Academic literature on the topic 'Embedded Systems, Computer Vision, Object Classification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Embedded Systems, Computer Vision, Object Classification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Embedded Systems, Computer Vision, Object Classification"

1

Medina, Adán, Juana Isabel Méndez, Pedro Ponce, Therese Peffer, and Arturo Molina. "Embedded Real-Time Clothing Classifier Using One-Stage Methods for Saving Energy in Thermostats." Energies 15, no. 17 (August 23, 2022): 6117. http://dx.doi.org/10.3390/en15176117.

Full text
Abstract:
Energy-saving is a mandatory research topic since the growing population demands additional energy yearly. Moreover, climate change requires more attention to reduce the impact of generating more CO2. As a result, some new research areas need to be explored to create innovative energy-saving alternatives in electrical devices that have high energy consumption. One research area of interest is the computer visual classification for reducing energy consumption and keeping thermal comfort in thermostats. Usually, connected thermostats obrtain information from sensors for detecting persons and scheduling autonomous operations to save energy. However, there is a lack of knowledge of how computer vision can be deployed in embedded digital systems to analyze clothing insulation in connected thermostats to reduce energy consumption and keep thermal comfort. The clothing classification algorithm embedded in a digital system for saving energy could be a companion device in connected thermostats to obtain the clothing insulation. Currently, there is no connected thermostat in the market using complementary computer visual classification systems to analyze the clothing insulation factor. Hence, this proposal aims to develop and evaluate an embedded real-time clothing classifier that could help to improve the efficiency of heating and ventilation air conditioning systems in homes or buildings. This paper compares six different one-stage object detection and classification algorithms trained with a small custom dataset in two embedded systems and a personal computer to compare the models. In addition, the paper describes how the classifier could interact with the thermostat to tune the temperature set point to save energy and keep thermal comfort. The results confirm that the proposed real-time clothing classifier could be implemented as a companion device in connected thermostats to provide additional information to end-users about making decisions on saving energy.
APA, Harvard, Vancouver, ISO, and other styles
2

Sengan, Sudhakar, Ketan Kotecha, Indragandhi Vairavasundaram, Priya Velayutham, Vijayakumar Varadarajan, Logesh Ravi, and Subramaniyaswamy Vairavasundaram. "Real-Time Automatic Investigation of Indian Roadway Animals by 3D Reconstruction Detection Using Deep Learning for R-3D-YOLOv3 Image Classification and Filtering." Electronics 10, no. 24 (December 10, 2021): 3079. http://dx.doi.org/10.3390/electronics10243079.

Full text
Abstract:
Statistical reports say that, from 2011 to 2021, more than 11,915 stray animals, such as cats, dogs, goats, cows, etc., and wild animals were wounded in road accidents. Most of the accidents occurred due to negligence and doziness of drivers. These issues can be handled brilliantly using stray and wild animals-vehicle interaction and the pedestrians’ awareness. This paper briefs a detailed forum on GPU-based embedded systems and ODT real-time applications. ML trains machines to recognize images more accurately than humans. This provides a unique and real-time solution using deep-learning real 3D motion-based YOLOv3 (DL-R-3D-YOLOv3) ODT of images on mobility. Besides, it discovers methods for multiple views of flexible objects using 3D reconstruction, especially for stray and wild animals. Computer vision-based IoT devices are also besieged by this DL-R-3D-YOLOv3 model. It seeks solutions by forecasting image filters to find object properties and semantics for object recognition methods leading to closed-loop ODT.
APA, Harvard, Vancouver, ISO, and other styles
3

Osipov, Aleksey, Ekaterina Pleshakova, Sergey Gataullin, Sergey Korchagin, Mikhail Ivanov, Anton Finogeev, and Vibhash Yadav. "Deep Learning Method for Recognition and Classification of Images from Video Recorders in Difficult Weather Conditions." Sustainability 14, no. 4 (February 20, 2022): 2420. http://dx.doi.org/10.3390/su14042420.

Full text
Abstract:
The sustainable functioning of the transport system requires solving the problems of identifying and classifying road users in order to predict the likelihood of accidents and prevent abnormal or emergency situations. The emergence of unmanned vehicles on urban highways significantly increases the risks of such events. To improve road safety, intelligent transport systems, embedded computer vision systems, video surveillance systems, and photo radar systems are used. The main problem is the recognition and classification of objects and critical events in difficult weather conditions. For example, water drops, snow, dust, and dirt on camera lenses make images less accurate in object identification, license plate recognition, vehicle trajectory detection, etc. Part of the image is overlapped, distorted, or blurred. The article proposes a way to improve the accuracy of object identification by using the Canny operator to exclude the damaged areas of the image from consideration by capturing the clear parts of objects and ignoring the blurry ones. Only those parts of the image where this operator has detected the boundaries of the objects are subjected to further processing. To classify images by the remaining whole parts, we propose using a combined approach that includes the histogram-oriented gradient (HOG) method, a bag-of-visual-words (BoVW), and a back propagation neural network (BPNN). For the binary classification of the images of the damaged objects, this method showed a significant advantage over the classical method of convolutional neural networks (CNNs) (79 and 65% accuracies, respectively). The article also presents the results of a multiclass classification of the recognition objects on the basis of the damaged images, with an accuracy spread of 71 to 86%.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Dong, Alok Desai, and Dah-Jye Lee. "Using synthetic basis feature descriptor for motion estimation." International Journal of Advanced Robotic Systems 15, no. 5 (September 1, 2018): 172988141880383. http://dx.doi.org/10.1177/1729881418803839.

Full text
Abstract:
Development of advanced driver assistance systems has become an important focus for automotive industry in recent years. Within this field, many computer vision–related functions require motion estimation. This article discusses the implementation of a newly developed SYnthetic BAsis (SYBA) feature descriptor for matching feature points to generate a sparse motion field for analysis. Two motion estimation examples using this sparse motion field are presented. One uses motion classification for monitoring vehicle motion to detect abrupt movement and to provide a rough estimate of the depth of the scene in front of the vehicle. The other one detects moving objects for vehicle surrounding monitoring to detect vehicles with movements that could potentially cause collisions. This algorithm detects vehicles that are speeding up from behind, slowing down in the front, changing lane, or passing. Four videos are used to evaluate these algorithms. Experimental results verify SYnthetic BAsis’ performance and the feasibility of using the resulting sparse motion field in embedded vision sensors for motion-based driver assistance systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Mohan, Navya, and James Kurian. "Design and implementation of shape-based feature extraction engine for vision systems using Zynq SoC." International journal of electrical and computer engineering systems 13, no. 2 (February 28, 2022): 109–17. http://dx.doi.org/10.32985/ijeces.13.2.3.

Full text
Abstract:
With the great impact of vision and Artificial Intelligence (AI) technology in the fields of quality control, robotic assembly and robot navigation, the hardware implementation of object detection and classification algorithms on embedded platforms has got ever-increasing attention these days. The real-time performance with optimum resource utilization of the implementation and its reliability as well as the robustness of the underlying algorithm is the overarching challenges in this field. In this work, an approach employing a fast and accurate vision-based shape-detection algorithm has been proposed and its implementation in heterogeneous System on Chip (SoC) is discussed. The proposed system determines centroid distance and its Fourier Transform for the object feature vector extraction and is realized in the Zybo Z7 development board. The ARM processor is responsible for communication with the external systems as well as for writing data to the Block RAM (BRAM), the control signals for efficient execution of the memory operations are designed and implemented using Finite State Machine (FSM) in the Programmable Logic (PL) fabric. Shape feature vector determination has been accelerated using custom modules developed in Verilog, taking full advantage of the possible parallelization and pipeline stages. Meanwhile, industry-standard Advanced Extendable Interface (AXI) buses are adopted for encapsulating standardized IP cores and building high-speed data exchange bridges between units within Zynq-7000. The developed system processes images of size 32 × 64 in real-time and can generate feature descriptors at a clock rate of 62MHz. Moreover, the method yields a shape feature vector that is computationally light, scalable and rotation invariant. The hardware design is validated using MATLAB for comparative studies
APA, Harvard, Vancouver, ISO, and other styles
6

Kalms, Lester, Pedram Amini Rad, Muhammad Ali, Arsany Iskander, and Diana Göhringer. "A Parametrizable High-Level Synthesis Library for Accelerating Neural Networks on FPGAs." Journal of Signal Processing Systems 93, no. 5 (March 15, 2021): 513–29. http://dx.doi.org/10.1007/s11265-021-01651-5.

Full text
Abstract:
AbstractIn recent years, Convolutional Neural Network CNN have been incorporated in a large number of applications, including multimedia retrieval and image classification. However, CNN based algorithms are computationally and resource intensive and therefore difficult to be used in embedded systems. FPGA based accelerators are becoming more and more popular in research and industry due to their flexibility and energy efficiency. However, the available resources and the size of the on-chip memory can limit the performance of the FPGA accelerator for CNN. This work proposes an High-Level Synthesis HLS library for CNN algorithms. It contains seven different streaming-capable CNN (plus two conversion) functions for creating large neural networks with deep pipelines. The different functions have many parameter settings (e.g. for resolution, feature maps, data types, kernel size, parallelilization, accuracy, etc.), which also enable compile-time optimizations. Our functions are integrated into the HiFlipVX library, which is an open source HLS FPGA library for image processing and object detection. This offers the possibility to implement different types of computer vision applications with one library. Due to the various configuration and parallelization possibilities of the library functions, it is possible to implement a high-performance, scalable and resource-efficient system, as our evaluation of the MobileNets algorithm shows.
APA, Harvard, Vancouver, ISO, and other styles
7

Parise, Cesare V., Cesare V. Parise, and Marc O. Ernst. "Multisensory mechanisms for perceptual disambiguation. A classification image study on the stream–bounce illusion." Multisensory Research 26 (2013): 96–97. http://dx.doi.org/10.1163/22134808-000s0068.

Full text
Abstract:
Sensory information is inherently ambiguous, and a given signal can in principle correspond to infinite states of the world. A primary task for the observer is therefore to disambiguate sensory information and accurately infer the actual state of the world. Here, we take the stream–bounce illusion as a tool to investigate perceptual disambiguation from a cue-integration perspective, and explore how humans gather and combine sensory information to resolve ambiguity. In a classification task, we presented two bars moving in opposite directions along the same trajectory meeting at the centre. We asked observers to classify such ambiguous displays as streaming or bouncing. Stimuli were embedded in dynamic audiovisual noise, so that through a reverse correlation analysis, we could estimate the perceptual templates used for the classification. Such templates, the classification images, describe the spatiotemporal statistical properties of the noise, which are selectively associated to either percept. Our results demonstrate that the features of both visual and auditory noise, and interactions thereof, strongly biased the final percept towards streaming or bouncing. Computationally, participants’ performance is explained by a model involving a matching stage, where the perceptual systems cross-correlate the sensory signals with the internal templates; and an integration stage, where matching estimates are linearly combined to determine the final percept. These results demonstrate that observers use analogous MLE-like integration principles for categorical stimulus properties (stream/bounce decisions) as they do for continuous estimates (object size, position, etc.). Finally, the time-course of the classification images reveal that most of the decisional weight for disambiguation is assigned to information gathered before the physical crossing of the stimuli, thus highlighting a predictive nature of perceptual disambiguation.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Junfeng, Dehai Zhang, Yu Ma, and Qing Liu. "Lane Image Detection Based on Convolution Neural Network Multi-Task Learning." Electronics 10, no. 19 (September 27, 2021): 2356. http://dx.doi.org/10.3390/electronics10192356.

Full text
Abstract:
Based on deep neural network multi-task learning technology, lane image detection is studied to improve the application level of driverless technology, improve assisted driving technology and reduce traffic accidents. The lane line database published by Caltech and Tucson company is used to extract the ROI (Region of Interest), scale, and inverse perspective transformation as well as to preprocess the image, so as to enrich the data set and improve the efficiency of the algorithm. In this study, ZFNet is used to replace the basic networks of VPGNet, and their structures are changed to improve the detection efficiency. Multi-label classification, grid box regression and object mask are used as three task modules to build a multi-task learning network named ZF-VPGNet. Considering that neural networks will be combined with embedded systems in the future, the network will be compressed to CZF-VPGNet without excessively affecting the accuracy. Experimental results show that the vision system of driverless technology in this study achieved good test results. In the case of fuzzy lane line and missing lane line mark, the improved algorithm can still detect and obtain the correct results, and achieves high accuracy and robustness. CZF-VPGNet can achieve high real-time performance (26FPS), and a single forward pass takes about 36 ms or less.
APA, Harvard, Vancouver, ISO, and other styles
9

Nayyar, Anand, Pijush Kanti Dutta Pramankit, and Rajni Mohana. "Introduction to the Special Issue on Evolving IoT and Cyber-Physical Systems: Advancements, Applications, and Solutions." Scalable Computing: Practice and Experience 21, no. 3 (August 1, 2020): 347–48. http://dx.doi.org/10.12694/scpe.v21i3.1568.

Full text
Abstract:
Internet of Things (IoT) is regarded as a next-generation wave of Information Technology (IT) after the widespread emergence of the Internet and mobile communication technologies. IoT supports information exchange and networked interaction of appliances, vehicles and other objects, making sensing and actuation possible in a low-cost and smart manner. On the other hand, cyber-physical systems (CPS) are described as the engineered systems which are built upon the tight integration of the cyber entities (e.g., computation, communication, and control) and the physical things (natural and man-made systems governed by the laws of physics). The IoT and CPS are not isolated technologies. Rather it can be said that IoT is the base or enabling technology for CPS and CPS is considered as the grownup development of IoT, completing the IoT notion and vision. Both are merged into closed-loop, providing mechanisms for conceptualizing, and realizing all aspects of the networked composed systems that are monitored and controlled by computing algorithms and are tightly coupled among users and the Internet. That is, the hardware and the software entities are intertwined, and they typically function on different time and location-based scales. In fact, the linking between the cyber and the physical world is enabled by IoT (through sensors and actuators). CPS that includes traditional embedded and control systems are supposed to be transformed by the evolving and innovative methodologies and engineering of IoT. Several applications areas of IoT and CPS are smart building, smart transport, automated vehicles, smart cities, smart grid, smart manufacturing, smart agriculture, smart healthcare, smart supply chain and logistics, etc. Though CPS and IoT have significant overlaps, they differ in terms of engineering aspects. Engineering IoT systems revolves around the uniquely identifiable and internet-connected devices and embedded systems; whereas engineering CPS requires a strong emphasis on the relationship between computation aspects (complex software) and the physical entities (hardware). Engineering CPS is challenging because there is no defined and fixed boundary and relationship between the cyber and physical worlds. In CPS, diverse constituent parts are composed and collaborated together to create unified systems with global behaviour. These systems need to be ensured in terms of dependability, safety, security, efficiency, and adherence to real‐time constraints. Hence, designing CPS requires knowledge of multidisciplinary areas such as sensing technologies, distributed systems, pervasive and ubiquitous computing, real-time computing, computer networking, control theory, signal processing, embedded systems, etc. CPS, along with the continuous evolving IoT, has posed several challenges. For example, the enormous amount of data collected from the physical things makes it difficult for Big Data management and analytics that includes data normalization, data aggregation, data mining, pattern extraction and information visualization. Similarly, the future IoT and CPS need standardized abstraction and architecture that will allow modular designing and engineering of IoT and CPS in global and synergetic applications. Another challenging concern of IoT and CPS is the security and reliability of the components and systems. Although IoT and CPS have attracted the attention of the research communities and several ideas and solutions are proposed, there are still huge possibilities for innovative propositions to make IoT and CPS vision successful. The major challenges and research scopes include system design and implementation, computing and communication, system architecture and integration, application-based implementations, fault tolerance, designing efficient algorithms and protocols, availability and reliability, security and privacy, energy-efficiency and sustainability, etc. It is our great privilege to present Volume 21, Issue 3 of Scalable Computing: Practice and Experience. We had received 30 research papers and out of which 14 papers are selected for publication. The objective of this special issue is to explore and report recent advances and disseminate state-of-the-art research related to IoT, CPS and the enabling and associated technologies. The special issue will present new dimensions of research to researchers and industry professionals with regard to IoT and CPS. Vivek Kumar Prasad and Madhuri D Bhavsar in the paper titled "Monitoring and Prediction of SLA for IoT based Cloud described the mechanisms for monitoring by using the concept of reinforcement learning and prediction of the cloud resources, which forms the critical parts of cloud expertise in support of controlling and evolution of the IT resources and has been implemented using LSTM. The proper utilization of the resources will generate revenues to the provider and also increases the trust factor of the provider of cloud services. For experimental analysis, four parameters have been used i.e. CPU utilization, disk read/write throughput and memory utilization. Kasture et al. in the paper titled "Comparative Study of Speaker Recognition Techniques in IoT Devices for Text Independent Negative Recognition" compared the performance of features which are used in state of art speaker recognition models and analyse variants of Mel frequency cepstrum coefficients (MFCC) predominantly used in feature extraction which can be further incorporated and used in various smart devices. Mahesh Kumar Singh and Om Prakash Rishi in the paper titled "Event Driven Recommendation System for E-Commerce using Knowledge based Collaborative Filtering Technique" proposed a novel system that uses a knowledge base generated from knowledge graph to identify the domain knowledge of users, items, and relationships among these, knowledge graph is a labelled multidimensional directed graph that represents the relationship among the users and the items. The proposed approach uses about 100 percent of users' participation in the form of activities during navigation of the web site. Thus, the system expects under the users' interest that is beneficial for both seller and buyer. The proposed system is compared with baseline methods in area of recommendation system using three parameters: precision, recall and NDGA through online and offline evaluation studies with user data and it is observed that proposed system is better as compared to other baseline systems. Benbrahim et al. in the paper titled "Deep Convolutional Neural Network with TensorFlow and Keras to Classify Skin Cancer" proposed a novel classification model to classify skin tumours in images using Deep Learning methodology and the proposed system was tested on HAM10000 dataset comprising of 10,015 dermatoscopic images and the results observed that the proposed system is accurate in order of 94.06\% in validation set and 93.93\% in the test set. Devi B et al. in the paper titled "Deadlock Free Resource Management Technique for IoT-Based Post Disaster Recovery Systems" proposed a new class of techniques that do not perform stringent testing before allocating the resources but still ensure that the system is deadlock-free and the overhead is also minimal. The proposed technique suggests reserving a portion of the resources to ensure no deadlock would occur. The correctness of the technique is proved in the form of theorems. The average turnaround time is approximately 18\% lower for the proposed technique over Banker's algorithm and also an optimal overhead of O(m). Deep et al. in the paper titled "Access Management of User and Cyber-Physical Device in DBAAS According to Indian IT Laws Using Blockchain" proposed a novel blockchain solution to track the activities of employees managing cloud. Employee authentication and authorization are managed through the blockchain server. User authentication related data is stored in blockchain. The proposed work assists cloud companies to have better control over their employee's activities, thus help in preventing insider attack on User and Cyber-Physical Devices. Sumit Kumar and Jaspreet Singh in paper titled "Internet of Vehicles (IoV) over VANETS: Smart and Secure Communication using IoT" highlighted a detailed description of Internet of Vehicles (IoV) with current applications, architectures, communication technologies, routing protocols and different issues. The researchers also elaborated research challenges and trade-off between security and privacy in area of IoV. Deore et al. in the paper titled "A New Approach for Navigation and Traffic Signs Indication Using Map Integrated Augmented Reality for Self-Driving Cars" proposed a new approach to supplement the technology used in self-driving cards for perception. The proposed approach uses Augmented Reality to create and augment artificial objects of navigational signs and traffic signals based on vehicles location to reality. This approach help navigate the vehicle even if the road infrastructure does not have very good sign indications and marking. The approach was tested locally by creating a local navigational system and a smartphone based augmented reality app. The approach performed better than the conventional method as the objects were clearer in the frame which made it each for the object detection to detect them. Bhardwaj et al. in the paper titled "A Framework to Systematically Analyse the Trustworthiness of Nodes for Securing IoV Interactions" performed literature on IoV and Trust and proposed a Hybrid Trust model that seperates the malicious and trusted nodes to secure the interaction of vehicle in IoV. To test the model, simulation was conducted on varied threshold values. And results observed that PDR of trusted node is 0.63 which is higher as compared to PDR of malicious node which is 0.15. And on the basis of PDR, number of available hops and Trust Dynamics the malicious nodes are identified and discarded. Saniya Zahoor and Roohie Naaz Mir in the paper titled "A Parallelization Based Data Management Framework for Pervasive IoT Applications" highlighted the recent studies and related information in data management for pervasive IoT applications having limited resources. The paper also proposes a parallelization-based data management framework for resource-constrained pervasive applications of IoT. The comparison of the proposed framework is done with the sequential approach through simulations and empirical data analysis. The results show an improvement in energy, processing, and storage requirements for the processing of data on the IoT device in the proposed framework as compared to the sequential approach. Patel et al. in the paper titled "Performance Analysis of Video ON-Demand and Live Video Streaming Using Cloud Based Services" presented a review of video analysis over the LVS \& VoDS video application. The researchers compared different messaging brokers which helps to deliver each frame in a distributed pipeline to analyze the impact on two message brokers for video analysis to achieve LVS & VoS using AWS elemental services. In addition, the researchers also analysed the Kafka configuration parameter for reliability on full-service-mode. Saniya Zahoor and Roohie Naaz Mir in the paper titled "Design and Modeling of Resource-Constrained IoT Based Body Area Networks" presented the design and modeling of a resource-constrained BAN System and also discussed the various scenarios of BAN in context of resource constraints. The Researchers also proposed an Advanced Edge Clustering (AEC) approach to manage the resources such as energy, storage, and processing of BAN devices while performing real-time data capture of critical health parameters and detection of abnormal patterns. The comparison of the AEC approach is done with the Stable Election Protocol (SEP) through simulations and empirical data analysis. The results show an improvement in energy, processing time and storage requirements for the processing of data on BAN devices in AEC as compared to SEP. Neelam Saleem Khan and Mohammad Ahsan Chishti in the paper titled "Security Challenges in Fog and IoT, Blockchain Technology and Cell Tree Solutions: A Review" outlined major authentication issues in IoT, map their existing solutions and further tabulate Fog and IoT security loopholes. Furthermore, this paper presents Blockchain, a decentralized distributed technology as one of the solutions for authentication issues in IoT. In addition, the researchers discussed the strength of Blockchain technology, work done in this field, its adoption in COVID-19 fight and tabulate various challenges in Blockchain technology. The researchers also proposed Cell Tree architecture as another solution to address some of the security issues in IoT, outlined its advantages over Blockchain technology and tabulated some future course to stir some attempts in this area. Bhadwal et al. in the paper titled "A Machine Translation System from Hindi to Sanskrit Language Using Rule Based Approach" proposed a rule-based machine translation system to bridge the language barrier between Hindi and Sanskrit Language by converting any test in Hindi to Sanskrit. The results are produced in the form of two confusion matrices wherein a total of 50 random sentences and 100 tokens (Hindi words or phrases) were taken for system evaluation. The semantic evaluation of 100 tokens produce an accuracy of 94\% while the pragmatic analysis of 50 sentences produce an accuracy of around 86\%. Hence, the proposed system can be used to understand the whole translation process and can further be employed as a tool for learning as well as teaching. Further, this application can be embedded in local communication based assisting Internet of Things (IoT) devices like Alexa or Google Assistant. Anshu Kumar Dwivedi and A.K. Sharma in the paper titled "NEEF: A Novel Energy Efficient Fuzzy Logic Based Clustering Protocol for Wireless Sensor Network" proposed a a deterministic novel energy efficient fuzzy logic-based clustering protocol (NEEF) which considers primary and secondary factors in fuzzy logic system while selecting cluster heads. After selection of cluster heads, non-cluster head nodes use fuzzy logic for prudent selection of their cluster head for cluster formation. NEEF is simulated and compared with two recent state of the art protocols, namely SCHFTL and DFCR under two scenarios. Simulation results unveil better performance by balancing the load and improvement in terms of stability period, packets forwarded to the base station, improved average energy and extended lifetime.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Iuliia, João Pedro Matos-Carvalho, Ilya Viksnin, Tiago Simas, and Sérgio Duarte Correia. "Particle Swarm Optimization Embedded in UAV as a Method of Territory-Monitoring Efficiency Improvement." Symmetry 14, no. 6 (May 24, 2022): 1080. http://dx.doi.org/10.3390/sym14061080.

Full text
Abstract:
Unmanned aerial vehicles have large prospects for organizing territory monitoring. To integrate them into this sphere, it is necessary to improve their high functionality and safety. Computer vision is one of the vital monitoring aspects. In this paper, we developed and validated a methodology for terrain classification. The overall classification procedure consists of the following steps: (1) pre-processing, (2) feature extraction, and (3) classification. For the pre-processing stage, a clustering method based on particle swarm optimization was elaborated, which helps to extract object patterns from the image. Feature extraction is conducted via Gray-Level Co-Occurrence Matrix calculation, and the output of the matrix is turned into the input for a feed-forward neural network classification stage. The developed computer vision system showed 88.7% accuracy on the selected test set. These results can provide high quality territory monitoring; prospectively, we plan to establish a self-positioning system based on computer vision.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Embedded Systems, Computer Vision, Object Classification"

1

Fagg, Ashton J. "Why capture frame rate matters for embedded vision." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/117072/1/Ashton_Fagg_Thesis.pdf.

Full text
Abstract:
This thesis examines the practical challenges of reliable object and facial tracking on mobile devices. We investigate the capabilities of such devices and propose a number of strategies to leverage the hardware and architectural strengths offered by smartphones and other embedded systems. We show how high frame rate cameras can be used as a resource to trade off algorithmic complexity while still achieving reliable, real time tracking performance. We also propose a number of strategies for formulating tracking algorithms, which make better use of the architectural redundancies inherent to modern system-on-chips.
APA, Harvard, Vancouver, ISO, and other styles
2

Bartoli, Giacomo. "Edge AI: Deep Learning techniques for Computer Vision applied to embedded systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16820/.

Full text
Abstract:
In the last decade, Machine Learning techniques have been used in different fields, ranging from finance to healthcare and even marketing. Amongst all these techniques, the ones adopting a Deep Learning approach were revealed to outperform humans in tasks such as object detection, image classification and speech recognition. This thesis introduces the concept of Edge AI: that is the possibility to build learning models capable of making inference locally, without any dependence on expensive servers or cloud services. A first case study we consider is based on the Google AIY Vision Kit, an intelligent camera equipped with a graphic board to optimize Computer Vision algorithms. Then, we test the performances of CORe50, a dataset for continuous object recognition, on embedded systems. The techniques developed in these chapters will be finally used to solve a challenge within the Audi Autonomous Driving Cup 2018, where a mobile car equipped with a camera, sensors and a graphic board must recognize pedestrians and stop before hitting them.
APA, Harvard, Vancouver, ISO, and other styles
3

Örn, Fredrik. "Computer Vision for Camera Trap Footage : Comparing classification with object detection." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447482.

Full text
Abstract:
Monitoring wildlife is of great interest to ecologists and is arguably even more important in the Arctic, the region in focus for the research network INTERACT, where the effects of climate change are greater than on the rest of the planet. This master thesis studies how artificial intelligence (AI) and computer vision can be used together with camera traps to achieve an effective way to monitor populations. The study uses an image data set, containing both humans and animals. The images were taken by camera traps from ECN Cairngorms, a station in the INTERACT network. The goal of the project is to classify these images into one of three categories: "Empty", "Animal" and "Human". Three different methods are compared, a DenseNet201 classifier, a YOLOv3 object detector, and the pre-trained MegaDetector, developed by Microsoft. No sufficient results were achieved with the classifier, but YOLOv3 performed well on human detection, with an average precision (AP) of 0.8 on both training and validation data. The animal detections for YOLOv3 did not reach an as high AP and this was likely because of the smaller amount of training examples. The best results were achieved by MegaDetector in combination with an added method to determine if the detected animals were dogs, reaching an average precision of 0.85 for animals and 0.99 for humans. This is the method that is recommended for future use, but there is potential to improve all the models and reach even more impressive results.Teknisk-naturvetenskapliga
APA, Harvard, Vancouver, ISO, and other styles
4

Parvez, Bilal. "Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219622.

Full text
Abstract:
Because of Machine Learning, machines have become extremely good at image classification in near real time. With using significant training data, powerful machines can be trained to recognize images as good as any human would. Till now the norm has been to have pictures sent to a server and have the server recognize them. With increasing number of sensors the trend is moving towards edge computing to curb the increasing rate of data transfer and communication bottlenecks. The idea is to do the processing locally or as close to the sensor as possible and then only transmit actionable data to the server. While, this does solve plethora of communication problems, specially in industrial settings, it creates a new problem. The sensors need to do this computationally intensive image classification which is a challenge for embedded/wearable devices, due to their resource constrained nature. This thesis analyzes Machine Learning algorithms and libraries from the motivation of porting image classifiers to embedded devices. This includes, comparing different supervised Machine Learning approaches to image classification and figuring out which are most suited for being ported to embedded devices. Taking a step forward in making the process of testing and implementing Machine Learning algorithms as easy as their desktop counterparts. The goal is to ease the process of porting new image recognition and classification algorithms on a host of different embedded devices and to provide motivations behind design decisions. The final proposal goes through all design considerations and implements a prototype that is hardware independent. Which can be used as a reference for designing and then later porting of Machine Learning classifiers to embedded devices.
Maskiner har blivit extremt bra på bildklassificering i nära realtid. På grund av maskininlärning med kraftig träningsdata, kan kraftfulla maskiner utbildas för att känna igen bilder så bra som alla människor skulle. Hittills har trenden varit att få bilderna skickade till en server och sedan få servern att känna igen bilderna. Men eftersom sensorerna ökar i antal, går trenden mot så kallad "edge computing" för att stryka den ökande graden av dataöverföring och kommunikationsflaskhalsar. Tanken är att göra bearbetningen lokalt eller så nära sensorn som möjligt och sedan bara överföra aktiv data till servern. Samtidigt som detta löser överflöd av kommunikationsproblem, speciellt i industriella inställningar, skapar det ett nytt problem. Sensorerna måste kunna göra denna beräkningsintensiva bildklassificering ombord vilket speciellt är en utmaning för inbyggda system och bärbara enheter, på grund av sin resursbegränsade natur. Denna avhandling analyserar maskininlärningsalgoritmer och biblioteken från motivationen att portera generiska bildklassificatorer till inbyggda system. Att jämföra olika övervakade maskininlärningsmetoder för bildklassificering, utreda vilka som är mest lämpade för att bli porterade till inbyggda system, för att göra processen att testa och implementera maskininlärningsalgoritmer lika enkelt som sina skrivbordsmodeller. Målet är att underlätta processen för att portera nya bildigenkännings och klassificeringsalgoritmer på en mängd olika inbyggda system och att ge motivation bakom designbeslut som tagits och för att beskriva det snabbaste sättet att skapa en prototyp med "embedded vision design". Det slutliga förslaget går igenom all hänsyn till konstruktion och implementerar en prototyp som är maskinvaruoberoende och kan användas för snabb framtagning av prototyper och sedan senare överföring av maskininlärningsklassificatorer till inbyggda system.
APA, Harvard, Vancouver, ISO, and other styles
5

Palazzo, Simone. "Hybrid human-machine vision systems for automated object segmentation and categorization." Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3985.

Full text
Abstract:
Emulating human perception is a foundational component in the research towards artificial intelligence (AI). Computer vision, in particular, is now one of the most active and fastest growing research topics in AI, and its field of practical applications range from video-survaillance to robotics to ecological monitoring. However, in spite of all the recent progress, humans still greatly outperform machines in most visual tasks, and even competitive artificial models require thousands of examples to learn concepts that children learn easily. Hence, given the objective difficulty in emulating the human visual system, the question that we intended to investigate in this thesis is in which ways humans can support the advancement of computer vision techniques. More precisely, we investigated how the synergy between human vision expertise and automated methods can be shifted from a top-down paradigm where direct user action or human perception principles explicitly guide the software component to a bottom-up paradigm, where instead of trying to copy the way our mind works, we exploit the by-product (i.e. some kind of measured feedback) of its workings to extract information on how visual tasks are performed. Starting from a purely top-down approach, where a fully-automated video object segmentation algorithm is extended to encode and include principles of human perceptual organization, we moved to interactive methods, where the same task is performed involving humans in the loop by means of gamification and eye-gaze analysis strategies, in a progressively increasing bottom-up fashion. Lastly, we pushed this trend to the limit by investigating brain-driven image classification approaches, where brain signals were used to extract compact representation of image contents. Performance evaluation of the tested approaches shows that involving people in automated vision methods can enhance their accuracy. Our experiments, carried out at different degrees of awareness and control of the generated human feedback, show that top-down approaches may achieve a better accuracy than bottom-up ones, at the cost of higher user interaction time and effort. As for our most ambitious objective, the purely bottom-up image classification system from brain pattern analysis, we were able to outperform the current state of the art with a method trained to extract brain-inspired visual content descriptors, thus removing the need of undergoing EEG recording for unseen images.
APA, Harvard, Vancouver, ISO, and other styles
6

Wallenberg, Marcus. "Components of Embodied Visual Object Recognition : Object Perception and Learning on a Robotic Platform." Licentiate thesis, Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93812.

Full text
Abstract:
Object recognition is a skill we as humans often take for granted. Due to our formidable object learning, recognition and generalisation skills, it is sometimes hard to see the multitude of obstacles that need to be overcome in order to replicate this skill in an artificial system. Object recognition is also one of the classical areas of computer vision, and many ways of approaching the problem have been proposed. Recently, visually capable robots and autonomous vehicles have increased the focus on embodied recognition systems and active visual search. These applications demand that systems can learn and adapt to their surroundings, and arrive at decisions in a reasonable amount of time, while maintaining high object recognition performance. Active visual search also means that mechanisms for attention and gaze control are integral to the object recognition procedure. This thesis describes work done on the components necessary for creating an embodied recognition system, specifically in the areas of decision uncertainty estimation, object segmentation from multiple cues, adaptation of stereo vision to a specific platform and setting, and the implementation of the system itself. Contributions include the evaluation of methods and measures for predicting the potential uncertainty reduction that can be obtained from additional views of an object, allowing for adaptive target observations. Also, in order to separate a specific object from other parts of a scene, it is often necessary to combine multiple cues such as colour and depth in order to obtain satisfactory results. Therefore, a method for combining these using channel coding has been evaluated. Finally, in order to make use of three-dimensional spatial structure in recognition, a novel stereo vision algorithm extension along with a framework for automatic stereo tuning have also been investigated. All of these components have been tested and evaluated on a purpose-built embodied recognition platform known as Eddie the Embodied.
Embodied Visual Object Recognition
APA, Harvard, Vancouver, ISO, and other styles
7

Simons, Taylor Scott. "High-Speed Image Classification for Resource-Limited Systems Using Binary Values." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9097.

Full text
Abstract:
Image classification is a memory- and compute-intensive task. It is difficult to implement high-speed image classification algorithms on resource-limited systems like FPGAs and embedded computers. Most image classification algorithms require many fixed- and/or floating-point operations and values. In this work, we explore the use of binary values to reduce the memory and compute requirements of image classification algorithms. Our objective was to implement these algorithms on resource-limited systems while maintaining comparable accuracy and high speeds. By implementing high-speed image classification algorithms on resource-limited systems like embedded computers, FPGAs, and ASICs, automated visual inspection can be performed on small low-powered systems. Industries like manufacturing, medicine, and agriculture can benefit from compact, high-speed, low-power visual inspection systems. Tasks like defect detection in manufactured products and quality sorting of harvested produce can be performed cheaper and more quickly. In this work, we present ECO Jet Features, an algorithm adapted to use binary values for visual inspection. The ECO Jet Features algorithm ran 3.7x faster than the original ECO Features algorithm on embedded computers. It also allowed the algorithm to be implemented on an FPGA, achieving 78x speedup over full-sized desktop systems, using a fraction of the power and space. We reviewed Binarized Neural Nets (BNNs), neural networks that use binary values for weights and activations. These networks are particularly well suited for FPGA implementation and we compared and contrasted various FPGA implementations found throughout the literature. Finally, we combined the deep learning methods used in BNNs with the efficiency of Jet Features to make Neural Jet Features. Neural Jet Features are binarized convolutional layers that are learned through deep learning and learn classic computer vision kernels like the Gaussian and Sobel kernels. These kernels are efficiently computed as a group and their outputs can be reused when forming output channels. They performed just as well as BNN convolutions on visual inspection tasks and are more stable when trained on small models.
APA, Harvard, Vancouver, ISO, and other styles
8

Lindqvist, Zebh. "Design Principles for Visual Object Recognition Systems." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80769.

Full text
Abstract:
Today's smartphones are capable of accomplishing far more advanced tasks than reading emails. With the modern framework TensorFlow, visual object recognition becomes possible using smartphone resources. This thesis shows that the main challenge does not lie in developing an artifact which performs visual object recognition. Instead, the main challenge lies in developing an ecosystem which allows for continuous improvement of the system’s ability to accomplish the given task without laborious and inefficient data collection. This thesis presents four design principles which contribute to an efficient ecosystem with quick initiation of new object classes and efficient data collection which is used to continuously improve the system’s ability to recognize smart meters in varying environments in an automated fashion.
APA, Harvard, Vancouver, ISO, and other styles
9

Huttunen, S. (Sami). "Methods and systems for vision-based proactive applications." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514296536.

Full text
Abstract:
Abstract Human-computer interaction (HCI) is an integral part of modern society. Since the number of technical devices around us is increasing, the way of interacting is changing as well. The systems of the future should be proactive, so that they can adapt and adjust to people’s movements and actions without requiring any conscious control. Visual information plays a vital role in this kind of implicit human-computer interaction due to its expressiveness. It is therefore obvious that cameras equipped with computing power and computer vision techniques provide an unobtrusive way of analyzing human intentions. Despite its many advantages, use of computer vision is not always straightforward. Typically, every application sets specific requirements for the methods that can be applied. Given these motivations, this thesis aims to develop new vision-based methods and systems that can be utilized in proactive applications. As a case study, the thesis covers two different proactive computer vision applications. Firstly, an automated system that takes care of both the selection and switching of the video source in a distance education situation is presented. The system is further extended with a pan-tilt-zoom camera system that is designed to track the teacher when s/he walks at the front of the classroom. The second proactive application is targeted at mobile devices. The system presented recognizes landscape scenes which can be utilized in automatic shooting mode selection. Distributed smart cameras have been an active area of research in recent years, and they play an important role in many applications. Most of the research has focused on either the computer vision algorithms or on a specific implementation. There has been less activity on building generic frameworks which allow different algorithms, sensors and distribution methods to be used. In this field, the thesis presents an open and expendable framework for development of distributed sensor networks with an emphasis on peer-to-peer networking. From the methodological point of view, the thesis makes its contribution to the field of multi-object tracking. The method presented utilizes soft assignment to associate the measurements to the objects tracked. In addition, the thesis also presents two different ways of extracting location measurements from images. As a result, the method proposed provides location and trajectories of multiple objects which can be utilized in proactive applications
Tiivistelmä Ihmisen ja eri laitteiden välisellä vuorovaikutuksella on keskeinen osa nyky-yhteiskunnassa. Teknisten laitteiden lisääntymisen myötä vuorovaikutustavat ovat myös muuttumassa. Tulevaisuuden järjestelmien tulisi olla proaktiivisia, jotta ne voisivat sopeutua ihmisten liikkeisiin ja toimintoihin ilman tietoista ohjausta. Ilmaisuvoimansa ansiosta visuaalisella tiedolla on keskeinen rooli tällaisessa epäsuorassa ihminen-tietokone –vuorovaikutuksessa. Tämän vuoksi on selvää, että kamerat yhdessä laskentaresurssien ja konenäkömenetelmien kanssa tarjoavat huomaamattoman tavan ihmisten toiminnan analysointiin. Lukuisista eduistaan huolimatta konenäön soveltaminen ei ole aina suoraviivaista. Yleensä jokainen sovellus asettaa erikoisvaatimuksia käytettäville menetelmille. Tästä syystä väitöskirjassa on päämääränä kehittää uusia kuvatietoon perustuvia menetelmiä ja järjestelmiä, joita voidaan hyödyntää proaktiivisissa sovelluksissa. Tässä väitöskirjassa esitellään kaksi proaktiivista sovellusta, jotka molemmat hyödyntävät tietokonenäköä. Ensimmäinen sovellus on etäopetusjärjestelmä, joka valitsee ja vaihtaa kuvalähteen automaattisesti. Järjestelmään esitellään myös ohjattavaan kameraan perustava laajennus, jonka avulla opettajaa voidaan seurata hänen liikkuessaan eri puolilla luokkahuonetta. Toinen proaktiivisen tekniikan sovellus on tarkoitettu mobiililaitteisiin. Kehitetty järjestelmä kykenee tunnistamaan maisemakuvat, jolloin kameran kuvaustila voidaan asettaa automaattisesti. Monissa sovelluksissa on tarpeen käyttää useampia kameroita. Tämän seurauksena eri puolille ympäristöä sijoitettavat älykkäät kamerat ovat olleet viime vuosina erityisen kiinnostuksen kohteena. Suurin osa kehityksestä on kuitenkin keskittynyt lähinnä eri konenäköalgoritmeihin tai yksittäisiin sovelluksiin. Sen sijaan panostukset yleisiin ja helposti laajennettaviin ratkaisuihin, jotka mahdollistavat erilaisten menetelmien, sensoreiden ja tiedonvälityskanavien käyttämisen, ovat olleet vähäisempiä. Tilanteen parantamiseksi väitöskirjassa esitellään hajautettujen sensoriverkkojen kehitykseen tarkoitettu avoin ja laajennettavissa oleva ohjelmistorunko. Menetelmien osalta tässä väitöskirjassa keskitytään useiden kohteiden seurantaan. Kehitetty seurantamenetelmä yhdistää saadut paikkamittaukset seurattaviin kohteisiin siten, että jokaiselle mittaukselle lasketaan todennäköisyys, jolla se kuuluu jokaiseen yksittäiseen seurattavaan kohteeseen. Seurantaongelman lisäksi työssä esitellään kaksi erilaista tapaa, joilla kohteiden paikka kuvassa voidaan määrittää. Esiteltyä kokonaisuutta voidaan hyödyntää proaktiivisissa sovelluksissa, jotka tarvitsevat usean kohteen paikkatiedon tai kohteiden kulkeman reitin
APA, Harvard, Vancouver, ISO, and other styles
10

Andersson, Dickfors Robin, and Nick Grannas. "OBJECT DETECTION USING DEEP LEARNING ON METAL CHIPS IN MANUFACTURING." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55068.

Full text
Abstract:
Designing cutting tools for the turning industry, providing optimal cutting parameters is of importance for both the client, and for the company's own research. By examining the metal chips that form in the turning process, operators can recommend optimal cutting parameters. Instead of doing manual classification of metal chips that come from the turning process, an automated approach of detecting chips and classification is preferred. This thesis aims to evaluate if such an approach is possible using either a Convolutional Neural Network (CNN) or a CNN feature extraction coupled with machine learning (ML). The thesis started with a research phase where we reviewed existing state of the art CNNs, image processing and ML algorithms. From the research, we implemented our own object detection algorithm, and we chose to implement two CNNs, AlexNet and VGG16. A third CNN was designed and implemented with our specific task in mind. The three models were tested against each other, both as standalone image classifiers and as a feature extractor coupled with a ML algorithm. Because the chips were inside a machine, different angles and light setup had to be tested to evaluate which setup provided the optimal image for classification. A top view of the cutting area was found to be the optimal angle with light focused on both below the cutting area, and in the chip disposal tray. The smaller proposed CNN with three convolutional layers, three pooling layers and two dense layers was found to rival both AlexNet and VGG16 in terms of both as a standalone classifier, and as a feature extractor. The proposed model was designed with a limited system in mind and is therefore more suited for those systems while still having a high accuracy. The classification accuracy of the proposed model as a standalone classifier was 92.03%. Compared to the state of the art classifier AlexNet which had an accuracy of 92.20%, and VGG16 which had an accuracy of 91.88%. When used as a feature extractor, all three models paired best with the Random Forest algorithm, but the accuracy between the feature extractors is not that significant. The proposed feature extractor combined with Random Forest had an accuracy of 82.56%, compared to AlexNet with an accuracy of 81.93%, and VGG16 with 79.14% accuracy.
DIGICOGS
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Embedded Systems, Computer Vision, Object Classification"

1

1977-, Mamic G. J., ed. Object recognition: Fundamentals and case studies. London: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bennamoun, M., and George Mamic. Object Recognition. Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Object Recognition: Fundamentals and Case Studies. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Embedded Systems, Computer Vision, Object Classification"

1

Myers, Karl, and Emanuele Lindo Secco. "A Low-Cost Embedded Computer Vision System for the Classification of Recyclable Objects." In Intelligent Learning for Computer Vision, 11–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4582-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vadhanam, B. Rebecca Jeya, Mohan S., V. Sugumaran, Vani V., and V. V. Ramalingam. "Computer Vision Based Classification on Commercial Videos." In Advances in Computational Intelligence and Robotics, 105–35. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0889-2.ch004.

Full text
Abstract:
Computer vision is a study which is concerned with automatic mining, analysis, perception, and extraction of the essential information from a single frame or image and a sequence of frames. It focuses on the development of automatic visual perception systems to reconstruct and interpret a three-dimensional scene from two-dimensional images through the properties of the structures in the scene. This is a challenging task for the contemporary computer vision system. Hence, this chapter explores the essential information, processing, analysis, and understanding necessary for computer vision. This enables users to retrieve product-based advertisement content and efficient browsing of desired shows. The final goal of this chapter is to design electronic embedded systems focused on technology integration with a domestic utility concept.
APA, Harvard, Vancouver, ISO, and other styles
3

Musa, Aminu, Mohammed Hassan, Mohamed Hamada, Habeebah Adamu Kakudi, Md Faizul Ibne Amin, and Yutaka Watanobe. "A Lightweight CNN-Based Pothole Detection Model for Embedded Systems Using Knowledge Distillation." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220281.

Full text
Abstract:
Recent breakthroughs in computer vision have led to the invention of several intelligent systems in different sectors. In transportation, this advancement led to the possibility of proposing autonomous vehicles. This recent technology relies heavily on wireless sensors and Deep learning. For an autonomous vehicle to navigate safely on highways, the vehicle needs equipment to aid with detecting road anomalies such as potholes ahead of time. The massive improvement in computer vision models such as Deep Convolutional Neural networks (DCNN) or vision transformers (ViT) resulted in many success stories and tremendous breakthroughs in object detection tasks; this enabled the use of such models in different application areas. But many of the reported results are theoretical and unrealistic in real-life. Usually, the nature of these models is extensive; they are trained on High-performance computers or cloud computing environments with GPUs, which challenge their usage on edge devices. However, to come up with a light model that can fit into embedded devices, the model size has to be reduced significantly so that the performance will not be affected. Therefore, this paper proposes a lightweight model of pothole detection for an embedded device. The model achieved a state-of-the-art accuracy of 98%, with the number of parameters reduced to more than 70% compared with a deep CNN model; the model can be trained and deployed on embedded devices such as smartphones efficiently.
APA, Harvard, Vancouver, ISO, and other styles
4

Jawad, M. Abdul, and Farida Khursheed. "Machine Learning-Aided Automatic Detection of Breast Cancer." In Advances in Healthcare Information Systems and Administration, 274–90. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7709-7.ch016.

Full text
Abstract:
The expeditious progress of machine learning, especially the deep learning techniques, keep propelling the medical imaging community's heed in applying these techniques in improving the accuracy of cancer screening. Among various types of cancers, breast cancer is the most detrimental disease affecting women today. The prognosis of such types of disease becomes a very challenging task for radiologists due the huge number of cases together with careful and thorough examination it demands. The constraints of present CAD open up a need for new and accurate detection procedures. Deep learning approaches have gained a tremendous recognition in the areas of object detection, segmentation, image recognition, and computer vision. Precise and premature detection and classification of lesions is very critical for increasing the survival rates of patients. Recent CNN models are designed to enhance radiologists' understandings to identify even the least possible lesions at the very early stage.
APA, Harvard, Vancouver, ISO, and other styles
5

Tuzova, Lyudmila N., Dmitry V. Tuzoff, Sergey I. Nikolenko, and Alexey S. Krasnov. "Teeth and Landmarks Detection and Classification Based on Deep Neural Networks." In Computational Techniques for Dental Image Analysis, 129–50. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-6243-6.ch006.

Full text
Abstract:
In the recent decade, deep neural networks have enjoyed rapid development in various domains, including medicine. Convolutional neural networks (CNNs), deep neural network structures commonly used for image interpretation, brought the breakthrough in computer vision and became state-of-the-art techniques for various image recognition tasks, such as image classification, object detection, and semantic segmentation. In this chapter, the authors provide an overview of deep learning algorithms and review available literature for dental image analysis with methods based on CNNs. The present study is focused on the problems of landmarks and teeth detection and classification, as these tasks comprise an essential part of dental image interpretation both in clinical dentistry and in human identification systems based on the dental biometrical information.
APA, Harvard, Vancouver, ISO, and other styles
6

N., Raghu, Trupti V. N., Chandrashekhar Badachi, Balamurugan M., Md Firuz Mia N., Ashok Kumar S., and Niranjan Kannanugo. "Autonomous Vehicles Using OpenCV and Python With Wireless Charging." In Advances in Civil and Industrial Engineering, 76–101. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8816-4.ch006.

Full text
Abstract:
The recent developments toward self-driving vehicles combined with advancement in electric vehicle technology have facilitated commencement of fully autonomous electric vehicles with respect to operation and energy requirements. Autonomous technology is about enriching automated systems with sensors, artificial intelligence (AI) and analytical capabilities so that decisions based on the data collected are independent. In autonomous vehicles, vision continues to be the primary source of data for lane detection, traffic signal detection, and other visual feature detection. Image classification and image localization are the two phases involved in object detection. An automobile prototype is designed which consists of open computer vision (Open CV) installed on a raspberry pi that can sense lane markings and navigate for safe driving. A demonstration of lane detection, color and shape detection using the open cv library has been produced in response to the issues autonomous vehicles that have object detection.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramaiah, Alageswaran, Arun K. S., Yathishan D., Sriram J., and Palanivel S. "Role of Deep Learning in Image and Video Processing." In Advances in Computational Intelligence and Robotics, 115–31. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8892-5.ch007.

Full text
Abstract:
Image and video processing research is becoming an important area in the field of computer vision. There are challenges such as low-resolution images, poor quality of videos, etc. in image and video data processing. Deep learning is a machine learning technique used in the creation of AI systems. It is designed to analyse complex data by passing it through many layers of neurons. Deep learning techniques have the potential to produce cutting-edge results in difficult computer vision problems such as object identification and face recognition. In this chapter, the use of deep learning to target specific functionality in the field of computer vision such as image recovery, video classification, etc. The deep learning algorithms, such as convolutional neural networks, deep neural network, and recurrent neural networks, used in the image and video processing domain are also explored.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Embedded Systems, Computer Vision, Object Classification"

1

Pauly, Nicholas, and Nader I. Rafla. "An automated embedded computer vision system for object measurement." In 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2013. http://dx.doi.org/10.1109/mwscas.2013.6674846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aghdam, Hamed H., Elnaz J. Heravi, Selameab S. Demilew, and Robert Laganiere. "RAD: Realtime and Accurate 3D Object Detection on Embedded Systems." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2021. http://dx.doi.org/10.1109/cvprw53098.2021.00322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elhoseiny, Mohamed, Amr Bakry, and Ahmed Elgammal. "MultiClass Object Classification in Video Surveillance Systems - Experimental Study." In 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2013. http://dx.doi.org/10.1109/cvprw.2013.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thokrairak, Sorawit, Kittiya Thibuy, Chalermpan Fongsamut, and Prajaks Jitngernmadan. "Optimal Object Classification Model for Embedded Systems based on Pre-trained Models." In 2021 25th International Computer Science and Engineering Conference (ICSEC). IEEE, 2021. http://dx.doi.org/10.1109/icsec53205.2021.9684656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tripathi, Subarna, Gokce Dane, Byeongkeun Kang, Vasudev Bhaskaran, and Truong Nguyen. "LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems." In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017. http://dx.doi.org/10.1109/cvprw.2017.56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yang, Evan Gunnell, Yu Sun, and Hao Zheng. "An Object-Driven Collision Detection with 2D Cameras using Artificial Intelligence and Computer Vision." In 11th International Conference on Embedded Systems and Applications (EMSA 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120626.

Full text
Abstract:
Autonomous driving is one of the most popular technologies in artificial intelligence. Collision detection is an important issue in automatic driving, which is related to the safety of automatic driving. Many collision detection methods have been proposed, but they all have certain limitations and cannot meet the requirements for automatic driving. Camera is one of the most popular methods to detect objects. The obstacle detection of the current camera is mostly completed by two or more cameras (binocular technology) or used in conjunction with other sensors (such as a depth camera) to achieve the purpose of distance detection. In this paper, we propose an algorithm to detect obstacle distances from photos or videos of a single camera.
APA, Harvard, Vancouver, ISO, and other styles
7

Arth, Clemens, Christian Leistner, and Horst Bischof. "Robust Local Features and their Application in Self-Calibration and Object Recognition on Embedded Systems." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ujiie, Takayuki, Masayuki Hiromoto, and Takashi Sato. "Interpolation-Based Object Detection Using Motion Vectors for Embedded Real-time Tracking Systems." In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tahiri, Mohamed Amine, Ahmed Bencherqui, Hicham Karmouni, Mohamed Ouazzani Jamil, Mhamed Sayyouri, and Hassan Qjidaa. "Optimal 3D object reconstruction and classification by separable moments via the Firefly algorithm." In 2022 International Conference on Intelligent Systems and Computer Vision (ISCV). IEEE, 2022. http://dx.doi.org/10.1109/iscv54655.2022.9806106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xiao, Yang, Chuanjun Zhang, Kevin Inck, and Vijaykrishnan Narayanan. "Dynamic bandwidth adaptation using recognition accuracy prediction through pre-classification for embedded vision systems." In 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE, 2013. http://dx.doi.org/10.1109/iccd.2013.6657020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography