Academic literature on the topic 'Embedded AI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Embedded AI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Embedded AI"
Hammer, Jürgen. "Berührungsängste mit "Embedded AI"?" MTZ - Motortechnische Zeitschrift 82, no. 4 (March 12, 2021): 70. http://dx.doi.org/10.1007/s35146-021-0653-1.
Full textAshfaq, Zarlish, Rafia Mumtaz, Abdur Rafay, Syed Mohammad Hassan Zaidi, Hadia Saleem, Sadaf Mumtaz, Adnan Shahid, Eli De Poorter, and Ingrid Moerman. "Embedded AI-Based Digi-Healthcare." Applied Sciences 12, no. 1 (January 5, 2022): 519. http://dx.doi.org/10.3390/app12010519.
Full textOrtmeyer, Cliff. "AI Options for Embedded Systems." New Electronics 52, no. 3 (February 12, 2019): 26–27. http://dx.doi.org/10.12968/s0047-9624(22)60909-x.
Full textYoon, Young Hyun, Dong Hyun Hwang, Jun Hyeok Yang, and Seung Eun Lee. "Intellino: Processor for Embedded Artificial Intelligence." Electronics 9, no. 7 (July 18, 2020): 1169. http://dx.doi.org/10.3390/electronics9071169.
Full textHammer, Jürgen. "A Reluctance to Use Embedded AI?" MTZ worldwide 82, no. 4 (March 12, 2021): 68. http://dx.doi.org/10.1007/s38313-021-0636-0.
Full textBastani, F. B., and I. R. Chen. "The reliability of embedded AI systems." IEEE Expert 8, no. 2 (April 1993): 72–78. http://dx.doi.org/10.1109/64.207431.
Full textTyler, Neil. "DSPs Target Embedded Vision and AI." New Electronics 54, no. 7 (April 27, 2021): 6. http://dx.doi.org/10.12968/s0047-9624(22)60260-8.
Full textMcLennan, Stuart, Amelia Fiske, Leo Anthony Celi, Ruth Müller, Jan Harder, Konstantin Ritt, Sami Haddadin, and Alena Buyx. "An embedded ethics approach for AI development." Nature Machine Intelligence 2, no. 9 (July 31, 2020): 488–90. http://dx.doi.org/10.1038/s42256-020-0214-1.
Full textCho, Sungjae, Yoonsu Kim, Jaewoong Jang, and Inseok Hwang. "AI-to-Human Actuation." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7, no. 1 (March 27, 2022): 1–32. http://dx.doi.org/10.1145/3580812.
Full textDini, Pierpaolo, Lorenzo Diana, Abdussalam Elhanashi, and Sergio Saponara. "Overview of AI-Models and Tools in Embedded IIoT Applications." Electronics 13, no. 12 (June 13, 2024): 2322. http://dx.doi.org/10.3390/electronics13122322.
Full textDissertations / Theses on the topic "Embedded AI"
Chollet, Nicolas. "Embedded-AI-enabled semantic IoT platform for agroecology." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG078.
Full textModern agriculture requires a profound transformation to address the challenges of sustainable development while qualitatively and quantitatively feeding the growing global population. In this light, farmers are adopting "Smart Farming" also called precision agriculture. It is an agricultural method that leverages technology to enhance the efficiency, productivity, and sustainability of agricultural production. This approach encompasses the use of sensors, the Internet of Things (IoT), Artificial Intelligence (AI), data analysis, robotics, and various other digital tools optimizing aspects such as soil management, irrigation, pest control, and livestock management. The goal is to increase production while reducing resource consumption, minimizing waste, and improving product quality. However, despite its benefits and successful deployment in various projects, smart agriculture encounters limitations, especially within the context of IoT. Firstly, platforms must be capable of perceiving data in the environment, interpreting it, and making decisions to assist in farm management. The volume, variety, and velocity of those data, combined with a wide diversity of objects and the advent of AI embedded in sensors, make communication challenging on wireless agricultural networks. Secondly, research tends to focus on projects addressing the issues of non-sustainable conventional agriculture, and projects related to small-scale farms focused on agroecology are rare. In this context, this thesis explores the creation of an IoT platform comprised of a network of semantic smart sensors, aiming to guide farmers in transitioning and managing their farm sustainably while minimizing human intervention
Biswas, Avishek Ph D. Massachusetts Institute of Technology. "Energy-efficient smart embedded memory design for IoT and AI." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117831.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted student-submitted PDF version of thesis.
Includes bibliographical references (pages 137-146).
Static Random Access Memory (SRAM) continues to be the embedded memory of choice for modern System-on-a-Chip (SoC) applications, thanks to aggressive CMOS scaling, which keeps on providing higher storage density per unit silicon area. As memory sizes continue to grow, increased bit-cell variation limits the supply voltage (Vdd) scaling of the memory. Furthermore, larger memories lead to data transfer over longer distances on chip, which leads to increased power dissipation. In the era of the Internet-of-Things (IoT) and Artificial Intelligence (AI), memory bandwidth and power consumption are often the main bottlenecks for SoC solutions. Therefore, in addition to Vdd scaling, this thesis also explores leveraging data properties and application-specfic features to design more tailored and "smarter" memories. First, a 128Kb 6T bit-cell based SRAM is designed in a modern 28nm FDSOI process. Dynamic forward body-biasing (DFBB) is used to improve the write operation, and reduce the minimum Vdd to 0.34V, even with 6T bit-cells. A new layout technique is proposed for the array, to reduce the energy overhead of DFBB and decrease the unwanted bit-line switching for un-selected columns in the SRAM, providing dynamic energy savings. The 6T SRAM also uses data prediction in its read path, to provide upto 36% further dynamic energy savings, with correct predictions. The second part of this thesis, explores in-memory computation for reducing data movement and increasing memory bandwidth, in data-intensive machine learning applications. A 16Kb SRAM with embedded dot-product computation capability, is designed for binary-weight neural networks. Highly parallel analog processing in- side the memory array, provided better energy-efficiency than conventional digital implementations. With our variation-tolerant architecture and support of multi-bit resolutions for inputs/outputs, > 98% classication accuracy was demonstrated on the MNIST dataset, for the handwritten digit recognition application. In the last part of the thesis, variation-tolerant read-sensing architectures are explored for future non-volatile resistive memories, e.g. STT-RAM.
by Avishek Biswas.
Ph. D.
Bartoli, Giacomo. "Edge AI: Deep Learning techniques for Computer Vision applied to embedded systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16820/.
Full textRoyles, Christopher Andrew. "Intelligent presentation and tailoring of online legal information." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343616.
Full textMAZZIA, VITTORIO. "Machine Learning Algorithms and their Embedded Implementation for Service Robotics Applications." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2968456.
Full textMOCERINO, LUCA. "Hardware-Aware Cross-Layer Optimizations of Deep Neural Networks for Embedded Systems." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2972558.
Full textFredriksson, Tomas, and Rickard Svensson. "Analysis of machine learning for human motion pattern recognition on embedded devices." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246087.
Full textAntalet uppkopplade enheter ökar och det senaste uppsvinget av ar-tificiell intelligens driver forskningen framåt till att kombinera de två teknologierna för att både förbättra existerande produkter och utveckla nya. Maskininlärning är traditionellt sett implementerat på kraftfulla system så därför undersöker den här masteruppsatsen potentialen i att utvidga maskininlärning till att köras på inbyggda system. Den här undersökningen av existerande maskinlärningsalgoritmer, implemen-terade på begränsad hårdvara, har utförts med fokus på att klassificera grundläggande mänskliga rörelser. Tidigare forskning och implemen-tation visar på att det ska vara möjligt med vissa begränsningar. Den här uppsatsen vill svara på vilken hårvarubegränsning som påverkar klassificering mest samt vilken klassificeringsgrad systemet kan nå på den begränsande hårdvaran. Testerna inkluderade mänsklig rörelsedata från ett existerande dataset och inkluderade fyra olika maskininlärningsalgoritmer på tre olika system. SVM presterade bäst i jämförelse med CART, Random Forest och AdaBoost. Den nådde en klassifikationsgrad på 84,69% på de sex inkluderade rörelsetyperna med en klassifikationstid på 16,88 ms per klassificering på en Cortex M processor. Detta är samma klassifikations-grad som en vanlig persondator når med betydligt mer beräknings-resurserresurser. Andra hårdvaru- och algoritm-kombinationer visar en liten minskning i klassificeringsgrad och ökning i klassificeringstid. Slutsatser kan dras att minnet på det inbyggda systemet påverkar vilka algoritmer som kunde köras samt komplexiteten i datan som kunde extraheras i form av attribut (features). Processeringshastighet påverkar mest klassificeringstid. Slutligen är prestandan för maskininlärningsy-stemet bunden till typen av data som ska klassificeras, vilket betyder att olika uppsättningar av algoritmer och hårdvara påverkar prestandan olika beroende på användningsområde.
Hasanzadeh, Mujtaba, and Alexandra Hengl. "Real-Time Pupillary Analysis By An Intelligent Embedded System." Thesis, Mälardalens högskola, Inbyggda system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44352.
Full textTUVERI, GIUSEPPE. "Integrated support for Adaptivity and Fault-tolerance in MPSoCs." Doctoral thesis, Università degli Studi di Cagliari, 2013. http://hdl.handle.net/11584/266097.
Full textAntonini, Mattia. "From Edge Computing to Edge Intelligence: exploring novel design approaches to intelligent IoT applications." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/308630.
Full textBooks on the topic "Embedded AI"
Wang, Cliff, S. S. Iyengar, and Kun Sun, eds. AI Embedded Assurance for Cyber Systems. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42637-7.
Full textNi de ai qing, wo zai li mian: Embedded in your love. Taibei Shi: Chun tian chu ban guo ji wen hua you xian gong si, 2008.
Find full textAI at the Edge: Solving Real World Problems with Embedded Machine Learning. O'Reilly Media, Incorporated, 2023.
Find full textDrage, Eleanor, and Kerry McInerney, eds. The Good Robot. Bloomsbury Publishing Plc, 2024. http://dx.doi.org/10.5040/9781350399990.
Full textGouzouasis, Peter, and Danny Bakan. Arts-Based Educational Research in Community Music. Edited by Brydie-Leigh Bartleet and Lee Higgins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190219505.013.17.
Full textBlömer, Michael, Stefan Riedel, Miguel John Versluys, and Engelbert Winter, eds. Common Dwelling Place of all the Gods. Commagene in its Local, Regional and Global Hellenistic Context. Franz Steiner Verlag, 2021. http://dx.doi.org/10.25162/9783515129268.
Full textBook chapters on the topic "Embedded AI"
Bräunl, Thomas. "AI Concepts." In Embedded Robotics, 403–19. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-0804-9_18.
Full textFeyock, Stefan, and James L. Rogers. "Embedded AI for Structural Optimization." In Computational Mechanics ’88, 1281–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_340.
Full textVermesan, Ovidiu, and Marcello Coppola. "Edge AI Platforms for Predictive Maintenance in Industrial Applications." In Embedded Artificial Intelligence, 89–104. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003394440-9.
Full textYoo, Hoi-Jun. "Mobile Embedded DNN and AI SoCs." In Low Power Circuit Design Using Advanced CMOS Technology, 287–361. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003338772-4.
Full textMateu, Loreto, Johannes Leugering, Roland Müller, Yogesh Patil, Maen Mallah, Marco Breiling, and Ferdinand Pscheidl. "Tools and Methodologies for Edge-AI Mixed-Signal Inference Accelerators." In Embedded Artificial Intelligence, 25–34. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003394440-3.
Full textMiro-Panades, Ivan, Inna Kucher, Vincent Lorrain, and Alexandre Valentian. "Meeting the Latency and Energy Constraints on Timing-critical Edge-AI Systems." In Embedded Artificial Intelligence, 61–67. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003394440-6.
Full textGu, Yichi. "AI Embedded Transparent Health and Medicine System." In Advances in Intelligent Systems and Computing, 18–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32520-6_2.
Full textQu, Zhe, Rui Duan, Yao Liu, and Zhuo Lu. "Federated Learning for IoT Applications, Attacks and Defense Methods." In AI Embedded Assurance for Cyber Systems, 161–81. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42637-7_9.
Full textLosavio, Michael. "Forensic Proof and Criminal Liability for Development, Distribution and Use of Artificial Intelligence." In AI Embedded Assurance for Cyber Systems, 37–48. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42637-7_3.
Full textKumar, K. J. Latesh, Yashas Hariprasad, K. S. Ramesh, and Naveen Kumar Chaudhary. "AI Powered Correlation Technique to Detect Virtual Machine Attacks in Private Cloud Environment." In AI Embedded Assurance for Cyber Systems, 183–99. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42637-7_10.
Full textConference papers on the topic "Embedded AI"
Brandalero, Marcelo, Muhammad Ali, Laurens Le Jeune, Hector Gerardo Munoz Hernandez, Mitko Veleski, Bruno da Silva, Jan Lemeire, et al. "AITIA: Embedded AI Techniques for Embedded Industrial Applications." In 2020 International Conference on Omni-layer Intelligent Systems (COINS). IEEE, 2020. http://dx.doi.org/10.1109/coins49042.2020.9191672.
Full textMetwaly, Aly, Jorge Peña Queralta, Victor Kathan Sarker, Tuan Nguyen Gia, Omar Nasir, and Tomi Westerlund. "Edge Computing with Embedded AI." In INTESA2019: INTelligent Embedded Systems Architectures and Applications Workshop 2019. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3372394.3372397.
Full textCosta, Bárbara, Octavian Postolache, and John Araujo. "From cloud AI to embedded AI in cardiac healthcare." In 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2023. http://dx.doi.org/10.1109/i2mtc53148.2023.10176077.
Full textGhajargar, Maliheh, Jeffrey Bardzell, Alison Smith Renner, Peter Gall Krogh, Kristina Höök, David Cuartielles, Laurens Boer, and Mikael Wiberg. "From ”Explainable AI” to ”Graspable AI”." In TEI '21: Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3430524.3442704.
Full textYoo, Hoi-Jun. "Mobile/embedded DNN and AI SoCs." In 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 2018. http://dx.doi.org/10.1109/vlsi-dat.2018.8373285.
Full textYoo, Hoi-Jun. "Mobile/embedded DNN and AI SoCs." In 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2018. http://dx.doi.org/10.1109/vlsi-tsa.2018.8403807.
Full textGhajargar, Maliheh, Jeffrey Bardzell, Alison Marie Smith-Renner, Kristina Höök, and Peter Gall Krogh. "Graspable AI: Physical Forms as Explanation Modality for Explainable AI." In TEI '22: Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3490149.3503666.
Full textBlazevic, Romana, Omar Veledar, and Georg Macher. "Insides to Trustworthy AI-Based Embedded Systems." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2014.
Full textKum, Seungwoo, Miseon Yu, Youngkee Kim, Jaewon Moon, and Silvio Cretti. "AI Management Platform with Embedded Edge Cluster." In 2021 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2021. http://dx.doi.org/10.1109/icce50685.2021.9427731.
Full textBrandalero, Marcelo, Mitko Veleski, Hector Gerardo Munoz Hernandez, Muhammad Ali, Laurens Le Jeune, Toon Goedeme, Nele Mentens, et al. "AITIA: Embedded AI Techniques for Industrial Applications." In 2021 31st International Conference on Field-Programmable Logic and Applications (FPL). IEEE, 2021. http://dx.doi.org/10.1109/fpl53798.2021.00071.
Full textReports on the topic "Embedded AI"
Volz, Richard A. Report on the Embedded AI Languages Workshop Held in Ann Arbor, Michigan on 16-18 November 1988. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada218531.
Full textDafflon, Baptiste, S. Wielandt, S. Uhlemann, Haruko Wainwright, K. Bennett, Jitendra Kumar, Sebastien Biraud, Susan Hubbard, and Stan Wullschleger. Revolutionizing observations and predictability of Arctic system dynamics through next-generation dense, heterogeneous and intelligent wireless sensor networks with embedded AI. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769774.
Full textBeiker, Sven. Next-generation Sensors for Automated Road Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, February 2023. http://dx.doi.org/10.4271/epr2023003.
Full text