Journal articles on the topic 'Elongation factor 1A'

To see the other types of publications on this topic, follow the link: Elongation factor 1A.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Elongation factor 1A.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Belyi, Y., R. Niggeweg, B. Opitz, M. Vogelsgesang, S. Hippenstiel, M. Wilm, and K. Aktories. "Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A." Proceedings of the National Academy of Sciences 103, no. 45 (October 26, 2006): 16953–58. http://dx.doi.org/10.1073/pnas.0601562103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beckelman, Brenna C., Xueyan Zhou, C. Dirk Keene, and Tao Ma. "Impaired Eukaryotic Elongation Factor 1A Expression in Alzheimer's Disease." Neurodegenerative Diseases 16, no. 1-2 (November 10, 2015): 39–43. http://dx.doi.org/10.1159/000438925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hamey, Joshua J., and Marc R. Wilkins. "Methylation of Elongation Factor 1A: Where, Who, and Why?" Trends in Biochemical Sciences 43, no. 3 (March 2018): 211–23. http://dx.doi.org/10.1016/j.tibs.2018.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Candido-Silva, J. A., and N. Monesi. "Bradysia hygida (Diptera, Sciaridae) presents two eukaryotic Elongation Factor 1A gene homologues: partial characterization of the eukaryotic Elongation Factor 1A-F1 gene." Brazilian Journal of Medical and Biological Research 43, no. 5 (May 2010): 437–44. http://dx.doi.org/10.1590/s0100-879x2010007500029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ursin, Virginia M., Jonathan M. Irvine, William R. Hiatt, and Christine K. Shewmaker. "Developmental Analysis of Elongation Factor-1a Expression in Transgenic Tobacco." Plant Cell 3, no. 6 (June 1991): 583. http://dx.doi.org/10.2307/3869187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lukash, T. O. "Eukaryotic elongation factor 1A disintegrates aggregates of phenylalanyl-tRNA synthetase." Biopolymers and Cell 22, no. 1 (January 20, 2006): 29–32. http://dx.doi.org/10.7124/bc.000717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zobel-Thropp, Pamela, Melody C. Yang, Lorenzo Machado, and Steven Clarke. "A Novel Post-translational Modification of Yeast Elongation Factor 1A." Journal of Biological Chemistry 275, no. 47 (September 5, 2000): 37150–58. http://dx.doi.org/10.1074/jbc.m001005200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Budkevich, T. V., A. A. Timchenko, E. I. Tiktopulo, B. S. Negrutskii, V. F. Shalak, Z. M. Petrushenko, V. L. Aksenov, et al. "Extended Conformation of Mammalian Translation Elongation Factor 1A in Solution†." Biochemistry 41, no. 51 (December 2002): 15342–49. http://dx.doi.org/10.1021/bi026495h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Itagaki, Keisuke, Toshihiko Naito, Ryota Iwakiri, Makoto Haga, Shougo Miura, Yohei Saito, Toshiyuki Owaki, et al. "Eukaryotic Translation Elongation Factor 1A Induces Anoikis by Triggering Cell Detachment." Journal of Biological Chemistry 287, no. 19 (March 7, 2012): 16037–46. http://dx.doi.org/10.1074/jbc.m111.308122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mansilla, F., C. R. Knudsen, and B. F. C. Clark. "Mutational analysis of Glu272 in elongation factor 1A of E. coli." FEBS Letters 429, no. 3 (June 16, 1998): 417–20. http://dx.doi.org/10.1016/s0014-5793(98)00646-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hotokezaka, Yuka, Udo Többen, Hitoshi Hotokezaka, Klaus van Leyen, Birgitta Beatrix, Deborah H. Smith, Takashi Nakamura, and Martin Wiedmann. "Interaction of the Eukaryotic Elongation Factor 1A with Newly Synthesized Polypeptides." Journal of Biological Chemistry 277, no. 21 (March 13, 2002): 18545–51. http://dx.doi.org/10.1074/jbc.m201022200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pogrebnaya, A. P., N. V. Markeyeva, V. V. Lisogubov, A. M. Fridberg, S. I. Zabashnyi, V. S. Usenko, V. V. Filonenko, P. V. Pogrebnoy, and B. S. Negrutskii. "Isolation and characterization of monoclonal antibodies against eukaryotic translation elongation factor 1A." Biopolymers and Cell 19, no. 3 (May 20, 2003): 231–37. http://dx.doi.org/10.7124/bc.000654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Novosylna, A. V., A. A. Timchenko, E. I. Tiktopulo, I. N. Serdyuk, B. S. Negrutskii, and A. V. El'skaya. "Characterization of physical properties of two isoforms of translation elongation factor 1A." Biopolymers and Cell 23, no. 5 (September 20, 2007): 386–90. http://dx.doi.org/10.7124/bc.000777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Anand, Monika, Kalpana Chakraburtty, Matthew J. Marton, Alan G. Hinnebusch, and Terri Goss Kinzy. "Functional Interactions between Yeast Translation Eukaryotic Elongation Factor (eEF) 1A and eEF3." Journal of Biological Chemistry 278, no. 9 (December 18, 2002): 6985–91. http://dx.doi.org/10.1074/jbc.m209224200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Calado, Angelo, Nathalie Treichel, Eva-Christina Müller, Albrecht Otto, and Ulrike Kutay. "Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA." EMBO Journal 21, no. 22 (November 15, 2002): 6216–24. http://dx.doi.org/10.1093/emboj/cdf620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Moon, Il Soo, Sun-Jung Cho, Jae Seob Jung, In Sick Park, Duk Kyu Kim, Jin Taek Kim, Bok Hyun Ko, and IngNyol Jin. "Presence of translation elongation factor-1A in the rat cerebellar postsynaptic density." Neuroscience Letters 362, no. 1 (May 2004): 53–56. http://dx.doi.org/10.1016/j.neulet.2004.02.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hurtado-Guerrero, Ramon, Tal Zusman, Shalini Pathak, Adel F. M. Ibrahim, Sharon Shepherd, Alan Prescott, Gil Segal, and Daan M. F. van Aalten. "Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase." Biochemical Journal 426, no. 3 (February 24, 2010): 281–92. http://dx.doi.org/10.1042/bj20091351.

Full text
Abstract:
Legionnaires' disease is caused by a lethal colonization of alveolar macrophages with the Gram-negative bacterium Legionella pneumophila. LpGT (L. pneumophila glucosyltransferase; also known as Lgt1) has recently been identified as a virulence factor, shutting down protein synthesis in the human cell by specific glucosylation of EF1A (elongation factor 1A), using an unknown mode of substrate recognition and a retaining mechanism for glycosyl transfer. We have determined the crystal structure of LpGT in complex with substrates, revealing a GT-A fold with two unusual protruding domains. Through structure-guided mutagenesis of LpGT, several residues essential for binding of the UDP-glucose-donor and EF1A-acceptor substrates were identified, which also affected L. pneumophila virulence as demonstrated by microinjection studies. Together, these results suggested that a positively charged EF1A loop binds to a negatively charged conserved groove on the LpGT structure, and that two asparagine residues are essential for catalysis. Furthermore, we showed that two further L. pneumophila glycosyltransferases possessed the conserved UDP-glucose-binding sites and EF1A-binding grooves, and are, like LpGT, translocated into the macrophage through the Icm/Dot (intracellular multiplication/defect in organelle trafficking) system.
APA, Harvard, Vancouver, ISO, and other styles
18

Yang, Fan, Mark Demma, Vivien Warren, Suranganie Dharmawardhane, and John Condeelis. "Identification of an actin-binding protein from Dictyostelium as elongation factor 1a." Nature 347, no. 6292 (October 1990): 494–96. http://dx.doi.org/10.1038/347494a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lyzogubov, V. V., I. A. Makedonsky, A. P. Pogribna, B. S. Negrutskii, A. V. El’skaya, A. M. Fridberg, S. I. Zabashny, and V. S. Usenko. "POS-03.70: Immunohistochemical localization of elongation factor 1a in human prostate adenocarcinomas." Urology 70, no. 3 (September 2007): 294. http://dx.doi.org/10.1016/j.urology.2007.06.961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chuang, Show-Mei, Li Chen, David Lambertson, Monika Anand, Terri Goss Kinzy, and Kiran Madura. "Proteasome-Mediated Degradation of Cotranslationally Damaged Proteins Involves Translation Elongation Factor 1A." Molecular and Cellular Biology 25, no. 1 (January 1, 2005): 403–13. http://dx.doi.org/10.1128/mcb.25.1.403-413.2005.

Full text
Abstract:
ABSTRACT Rad23 and Rpn10 play synergistic roles in the recognition of ubiquitinated proteins by the proteasome, and loss of both proteins causes growth and proteolytic defects. However, the physiological targets of Rad23 and Rpn10 have not been well defined. We report that rad23Δ rpn10Δ is unable to grow in the presence of translation inhibitors, and this sensitivity was suppressed by translation elongation factor 1A (eEF1A). This discovery suggested that Rad23 and Rpn10 perform a role in translation quality control. Certain inhibitors increase translation errors during protein synthesis and cause the release of truncated polypeptide chains. This effect can also be mimicked by ATP depletion. We determined that eEF1A interacted with ubiquitinated proteins and the proteasome following ATP depletion. eEF1A interacted with the proteasome subunit Rpt1, and the turnover of nascent damaged proteins was deficient in rpt1. An eEF1A mutant (eEF1AD156N) that conferred hyperresistance to translation inhibitors was much more effective at eliminating damaged proteins and was detected in proteasomes in untreated cells. We propose that eEF1A is well suited to detect and promote degradation of damaged proteins because of its central role in translation elongation. Our findings provide a mechanistic foundation for defining how cellular proteins are degraded cotranslationally.
APA, Harvard, Vancouver, ISO, and other styles
21

Yamaji, Yasuyuki, Keitaro Sakurai, Koji Hamada, Ken Komatsu, Johji Ozeki, Akiko Yoshida, Atsushi Yoshii, Takumi Shimizu, Shigetou Namba, and Tadaaki Hibi. "Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection." Archives of Virology 155, no. 2 (December 11, 2009): 263–68. http://dx.doi.org/10.1007/s00705-009-0571-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jank, Thomas, Yury Belyi, Christophe Wirth, Sabine Rospert, Zehan Hu, Jörn Dengjel, Tina Tzivelekidis, et al. "Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A." Journal of Biological Chemistry 292, no. 39 (August 11, 2017): 16014–23. http://dx.doi.org/10.1074/jbc.m117.801035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lipson, Rebecca S., Kristofor J. Webb, and Steven G. Clarke. "Two novel methyltransferases acting upon eukaryotic elongation factor 1A in Saccharomyces cerevisiae." Archives of Biochemistry and Biophysics 500, no. 2 (August 2010): 137–43. http://dx.doi.org/10.1016/j.abb.2010.05.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pittman, Yvette R., Kimberly Kandl, Marcus Lewis, Louis Valente, and Terri Goss Kinzy. "Coordination of Eukaryotic Translation Elongation Factor 1A (eEF1A) Function in Actin Organization and Translation Elongation by the Guanine Nucleotide Exchange Factor eEF1Bα." Journal of Biological Chemistry 284, no. 7 (December 18, 2008): 4739–47. http://dx.doi.org/10.1074/jbc.m807945200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kolesanova, E. F., T. E. Farafonova, E. Yu Aleshina, N. V. Pyndyk, M. V. Veremieva, O. V. Novosylna, M. I. Kovalenko, V. F. Shalak, and B. S. Negrutskii. "Preparation of monospecific antibodies against isoform 2 of translation elongation factor 1A (eEF1A2)." Biomeditsinskaya Khimiya 60, no. 1 (January 2014): 51–62. http://dx.doi.org/10.18097/pbmc20146001051.

Full text
Abstract:
Amino acid sequences of eukaryotic translation elongation factor isoform 1 (eEF1A1) and 2 (eEF1A2) were compared and two peptide fragments of eEF1A2 were chosen as linear antigenic determinants for generation of monospecific antipeptide antibodies. Selected peptides were synthesized, conjugated to bovine serum albumin (BSA) and used for mice immunizations. Antibodies, produced against the eEF1A2 fragment 330-343 conjugated to BSA, specifically recognized this isoform in the native and partially denatured states but did not interact with the eEF1A1 isoform. It was shown that these monospecific anti-eEF1A2 antibodies could be employed for eEF1A2 detection both by enzyme-linked immunosorbent assay and by immunoblotting.
APA, Harvard, Vancouver, ISO, and other styles
26

Bouzaidi-Tiali, Nabile, Eric Aeby, Fabien Charrière, Mascha Pusnik, and André Schneider. "Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei." EMBO Journal 26, no. 20 (September 13, 2007): 4302–12. http://dx.doi.org/10.1038/sj.emboj.7601857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tarrant, Daniel J., Mariarita Stirpe, Michelle Rowe, Mark J. Howard, Tobias von der Haar, and Campbell W. Gourlay. "Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism." Journal of Cell Science 129, no. 24 (November 2, 2016): 4455–65. http://dx.doi.org/10.1242/jcs.192831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kolesanova, E. F., T. E. Farafonova, E. Yu Aleshina, N. V. Pyndyk, M. V. Veremieva, A. V. Novosylnaya, M. I. Kovalenko, V. F. Shalak, and B. S. Negrutskii. "Preparation of monospecific antibodies against isoform 2 of translation elongation factor 1A (eEF1A2)." Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 7, no. 1 (March 2013): 62–69. http://dx.doi.org/10.1134/s1990750813010083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bunai, Fumihide, Kunie Ando, Hironori Ueno, and Osamu Numata. "Tetrahymena Eukaryotic Translation Elongation Factor 1A (eEF1A) Bundles Filamentous Actin through Dimer Formation." Journal of Biochemistry 140, no. 3 (September 1, 2006): 393–99. http://dx.doi.org/10.1093/jb/mvj169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

McClatchy, Daniel B., Guofu Fang, and Allan I. Levey. "Elongation Factor 1A Family Regulates the Recycling of the M4 Muscarinic Acetylcholine Receptor." Neurochemical Research 31, no. 7 (July 2006): 975–88. http://dx.doi.org/10.1007/s11064-006-9103-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Borradaile, Nica M., Kimberly K. Buhman, Laura L. Listenberger, Carolyn J. Magee, Emiko T. A. Morimoto, Daniel S. Ory, and Jean E. Schaffer. "A Critical Role for Eukaryotic Elongation Factor 1A-1 in Lipotoxic Cell Death." Molecular Biology of the Cell 17, no. 2 (February 2006): 770–78. http://dx.doi.org/10.1091/mbc.e05-08-0742.

Full text
Abstract:
The deleterious consequences of fatty acid (FA) and neutral lipid accumulation in nonadipose tissues, such as the heart, contribute to the pathogenesis of type 2 diabetes. To elucidate mechanisms of FA-induced cell death, or lipotoxicity, we generated Chinese hamster ovary (CHO) cell mutants resistant to palmitate-induced death and isolated a clone with disruption of eukaryotic elongation factor (eEF) 1A-1. eEF1A-1 involvement in lipotoxicity was confirmed in H9c2 cardiomyoblasts, in which small interfering RNA-mediated knockdown also conferred palmitate resistance. In wild-type CHO and H9c2 cells, palmitate increased reactive oxygen species and induced endoplasmic reticulum (ER) stress, changes accompanied by increased eEF1A-1 expression. Disruption of eEF1A-1 expression rendered these cells resistant to hydrogen peroxide- and ER stress-induced death, indicating that eEF1A-1 plays a critical role in the cell death response to these stressors downstream of lipid overload. Disruption of eEF1A-1 also resulted in actin cytoskeleton defects under basal conditions and in response to palmitate, suggesting that eEF1A-1 mediates lipotoxic cell death, secondary to oxidative and ER stress, by regulating cytoskeletal changes critical for this process. Furthermore, our observations of oxidative stress, ER stress, and induction of eEF1A-1 expression in a mouse model of lipotoxic cardiomyopathy implicate this cellular response in the pathophysiology of metabolic disease.
APA, Harvard, Vancouver, ISO, and other styles
32

Gromadski, Kirill B., Tobias Schümmer, Anne Strømgaard, Charlotte R. Knudsen, Terri Goss Kinzy, and Marina V. Rodnina. "Kinetics of the Interactions between Yeast Elongation Factors 1A and 1Bα, Guanine Nucleotides, and Aminoacyl-tRNA." Journal of Biological Chemistry 282, no. 49 (October 9, 2007): 35629–37. http://dx.doi.org/10.1074/jbc.m707245200.

Full text
Abstract:
The interactions of elongation factor 1A (eEF1A) from Saccharomyces cerevisiae with elongation factor 1Bα (eEF1Bα), guanine nucleotides, and aminoacyl-tRNA were studied kinetically by fluorescence stopped-flow. eEF1A has similar affinities for GDP and GTP, 0.4 and 1.1 μm, respectively. Dissociation of nucleotides from eEF1A in the absence of the guanine nucleotide exchange factor is slow (about 0.1 s–1) and is accelerated by eEF1Bα by 320-fold and 250-fold for GDP and GTP, respectively. The rate constant of eEF1Bα binding to eEF1A (107–108m–1 s–1) is independent of guanine nucleotides. At the concentrations of nucleotides and factors prevailing in the cell, the overall exchange rate is expected to be in the range of 6 s–1, which is compatible with the rate of protein synthesis in the cell. eEF1A·GTP binds Phe-tRNAPhe with a Kd of 3 nm, whereas eEF1A·GDP shows no significant binding, indicating that eEF1A has similar tRNA binding properties as its prokaryotic homolog, EF-Tu.
APA, Harvard, Vancouver, ISO, and other styles
33

Futernyk, P. V., A. P. Pogribna, Z. M. Petrushenko, B. S. Negrutski, and G. V. El'skaya. "Investigation of the complexes of elongation factor 1A with tRNASer and seryl-tRNA synthetase." Biopolymers and Cell 20, no. 1-2 (March 20, 2004): 17–23. http://dx.doi.org/10.7124/bc.000687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hu, Jie-li, Ge Xu, Ling Lei, Wen-lu Zhang, Yuan Hu, Ai-long Huang, and Xue-fei Cai. "Etoposide Phosphate Enhances the Acetylation Level of Translation Elongation Factor 1A in PLC5 Cells." Zeitschrift für Naturforschung C 67 (2012): 0327. http://dx.doi.org/10.5560/znc.2012.67c0327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chung, Eun-Sook, Chang-Woo Cho, Hyun-A. So, Bo-Hyun Yun, and Jai-Heon Lee. "Differential expression of soybean SLTI100 gene encoding translation elongation factor 1A by abiotic stresses." Journal of Plant Biotechnology 36, no. 3 (September 30, 2009): 255–60. http://dx.doi.org/10.5010/jpb.2009.36.3.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hu, Jie-li, Ge Xu, Ling Lei, Wen-lu Zhang, Ai-long Huang, and Xue-fei Cai. "Etoposide Phosphate Enhances the Acetylation Level of Translation Elongation Factor 1A in PLC5 Cells." Zeitschrift für Naturforschung C 67, no. 5-6 (June 1, 2012): 327–30. http://dx.doi.org/10.1515/znc-2012-5-613.

Full text
Abstract:
Translation elongation factor 1A (eEF1A) is a factor critically involved in the process of protein synthesis. The activity of eEF1A has been shown by several studies to be regulated by post-translational modifi cations such as phosphorylation and dephosphorylation. However, until now less research has focused on other post-translational modifi cations of eEF1A, especially acetylation. In this report, we provide new evidence for the existence of eEF1A acetylation in PLC5 cells by immunoprecipitation and Western blotting. Using the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), we found that the deacetylation of eEF1A is mainly attributable to classes I and II HDAC rather than class III HDAC, and, furthermore, that the antitumour agent etoposide phosphate (VP 16) enhances the acetylation of eEF1A in a synergistic way with TSA. Our data suggest the possibility that the increased acetylation of eEF1A could be a new mechanism for the antitumour effect of etoposide
APA, Harvard, Vancouver, ISO, and other styles
37

Dzialo, Maria C., Kyle J. Travaglini, Sean Shen, Joseph A. Loo, and Steven G. Clarke. "A new type of protein lysine methyltransferase trimethylates Lys-79 of elongation factor 1A." Biochemical and Biophysical Research Communications 455, no. 3-4 (December 2014): 382–89. http://dx.doi.org/10.1016/j.bbrc.2014.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Leclercq, Tamara M., Paul A. B. Moretti, Mathew A. Vadas, and Stuart M. Pitson. "Eukaryotic Elongation Factor 1A Interacts with Sphingosine Kinase and Directly Enhances Its Catalytic Activity." Journal of Biological Chemistry 283, no. 15 (February 8, 2008): 9606–14. http://dx.doi.org/10.1074/jbc.m708782200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Marcinkiewicz, C., and W. Gałasiński. "Isolation and properties of the subunit form EF-1C of elongation factor 1 from Guerin epithelioma cells." Acta Biochimica Polonica 40, no. 2 (June 30, 1993): 225–30. http://dx.doi.org/10.18388/abp.1993_4822.

Full text
Abstract:
EF-1C is a component of the aggregate EF-1B, consisting of the subunit forms EF-1A.EF-1C; it was isolated by dissociation of this aggregate in the presence of GTP. The subunit form EF-1C stimulates binding of aminoacyl-tRNA to ribosomes, catalysed by EF-1A, similarly as EF-1 beta gamma which stimulates the activity of EF-1 in other eukaryotic cells. EF-1C in the presence of 6 M urea was separated into two polypeptides. Polypeptide of molecular mass 32,000 Da is responsible for regeneration of the EF-1A.GTP active complex. Thermal sensitivity of EF-1A was much higher than that of EF-1B, thus a protective role of EF-1C in the EF-1A.EF-1C complex is suggested.
APA, Harvard, Vancouver, ISO, and other styles
40

Munshi, Raj, Kimberly A. Kandl, Anne Carr-Schmid, Johanna L. Whitacre, Alison E. M. Adams, and Terri Goss Kinzy. "Overexpression of Translation Elongation Factor 1A Affects the Organization and Function of the Actin Cytoskeleton in Yeast." Genetics 157, no. 4 (April 1, 2001): 1425–36. http://dx.doi.org/10.1093/genetics/157.4.1425.

Full text
Abstract:
Abstract The translation elongation factor 1 complex (eEF1) plays a central role in protein synthesis, delivering aminoacyl-tRNAs to the elongating ribosome. The eEF1A subunit, a classic G-protein, also performs roles aside from protein synthesis. The overexpression of either eEF1A or eEF1Bα, the catalytic subunit of the guanine nucleotide exchange factor, in Saccharomyces cerevisiae results in effects on cell growth. Here we demonstrate that overexpression of either factor does not affect the levels of the other subunit or the rate or accuracy of protein synthesis. Instead, the major effects in vivo appear to be at the level of cell morphology and budding. eEF1A overexpression results in dosage-dependent reduced budding and altered actin distribution and cellular morphology. In addition, the effects of excess eEF1A in actin mutant strains show synthetic growth defects, establishing a genetic connection between the two proteins. As the ability of eEF1A to bind and bundle actin is conserved in yeast, these results link the established ability of eEF1A to bind and bundle actin in vitro with nontranslational roles for the protein in vivo.
APA, Harvard, Vancouver, ISO, and other styles
41

Beckelman, Brenna C., Stephen Day, Xueyan Zhou, Maggie Donohue, Gunnar K. Gouras, Eric Klann, C. Dirk Keene, and Tao Ma. "Dysregulation of Elongation Factor 1A Expression is Correlated with Synaptic Plasticity Impairments in Alzheimer’s Disease." Journal of Alzheimer's Disease 54, no. 2 (September 6, 2016): 669–78. http://dx.doi.org/10.3233/jad-160036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Durso, Neil A., and Richard J. Cyr. "A Calmodulin-Sensitive Interaction between Microtubules and a Higher Plant Homolog of Elongation Factor-1a." Plant Cell 6, no. 6 (June 1994): 893. http://dx.doi.org/10.2307/3869967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gross, Stephane R., and Terri Goss Kinzy. "Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology." Nature Structural & Molecular Biology 12, no. 9 (August 21, 2005): 772–78. http://dx.doi.org/10.1038/nsmb979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sun, Y., N. Carneiro, A. M. Clore, G. L. Moro, J. E. Habben, and B. A. Larkins. "Characterization of Maize Elongation Factor 1A and Its Relationship to Protein Quality in the Endosperm." Plant Physiology 115, no. 3 (November 1, 1997): 1101–7. http://dx.doi.org/10.1104/pp.115.3.1101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hetherington, Alexandra M., Cynthia G. Sawyez, Brian G. Sutherland, Debra L. Robson, Rigya Arya, Karen Kelly, René L. Jacobs, and Nica M. Borradaile. "Treatment with didemnin B, an elongation factor 1A inhibitor, improves hepatic lipotoxicity in obese mice." Physiological Reports 4, no. 17 (September 2016): e12963. http://dx.doi.org/10.14814/phy2.12963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Xu, Wen-Liang, Xiu-Lan Wang, Hong Wang, and Xue-Bao Li. "Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A." Gene 389, no. 1 (March 2007): 27–35. http://dx.doi.org/10.1016/j.gene.2006.09.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Belyi, Yury, Dina Tartakovskaya, Arlette Tais, Edith Fitzke, Tina Tzivelekidis, Thomas Jank, Sabine Rospert, and Klaus Aktories. "Elongation Factor 1A Is the Target of Growth Inhibition in Yeast Caused byLegionella pneumophilaGlucosyltransferase Lgt1." Journal of Biological Chemistry 287, no. 31 (June 8, 2012): 26029–37. http://dx.doi.org/10.1074/jbc.m112.372672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Signorell, Aita, Jennifer Jelk, Monika Rauch, and Peter Bütikofer. "Phosphatidylethanolamine Is the Precursor of the Ethanolamine Phosphoglycerol Moiety Bound to Eukaryotic Elongation Factor 1A." Journal of Biological Chemistry 283, no. 29 (May 22, 2008): 20320–29. http://dx.doi.org/10.1074/jbc.m802430200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Ai-Qin, Ying-Zhi Qin, Xing-Zhi Ye, Ye-Geng Fan, Long-Fei He, Li-Tao Yang, and Yang-Rui Li. "Molecular cloning and tissue specific expression of an elongation factor 1A gene in sugarcane stalks." Sugar Tech 10, no. 2 (June 2008): 119–23. http://dx.doi.org/10.1007/s12355-008-0020-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Hong-Tao, Yong-Ping Su, Tian-Min Cheng, Jian-Ming Xu, Jie Liao, Ji-Chuan Chen, Chang-You Ji, Guo-Ping Ai, and Jun-Ping Wang. "The interaction between interferon-induced protein with tetratricopeptide repeats-1 and eukaryotic elongation factor-1A." Molecular and Cellular Biochemistry 337, no. 1-2 (October 24, 2009): 101–10. http://dx.doi.org/10.1007/s11010-009-0289-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography