Dissertations / Theses on the topic 'Embedded AI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Embedded AI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chollet, Nicolas. "Embedded-AI-enabled semantic IoT platform for agroecology." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG078.
Full textModern agriculture requires a profound transformation to address the challenges of sustainable development while qualitatively and quantitatively feeding the growing global population. In this light, farmers are adopting "Smart Farming" also called precision agriculture. It is an agricultural method that leverages technology to enhance the efficiency, productivity, and sustainability of agricultural production. This approach encompasses the use of sensors, the Internet of Things (IoT), Artificial Intelligence (AI), data analysis, robotics, and various other digital tools optimizing aspects such as soil management, irrigation, pest control, and livestock management. The goal is to increase production while reducing resource consumption, minimizing waste, and improving product quality. However, despite its benefits and successful deployment in various projects, smart agriculture encounters limitations, especially within the context of IoT. Firstly, platforms must be capable of perceiving data in the environment, interpreting it, and making decisions to assist in farm management. The volume, variety, and velocity of those data, combined with a wide diversity of objects and the advent of AI embedded in sensors, make communication challenging on wireless agricultural networks. Secondly, research tends to focus on projects addressing the issues of non-sustainable conventional agriculture, and projects related to small-scale farms focused on agroecology are rare. In this context, this thesis explores the creation of an IoT platform comprised of a network of semantic smart sensors, aiming to guide farmers in transitioning and managing their farm sustainably while minimizing human intervention
Biswas, Avishek Ph D. Massachusetts Institute of Technology. "Energy-efficient smart embedded memory design for IoT and AI." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117831.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted student-submitted PDF version of thesis.
Includes bibliographical references (pages 137-146).
Static Random Access Memory (SRAM) continues to be the embedded memory of choice for modern System-on-a-Chip (SoC) applications, thanks to aggressive CMOS scaling, which keeps on providing higher storage density per unit silicon area. As memory sizes continue to grow, increased bit-cell variation limits the supply voltage (Vdd) scaling of the memory. Furthermore, larger memories lead to data transfer over longer distances on chip, which leads to increased power dissipation. In the era of the Internet-of-Things (IoT) and Artificial Intelligence (AI), memory bandwidth and power consumption are often the main bottlenecks for SoC solutions. Therefore, in addition to Vdd scaling, this thesis also explores leveraging data properties and application-specfic features to design more tailored and "smarter" memories. First, a 128Kb 6T bit-cell based SRAM is designed in a modern 28nm FDSOI process. Dynamic forward body-biasing (DFBB) is used to improve the write operation, and reduce the minimum Vdd to 0.34V, even with 6T bit-cells. A new layout technique is proposed for the array, to reduce the energy overhead of DFBB and decrease the unwanted bit-line switching for un-selected columns in the SRAM, providing dynamic energy savings. The 6T SRAM also uses data prediction in its read path, to provide upto 36% further dynamic energy savings, with correct predictions. The second part of this thesis, explores in-memory computation for reducing data movement and increasing memory bandwidth, in data-intensive machine learning applications. A 16Kb SRAM with embedded dot-product computation capability, is designed for binary-weight neural networks. Highly parallel analog processing in- side the memory array, provided better energy-efficiency than conventional digital implementations. With our variation-tolerant architecture and support of multi-bit resolutions for inputs/outputs, > 98% classication accuracy was demonstrated on the MNIST dataset, for the handwritten digit recognition application. In the last part of the thesis, variation-tolerant read-sensing architectures are explored for future non-volatile resistive memories, e.g. STT-RAM.
by Avishek Biswas.
Ph. D.
Bartoli, Giacomo. "Edge AI: Deep Learning techniques for Computer Vision applied to embedded systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16820/.
Full textRoyles, Christopher Andrew. "Intelligent presentation and tailoring of online legal information." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343616.
Full textMAZZIA, VITTORIO. "Machine Learning Algorithms and their Embedded Implementation for Service Robotics Applications." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2968456.
Full textMOCERINO, LUCA. "Hardware-Aware Cross-Layer Optimizations of Deep Neural Networks for Embedded Systems." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2972558.
Full textFredriksson, Tomas, and Rickard Svensson. "Analysis of machine learning for human motion pattern recognition on embedded devices." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246087.
Full textAntalet uppkopplade enheter ökar och det senaste uppsvinget av ar-tificiell intelligens driver forskningen framåt till att kombinera de två teknologierna för att både förbättra existerande produkter och utveckla nya. Maskininlärning är traditionellt sett implementerat på kraftfulla system så därför undersöker den här masteruppsatsen potentialen i att utvidga maskininlärning till att köras på inbyggda system. Den här undersökningen av existerande maskinlärningsalgoritmer, implemen-terade på begränsad hårdvara, har utförts med fokus på att klassificera grundläggande mänskliga rörelser. Tidigare forskning och implemen-tation visar på att det ska vara möjligt med vissa begränsningar. Den här uppsatsen vill svara på vilken hårvarubegränsning som påverkar klassificering mest samt vilken klassificeringsgrad systemet kan nå på den begränsande hårdvaran. Testerna inkluderade mänsklig rörelsedata från ett existerande dataset och inkluderade fyra olika maskininlärningsalgoritmer på tre olika system. SVM presterade bäst i jämförelse med CART, Random Forest och AdaBoost. Den nådde en klassifikationsgrad på 84,69% på de sex inkluderade rörelsetyperna med en klassifikationstid på 16,88 ms per klassificering på en Cortex M processor. Detta är samma klassifikations-grad som en vanlig persondator når med betydligt mer beräknings-resurserresurser. Andra hårdvaru- och algoritm-kombinationer visar en liten minskning i klassificeringsgrad och ökning i klassificeringstid. Slutsatser kan dras att minnet på det inbyggda systemet påverkar vilka algoritmer som kunde köras samt komplexiteten i datan som kunde extraheras i form av attribut (features). Processeringshastighet påverkar mest klassificeringstid. Slutligen är prestandan för maskininlärningsy-stemet bunden till typen av data som ska klassificeras, vilket betyder att olika uppsättningar av algoritmer och hårdvara påverkar prestandan olika beroende på användningsområde.
Hasanzadeh, Mujtaba, and Alexandra Hengl. "Real-Time Pupillary Analysis By An Intelligent Embedded System." Thesis, Mälardalens högskola, Inbyggda system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44352.
Full textTUVERI, GIUSEPPE. "Integrated support for Adaptivity and Fault-tolerance in MPSoCs." Doctoral thesis, Università degli Studi di Cagliari, 2013. http://hdl.handle.net/11584/266097.
Full textAntonini, Mattia. "From Edge Computing to Edge Intelligence: exploring novel design approaches to intelligent IoT applications." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/308630.
Full textAntonini, Mattia. "From Edge Computing to Edge Intelligence: exploring novel design approaches to intelligent IoT applications." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/308630.
Full textShrivastwa, Ritu Ranjan. "Enhancements in Embedded Systems Security using Machine Learning." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT051.
Full textThe list of connected devices (or IoT) is growing longer with time and so is the intense vulnerability to security of the devices against targeted attacks originating from network or physical penetration, popularly known as Cyber Physical Security (CPS) attacks. While security sensors and obfuscation techniques exist to counteract and enhance security, it is possible to fool these classical security countermeasures with sophisticated attack equipment and methodologies as shown in recent literature. Additionally, end node embedded systems design is bound by area and is required to be scalable, thus, making it difficult to adjoin complex sensing mechanism against cyberphysical attacks. The solution may lie in Artificial Intelligence (AI) security core (soft or hard) to monitor data behaviour internally from various components. Additionally the AI core can monitor the overall device behaviour, including attached sensors, to detect any outlier activity and provide a smart sensing approach to attacks. AI in hardware security domain is still not widely acceptable due to the probabilistic behaviour of the advanced deep learning techniques, there have been works showing practical implementations for the same. This work is targeted to establish a proof of concept and build trust of AI in security by detailed analysis of different Machine Learning (ML) techniques and their use cases in hardware security followed by a series of case studies to provide practical framework and guidelines to use AI in various embedded security fronts. Applications can be in PUFpredictability assessment, sensor fusion, Side Channel Attacks (SCA), Hardware Trojan detection, Control flow integrity, Adversarial AI, etc
Ringenson, Josefin. "Efficiency of CNN on Heterogeneous Processing Devices." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155034.
Full textHabib, Yassine. "Monocular SLAM densification for 3D mapping and autonomous drone navigation." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0390.
Full textAerial drones are essential in search and rescue missions as they provide fast reconnaissance of the mission area, such as a collapsed building. Creating a dense and metric 3D map in real-time is crucial to capture the structure of the environment and enable autonomous navigation. The recommended approach for this task is to use Simultaneous Localization and Mapping (SLAM) from a monocular camera synchronized with an Inertial Measurement Unit (IMU). Current state-of-the-art algorithms maximize efficiency by triangulating a minimum number of points, resulting in a sparse 3D point cloud. Few works address monocular SLAM densification, typically by using deep neural networks to predict a dense depth map from a single image. Most are not metric or are too complex for use in embedded applications. In this thesis, we identify and evaluate a state of-the-art monocular SLAM baseline under challenging drone conditions. We present a practical pipeline for densifying monocular SLAM by applying monocular depth prediction to construct a dense and metric 3D voxel map. Using voxels allows the efficient construction and maintenance of the map through raycasting, and allows for volumetric multi-view fusion. Finally, we propose a scale recovery procedure that uses the sparse and metric depth estimates of SLAM to refine the predicted dense depth maps. Our approach has been evaluated on conventional benchmarks and shows promising results for practical applications
Mainsant, Marion. "Apprentissage continu sous divers scénarios d'arrivée de données : vers des applications robustes et éthiques de l'apprentissage profond." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALS045.
Full textThe human brain continuously receives information from external stimuli. It then has the ability to adapt to new knowledge while retaining past events. Nowadays, more and more artificial intelligence algorithms aim to learn knowledge in the same way as a human being. They therefore have to be able to adapt to a large variety of data arriving sequentially and available over a limited period of time. However, when a deep learning algorithm learns new data, the knowledge contained in the neural network overlaps old one and the majority of the past information is lost, a phenomenon referred in the literature as catastrophic forgetting. Numerous methods have been proposed to overcome this issue, but as they were focused on providing the best performance, studies have moved away from real-life applications where algorithms need to adapt to changing environments and perform, no matter the type of data arrival. In addition, most of the best state of the art methods are replay methods which retain a small memory of the past and consequently do not preserve data privacy.In this thesis, we propose to explore data arrival scenarios existing in the literature, with the aim of applying them to facial emotion recognition, which is essential for human-robot interactions. To this end, we present Dream Net - Data-Free, a privacy preserving algorithm, able to adapt to a large number of data arrival scenarios without storing any past samples. After demonstrating the robustness of this algorithm compared to existing state-of-the-art methods on standard computer vision databases (Mnist, Cifar-10, Cifar-100 and Imagenet-100), we show that it can also adapt to more complex facial emotion recognition databases. We then propose to embed the algorithm on a Nvidia Jetson nano card creating a demonstrator able to learn and predict emotions in real-time. Finally, we discuss the relevance of our approach for bias mitigation in artificial intelligence, opening up perspectives towards a more ethical AI
Yu, Yao-Tsung, and 于耀宗. "Design of 4-Channel AI/AO Module Based on Embedded System." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/45742025538110093118.
Full text聖約翰科技大學
電子工程系碩士班
102
Analog output (AO) and analog input (AI) are necessary and important equipment in industry control areas. In many automatic control applications, such as light, temperature/humidity and motor control, AI modules are often used to process the analog signals captured by the external sensors, and AO modules are applied to several devices requiring analog signal control. According to one of the often-used AI/AO specifications for industry control, voltage: 0~5V and current: 0~20mA, a 4-channel AI/AO module based on embedded system is designed and implemented in this thesis. Due to the consideration of stability, the embedded system (M-502) with built-in Linux is used as a control platform, and its local bus is the interface to control the AI/AO module. In addition to 4 stand-alone AI and AO channels, this AI/AO module also employs the isolated protection to ensure that no mutual interference exists between external devices and internal circuits within the module. Finally, the experimental results show that this designed 4-channel AI/AO module can successfully work.