Journal articles on the topic 'Embedded atom potentials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Embedded atom potentials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Doyama, Masao, and Y. Kogure. "Embedded atom potentials in fcc metals." Radiation Effects and Defects in Solids 142, no. 1-4 (June 1997): 107–14. http://dx.doi.org/10.1080/10420159708211600.
Full textHoover, Wm G., and Siegfried Hess. "Anisotropic plasticity with embedded-atom potentials." Physica A: Statistical Mechanics and its Applications 267, no. 1-2 (May 1999): 98–110. http://dx.doi.org/10.1016/s0378-4371(98)00671-2.
Full textBelashchenko, D. K. "Embedded atom method potentials for alkali metals." Inorganic Materials 48, no. 1 (December 23, 2011): 79–86. http://dx.doi.org/10.1134/s0020168512010037.
Full textBaskes, M. I., and R. A. Johnson. "Modified embedded atom potentials for HCP metals." Modelling and Simulation in Materials Science and Engineering 2, no. 1 (January 1, 1994): 147–63. http://dx.doi.org/10.1088/0965-0393/2/1/011.
Full textPasianot, R., and E. J. Savino. "Embedded-atom-method interatomic potentials for hcp metals." Physical Review B 45, no. 22 (June 1, 1992): 12704–10. http://dx.doi.org/10.1103/physrevb.45.12704.
Full textYuan, Xiao-Jian, Nan-Xian Chen, Jiang Shen, and Wangyu Hu. "Embedded-atom-method interatomic potentials from lattice inversion." Journal of Physics: Condensed Matter 22, no. 37 (August 31, 2010): 375503. http://dx.doi.org/10.1088/0953-8984/22/37/375503.
Full textHorstemeyer, M. F., M. I. Baskes, and S. J. Plimpton. "Computational nanoscale plasticity simulations using embedded atom potentials." Theoretical and Applied Fracture Mechanics 37, no. 1-3 (December 2001): 49–98. http://dx.doi.org/10.1016/s0167-8442(01)00090-8.
Full textDoyama, Masao, and Y. Kogure. "Embedded atom potentials in fcc and bcc metals." Computational Materials Science 14, no. 1-4 (February 1999): 80–83. http://dx.doi.org/10.1016/s0927-0256(98)00076-7.
Full textHu, Wangyu, Bangwei Zhang, Baiyun Huang, Fei Gao, and David J. Bacon. "Analytic modified embedded atom potentials for HCP metals." Journal of Physics: Condensed Matter 13, no. 6 (January 25, 2001): 1193–213. http://dx.doi.org/10.1088/0953-8984/13/6/302.
Full textBILIĆ, A., B. V. KING, and D. J. O'CONNOR. "EMBEDDED ATOM METHOD STUDY OF SURFACE ALLOYING OF Al ON Pd(001)." Surface Review and Letters 06, no. 03n04 (June 1999): 399–404. http://dx.doi.org/10.1142/s0218625x99000408.
Full textVailhé, C., and D. Farkas. "Shear faults and dislocation core structures in B2 CoAl." Journal of Materials Research 12, no. 10 (October 1997): 2559–70. http://dx.doi.org/10.1557/jmr.1997.0340.
Full textVANDONI, G., C. FÉLIX, R. MONOT, J. BUTTET, C. MASSOBRIO, and W. HARBICH. "DEPOSITION OF MASS-SELECTED Ag7 ON Pd(100): FRAGMENTATION AND IMPLANTATION." Surface Review and Letters 03, no. 01 (February 1996): 949–54. http://dx.doi.org/10.1142/s0218625x96001704.
Full textLiu, Chun-Li, and S. J. Plimpton. "Molecular dynamics simulations of grain boundary diffusion in Al using embedded atom method potentials." Journal of Materials Research 10, no. 7 (July 1995): 1589–92. http://dx.doi.org/10.1557/jmr.1995.1589.
Full textSmith, David. "The derivation of the rotational potential function from atom–atom potentials. III. Borohydride compounds." Canadian Journal of Chemistry 66, no. 4 (April 1, 1988): 791–93. http://dx.doi.org/10.1139/v88-137.
Full textBaskes, M. I., J. S. Nelson, and A. F. Wright. "Semiempirical modified embedded-atom potentials for silicon and germanium." Physical Review B 40, no. 9 (September 15, 1989): 6085–100. http://dx.doi.org/10.1103/physrevb.40.6085.
Full textBelashchenko, D. K. "Embedded atom method potentials for liquid copper and silver." Inorganic Materials 48, no. 9 (August 15, 2012): 940–47. http://dx.doi.org/10.1134/s002016851209004x.
Full textBrenner, Donald W. "Relationship between the embedded-atom method and Tersoff potentials." Physical Review Letters 63, no. 9 (August 28, 1989): 1022. http://dx.doi.org/10.1103/physrevlett.63.1022.
Full textMitev, P., G. A. Evangelakis, and Efthimios Kaxiras. "Embedded atom method potentials employing a faithful density representation." Modelling and Simulation in Materials Science and Engineering 14, no. 4 (May 15, 2006): 721–31. http://dx.doi.org/10.1088/0965-0393/14/4/013.
Full textMitev, P., G. A. Evangelakis, and E. Kaxiras. "Embedded atom method potentials employing a faithful density representation." Modelling and Simulation in Materials Science and Engineering 15, no. 6 (September 1, 2007): 691–92. http://dx.doi.org/10.1088/0965-0393/15/6/c01.
Full textBaskes, M. I. "Modified embedded-atom potentials for cubic materials and impurities." Physical Review B 46, no. 5 (August 1, 1992): 2727–42. http://dx.doi.org/10.1103/physrevb.46.2727.
Full textLei, Yawei, Xiaorui Sun, Rulong Zhou, and Bo Zhang. "Embedded atom method potentials for Ce-Ni binary alloy." Computational Materials Science 150 (July 2018): 1–8. http://dx.doi.org/10.1016/j.commatsci.2018.03.060.
Full textPohlong, S. S., and P. N. Ram. "Analytic embedded atom method potentials for face-centered cubic metals." Journal of Materials Research 13, no. 7 (July 1998): 1919–27. http://dx.doi.org/10.1557/jmr.1998.0271.
Full textCaro, A., M. Victoria, and R. S. Averback. "Threshold displacement and interstitial-atom formation energies in Ni3Al." Journal of Materials Research 5, no. 7 (July 1990): 1409–13. http://dx.doi.org/10.1557/jmr.1990.1409.
Full textGuellil, A. M., and J. B. Adams. "The application of the analytic embedded atom method to bcc metals and alloys." Journal of Materials Research 7, no. 3 (March 1992): 639–52. http://dx.doi.org/10.1557/jmr.1992.0639.
Full textZhou, X. W., D. A. Murdick, B. Gillespie, J. J. Quan, Haydn N. G. Wadley, Ralf Drautz, and David Pettifor. "Atomic Assembly of Thin Film Materials." Materials Science Forum 539-543 (March 2007): 3528–33. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.3528.
Full textSafina, Liliya R., Elizaveta A. Rozhnova, Ramil T. Murzaev, and Julia A. Baimova. "Effect of Interatomic Potential on Simulation of Fracture Behavior of Cu/Graphene Composite: A Molecular Dynamics Study." Applied Sciences 13, no. 2 (January 9, 2023): 916. http://dx.doi.org/10.3390/app13020916.
Full textLei, Yawei, Dongdong Li, Rulong Zhou, and Bo Zhang. "Embedded atom method potentials for La-Al-Ni ternary alloy." Journal of Applied Physics 125, no. 24 (June 28, 2019): 245109. http://dx.doi.org/10.1063/1.5098808.
Full textRyu, Seunghwa, Christopher R. Weinberger, Michael I. Baskes, and Wei Cai. "Improved modified embedded-atom method potentials for gold and silicon." Modelling and Simulation in Materials Science and Engineering 17, no. 7 (August 14, 2009): 075008. http://dx.doi.org/10.1088/0965-0393/17/7/075008.
Full textVella, Joseph R., Frank H. Stillinger, Athanassios Z. Panagiotopoulos, and Pablo G. Debenedetti. "A Comparison of the Predictive Capabilities of the Embedded-Atom Method and Modified Embedded-Atom Method Potentials for Lithium." Journal of Physical Chemistry B 119, no. 29 (September 18, 2014): 8960–68. http://dx.doi.org/10.1021/jp5077752.
Full textKushnir, Kostianyn, and Andriy Ostapovets. "Variability of Twin Boundary Structure in Computer Simulations of Tensile Twins in Magnesium." Defect and Diffusion Forum 385 (July 2018): 241–44. http://dx.doi.org/10.4028/www.scientific.net/ddf.385.241.
Full textBorisova, S. D., S. V. Eremeev, G. G. Rusina, and E. V. Chulkov. "Surface dynamics on submonolayer Pb/Cu(001) surfaces." Physical Chemistry Chemical Physics 24, no. 8 (2022): 5164–70. http://dx.doi.org/10.1039/d1cp05705g.
Full textFikar, Jan, Robin Schäublin, and Carolina Björkas. "Atomistic Simulation of ½<111> Screw Dislocations in BCC Tungsten." Advanced Materials Research 59 (December 2008): 247–52. http://dx.doi.org/10.4028/www.scientific.net/amr.59.247.
Full textYuan, Xiao Ying, and Kunio Takahashi. "Development of Modified Embedded Atom Method for Alkali Metals." Materials Science Forum 449-452 (March 2004): 69–72. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.69.
Full textSTOOP, PAULINA M., JAN H. VAN DER MERWE, C. J. SHIFLET, and R. A. JOHNSON. "A bcc–fcc TRANSITION OF A Cu PRECIPITATE IN A bcc Fe–Cu MATRIX." Surface Review and Letters 04, no. 06 (December 1997): 1279–82. http://dx.doi.org/10.1142/s0218625x9700167x.
Full textNalepka, Kinga. "Symmetry-based approach to parametrization of embedded-atom-method interatomic potentials." Computational Materials Science 56 (April 2012): 100–107. http://dx.doi.org/10.1016/j.commatsci.2012.01.011.
Full textHu, Wangyu, and Fukumoto Masahiro. "The application of the analytic embedded atom potentials to alkali metals." Modelling and Simulation in Materials Science and Engineering 10, no. 6 (October 9, 2002): 707–26. http://dx.doi.org/10.1088/0965-0393/10/6/307.
Full textBudi, Akin, David J. Henry, Julian D. Gale, and Irene Yarovsky. "Comparison of embedded atom method potentials for small aluminium cluster simulations." Journal of Physics: Condensed Matter 21, no. 14 (March 18, 2009): 144206. http://dx.doi.org/10.1088/0953-8984/21/14/144206.
Full textRuda, M., D. Farkas, and J. Abriata. "Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys." Physical Review B 54, no. 14 (October 1, 1996): 9765–74. http://dx.doi.org/10.1103/physrevb.54.9765.
Full textFeraoun, H., H. Aourag, T. Grosdidier, D. Klein, and C. Coddet. "Development of modified embedded atom potentials for the Cu–Ag system." Superlattices and Microstructures 30, no. 5 (November 2001): 261–71. http://dx.doi.org/10.1006/spmi.2002.1016.
Full textKozlowski, Miroslaw, Daniele Scopece, Jolanta Janczak-Rusch, Lars P. H. Jeurgens, Rafal Abdank-Kozubski, and Daniele Passerone. "Validation of an Embedded-Atom Copper Classical Potential via Bulk and Nanostructure Simulations." Diffusion Foundations 12 (September 2017): 74–92. http://dx.doi.org/10.4028/www.scientific.net/df.12.74.
Full textAngelova, Elena, and Hassan Chamati. "Dynamic Simulation of the Energy Spectrum of Phonons in the Magnetic BCC Iron." Proceedings of the Bulgarian Academy of Sciences 75, no. 2 (March 2, 2022): 197–206. http://dx.doi.org/10.7546/crabs.2022.02.04.
Full textJin, Hak Son, and An Du. "Study on MAEAM Multi-Body Potentials with Farther Neighbor Atoms for HCP Metals." Advanced Materials Research 424-425 (January 2012): 581–85. http://dx.doi.org/10.4028/www.scientific.net/amr.424-425.581.
Full textGairola, Vandana, and P. D. Semalty. "Vibrational Properties of Vacancy in Na and K Using MEAM Potential." Communications in Computational Physics 15, no. 2 (February 2014): 556–68. http://dx.doi.org/10.4208/cicp.090113.070813a.
Full textOluwajobi, Akinjide O., and Xun Chen. "Choosing Appropriate Interatomic Potentials for Nanometric Molecular Dynamics (MD) Simulations." Key Engineering Materials 686 (February 2016): 194–99. http://dx.doi.org/10.4028/www.scientific.net/kem.686.194.
Full textZhou, X. W., J. A. Zimmerman, B. M. Wong, and J. J. Hoyt. "An embedded-atom method interatomic potential for Pd–H alloys." Journal of Materials Research 23, no. 3 (March 2008): 704–18. http://dx.doi.org/10.1557/jmr.2008.0090.
Full textKim, Young-Min, and Byeong-Joo Lee. "A modified embedded-atom method interatomic potential for the Cu–Zr system." Journal of Materials Research 23, no. 4 (April 2008): 1095–104. http://dx.doi.org/10.1557/jmr.2008.0130.
Full textSHEN SAN-GUO, WAN JUN, and FAN XI-QING. "MULTILAYER RELAXATION OF Al SURFACE APPLICATION OF THE MODIFIED EMBEDDED ATOM POTENTIALS." Acta Physica Sinica 46, no. 11 (1997): 2198. http://dx.doi.org/10.7498/aps.46.2198.
Full textJalkanen, Jari, and Martin H. Müser. "Systematic analysis and modification of embedded-atom potentials: case study of copper." Modelling and Simulation in Materials Science and Engineering 23, no. 7 (September 18, 2015): 074001. http://dx.doi.org/10.1088/0965-0393/23/7/074001.
Full textRam, P. N., Vandana Gairola, and P. D. Semalty. "Vibrational properties of vacancy in Au using modified embedded atom method potentials." Journal of Physics and Chemistry of Solids 94 (July 2016): 41–46. http://dx.doi.org/10.1016/j.jpcs.2016.03.001.
Full textDorrell, Jordan, and Livia B. Pártay. "Pressure–Temperature Phase Diagram of Lithium, Predicted by Embedded Atom Model Potentials." Journal of Physical Chemistry B 124, no. 28 (June 16, 2020): 6015–23. http://dx.doi.org/10.1021/acs.jpcb.0c03882.
Full text