To see the other types of publications on this topic, follow the link: Elliptic method.

Books on the topic 'Elliptic method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Elliptic method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Bottasso, Carlo L. Discontinuous dual-primal mixed finite elements for elliptic problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Quarteroni, Alfio. Domain decomposition preconditioners for the spectral collocation method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pomp, Andreas. The boundary-domain integral method for elliptic systems. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

da Veiga, Lourenço Beirão, Konstantin Lipnikov, and Gianmarco Manzini. The Mimetic Finite Difference Method for Elliptic Problems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02663-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pomp, Andreas. The Boundary-Domain Integral Method for Elliptic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0094576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ženíšek, A. Nonlinear elliptic and evolution problems and their finite element approximations. Edited by Whiteman J. R. London: Academic Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Kab Seok. Covolume-based integrid transfer operator in P1 nonconforming multigrid method. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59325-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Numerical approximation methods for elliptic boundary value problems: Finite and boundary elements. United States: Springer Verlag, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chang, Sin-Chung. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: I, One-step method. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mitchell, William F. A comparison of adaptive refinement techniques for elliptic problems. Urbana, IL (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Numerical approximation methods for elliptic boundary value problems: Finite and boundary elements. New York: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kerkhoven, Thomas. L [infinity] stability of finite element approximations to elliptic gradient equations. Urbana, Ill: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Smith, Barry F. Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge: Cambridge University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chang, Sin-Chung. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: II - two-step method. Cleveland, Ohio: Lewis Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Zi-Cai. Global Superconvergence of Finite Elements for Eliptic Equations and Its Applications: Tuo yuan fang cheng you xian fang fa de zheng ti chao shou lian ji qi ying yong. Beijing: SCIENCE PRESS, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xu, Kun. A gas-kinetic method for hyperbolic-elliptic equations and its application in two-phase fluid flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems. London: Academic Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rüde, Ulrich. Accurate numerical solution of convection-diffusion problems: Final report on Grant I/72342 of Volkswagen Foundation. Novosibirsk: Publishing House of Institute of Mathematics, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mikhaĭlov, G. A. Vesovye metody Monte-Karlo. Novosibirsk: Izd-vo Sibirskogo otd-nii︠a︡ Rossiĭskoĭ akademii nauk, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Taa̓san, Shlomo. Fourier-Laplace analysis of multigrid waveform relaxation method for hyperbolic equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Deville, M. O. Fourier analysis of finite element preconditioned collocation schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Deville, M. O. Fourier analysis of finite element preconditioned collocation schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

1945-, Reddy J. N., ed. An introduction to the theory of finite elements. Mineola, N.Y: Dover Publications, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Wenxiong. Methods on nonlinear elliptic equations. [Springfield, MO]: American Institute of Mathematical Sciences, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Der-Chen, Chang, Furutani Kenro, Iwasaki Chisato, and SpringerLink (Online service), eds. Heat Kernels for Elliptic and Sub-elliptic Operators: Methods and Techniques. Boston: Springer Science+Business Media, LLC, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Elliptic marching methods and domain decomposition. Boca Raton: CRC Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Elliptic operators, topology and asymptotic methods. 2nd ed. Harlow: Longman, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Roe, John. Elliptic operators, topology, and asymptotic methods. Harlow, Essex, England: Longman Scientific & Technical, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Numerical methods for elliptic problems with singularities: Boundary methods and nonconforming combinations. Singapore: World Scientific, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wavelet methods for elliptic partial differential equations. Oxford: Oxford University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Widlund, Olof B. Iterative substructuring methods: the general elliptic case. New York: Courant Institute of Mathematical Sciences, New York University, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ambrosetti, A. Pertubation methods and semilinear elliptic problems on Rn. Boston, MA: Birkhauser Verlag, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dryja, Maksymilian. Multilevel additive methods for elliptic finite element problems. New York: Courant Institute of Mathematical Sciences, New York University, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ambrosetti, Antonio, and Andrea Malchiodi. Perturbation Methods and Semilinear Elliptic Problems on Rn. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/3-7643-7396-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nečas, Jindřich. Direct Methods in the Theory of Elliptic Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10455-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Steinbach, Olaf. Numerical Approximation Methods for Elliptic Boundary Value Problems. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-68805-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Methods for analysis of nonlinear elliptic boundary value problems. Providence, R.I: American Mathematical Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kunoth, Angela. Wavelet Methods -- Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Li, Zi-Cai. Numerical methods for elliptic boundary value problems with singularities. Toronto: [s.n.], 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ng, Kit Sun. Quadratic Spline Collocation methods for systems of elliptic PDEs. Toronto: University of Toronto, Dept. of Computer Science, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mitchell, William F. Unified multilevel adaptive finite element methods for elliptic problems. Urbana, Ill: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kunoth, Angela. Wavelet Methods — Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80027-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Approximate methods and numerical analysis for elliptic complex equations. Amsterdam, Netherlands: Gordon and Breach Science Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Böhmer, K. Numerical methods for nonlinear elliptic differential equations: A synopsis. Oxford: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Widlund, Olof B. Some Schwarz methods for symmetric and nonsymmetric elliptic problems. New York: Courant Institute of Mathematical Sciences, New York University, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Zi-Cai. Combined methods for elliptic equations with singularities, interfaces, and infinities. Dordrecht: Kluwer Academic Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Andrea, Malchiodi, ed. Perturbation methods and semilinear elliptic problems on R[superscript n]. Basel, Switzerland: Birkhäuser Verlag, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Center, Langley Research, ed. Crack-face displacements for embedded elliptic and semi-elliptical surface cracks. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography