de gráficos y también lo aplicamos para realizar el registro de imágenes. En la segunda parte de la tesis, este método se especializa en la verificación de huellas digitales. Las dos diferencias principales con respecto al otro método son que solo definimos los costos de edición de sustitución en los nodos. Por lo tanto, suponemos que los gráficos no tienen aristas. Y también, el método de aprendizaje no se basa en una clasificación lineal sino en una regresión lineal.
Graphs are abstract data structures used to model real problems with two basic entities: nodes and edges. Each node or vertex represents a relevant point of interest of a problem, and each edge represents the relationship between these points. Nodes and edges could be attributed to increase the accuracy of the model, which means that these attributes could vary from feature vectors to description labels. Due to this versatility, many applications have been found in fields such as computer vision, biomedics, and network analysis, and so on .The first part of this thesis presents a general method to automatically learn the edit costs involved in the Graph Edit Distance. The method is based on embedding pairs of graphs and their ground-truth node-tonode mapping into a Euclidean space. In this way, the learning algorithm does not need to compute any Error-Tolerant Graph Matching, which is the main drawback of other methods due to its intrinsic exponential computational complexity. Nevertheless, the learning method has the main restriction that edit costs have to be constant. Then we test this method with several graph databases and also we apply it to perform image registration. In the second part of the thesis, this method is particularized to fingerprint verification. The two main differences with respect to the other method are that we only define the substitution edit costs on the nodes. Thus, we assume graphs do not have edges. And also, the learning method is not based on a linear classification but on a linear regression.
Carroll, Douglas Edmonds. "Embedding parameterized graph classes into normed spaces." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1324389171&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textRocha, Mário. "The embedding of complete bipartite graphs onto grids with a minimum grid cutwidth." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2311.
Full textDube, Matthew P. "An Embedding Graph for 9-Intersection Topological Spatial Relations." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/DubeMP2009.pdf.
Full textMONDAL, DEBAJYOTI. "Embedding a Planar Graph on a Given Point Set." Springer-Verlag Berlin, 2012. http://hdl.handle.net/1993/8869.
Full textMitropolitsky, Milko. "On the Impact of Graph Embedding on Device Placement." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280435.
Full textModerna neurala nätverk (NN) -modeller kräver mer data och parametrar för att utföra allt mer komplexa uppgifter. När en NN-modell blir för stor för att rymmas på en dator, kan den behöva distribueras över flera datorer. Vilka vil- kor som ska användas vid distributionen av en NN-modell, och mer konkret hur olika delar av modellen ska spridas över olika datorer kallas enhetsplats- problemet. Avhandlingen kommer att fokusera på detta problem. Tidigare till- vägagångssätt har krävt att placeringspolicyn skapas manuellt av människor med expertis i detta område. Eftersom den metoden inte går att skala upp fo- kuserar man på att hantera enhetsplaceringsproblemet genom att automatisera processen med reinforcement learning (RL). De flesta av RL-systemen inne- håller olika typer av grafinbäddningsmoduler.I arbetet försöker vi öka kunskapen om hur man hanterar problem med enhetsplacering genom att mäta och bedöma effekterna av grafinbäddningar på kvaliteten på villkoren för enhetsplacering. Vi jämför de olika metoderna på två sätt: runtime improvement and computation time. Den förstnämnda är ett värde för hur mycket snabbare den nya placeringspolicyn är i jämförelse med en baslinje. Det andra beskriver hur mycket tid som krävs av systemet för att uppnå den förbättrade runtime.Den här avhandlingen bygger på tidigare forskning inom området av enhetsplacering för att undersöka hur olika topp- moderna metoder till enhetsplaceringsprinciper. Grafinbäddningsarkitekturer som vi jämför i avhandlignen är Placeto (används som en baslinje), Graph- SAGE och P-GNN.Vi uppnår en förbättring av runtime med en ökning på 23.967% när vi använder P-GNN jämfört med Placeto och 31.164% ökning från baslinjen. GraphSAGE ger 1.165% bättre resultat än Placeto med samma installation. När det gäller beräkningstiden har GraphSAGE en förbättring på 11.560% jämfört med Placeto, medan P-GNN är 6.950% långsammare än baslinjen.Med resultaten kan vi bekräfta att grafinbäddningsarkitektur kan ha en be- tydande inverkan på enhetsplaceringsprinciper och deras prestanda. Desto mer invecklad grafinbäddningsarkitekturer fångar mer data om grafen och dess to- pologi ger runtime improvment. Däremot blir kan komplexiteten kosta i com- putation time på grund av det tid som krävs för att utbilda placeringssystemet.
Behzadi, Lila. "An improved spring-based graph embedding algorithm and LayoutShow, a Java environment for graph drawing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq43368.pdf.
Full textTahraoui, Mohammed Amin. "Coloring, packing and embedding of graphs." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995041.
Full textOkuno, Akifumi. "Studies on Neural Network-Based Graph Embedding and Its Extensions." Kyoto University, 2020. http://hdl.handle.net/2433/259075.
Full textBooks on the topic "Embedding de graph"
Fu, Yun, and Yunqian Ma, eds. Graph Embedding for Pattern Analysis. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4457-2.
Full textShaw, Blake. Graph Embedding and Nonlinear Dimensionality Reduction. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textGuattery, Stephen. Graph embedding techniques for bounding condition numbers of incomplete factor preconditioners. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Find full textCenter, Langley Research, ed. Graph embedding techniques for bounding condition numbers of incomplete factor preconditioners. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textRiesen, Kaspar. Graph classification and clustering based on vector space embedding. New Jersey: World Scientific, 2010.
Find full textYanpei, Liu. Embeddability in graphs. Beijing, China: Science Press, 1995.
Find full textL, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textL, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textPaulheim, Heiko, Petar Ristoski, and Jan Portisch. Embedding Knowledge Graphs with RDF2vec. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30387-6.
Full textInstitute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Find full textBook chapters on the topic "Embedding de graph"
Goyal, Palash. "Graph Embedding." In Machine Learning for Data Science Handbook, 339–51. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24628-9_15.
Full textRokka Chhetri, Sujit, and Mohammad Abdullah Al Faruque. "Dynamic Graph Embedding." In Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis, 209–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37962-9_10.
Full textKrause, Franz, Kabul Kurniawan, Elmar Kiesling, Jorge Martinez-Gil, Thomas Hoch, Mario Pichler, Bernhard Heinzl, and Bernhard Moser. "Leveraging Semantic Representations via Knowledge Graph Embeddings." In Artificial Intelligence in Manufacturing, 71–85. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46452-2_5.
Full textEstrella-Balderrama, Alejandro, J. Joseph Fowler, and Stephen G. Kobourov. "Graph Simultaneous Embedding Tool, GraphSET." In Graph Drawing, 169–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_17.
Full textAuer, Christopher, Christian Bachmaier, Franz Josef Brandenburg, and Andreas Gleißner. "Classification of Planar Upward Embedding." In Graph Drawing, 415–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_39.
Full textJouili, Salim, and Salvatore Tabbone. "Graph Embedding Using Constant Shift Embedding." In Recognizing Patterns in Signals, Speech, Images and Videos, 83–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17711-8_9.
Full textHarel, David, and Yehuda Koren. "Graph Drawing by High-Dimensional Embedding." In Graph Drawing, 207–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36151-0_20.
Full textKatz, Bastian, Marcus Krug, Ignaz Rutter, and Alexander Wolff. "Manhattan-Geodesic Embedding of Planar Graphs." In Graph Drawing, 207–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0_21.
Full textDi Giacomo, Emilio, Fabrizio Frati, Radoslav Fulek, Luca Grilli, and Marcus Krug. "Orthogeodesic Point-Set Embedding of Trees." In Graph Drawing, 52–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_6.
Full textDornheim, Christoph. "Graph Embedding with Topological Cycle-Constraints." In Graph Drawing, 155–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-46648-7_16.
Full textConference papers on the topic "Embedding de graph"
Giri, Pulak Ranjan, Mori Kurokawa, and Kazuhiro Saito. "Fast Variational Knowledge Graph Embedding." In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 386–87. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.10318.
Full textBai, Yunsheng, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, and Wei Wang. "Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/275.
Full textLuo, Gongxu, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu, and Lifang He. "Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/381.
Full textPan, Shirui, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. "Adversarially Regularized Graph Autoencoder for Graph Embedding." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/362.
Full textRahman, Tahleen, Bartlomiej Surma, Michael Backes, and Yang Zhang. "Fairwalk: Towards Fair Graph Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/456.
Full textSun, Zequn, Wei Hu, Qingheng Zhang, and Yuzhong Qu. "Bootstrapping Entity Alignment with Knowledge Graph Embedding." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/611.
Full textWan, Hai, Yonghao Luo, Bo Peng, and Wei-Shi Zheng. "Representation Learning for Scene Graph Completion via Jointly Structural and Visual Embedding." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/132.
Full textSinger, Uriel, Ido Guy, and Kira Radinsky. "Node Embedding over Temporal Graphs." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/640.
Full textZhang, Hengtong, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li, and Kui Ren. "Data Poisoning Attack against Knowledge Graph Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/674.
Full textZhang, Yizhou, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. "DANE: Domain Adaptive Network Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/606.
Full text