Contents
Academic literature on the topic 'Éléments potentiellement toxiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Éléments potentiellement toxiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Éléments potentiellement toxiques"
Leprince, Marine, Lucie Sancey, Jean-Luc Coll, Vincent Motto-Ros, and Benoît Busser. "L’imagerie élémentaire par spectroscopie LIBS." médecine/sciences 35, no. 8-9 (August 2019): 682–88. http://dx.doi.org/10.1051/medsci/2019132.
Full textPerron, H. "La voie des rétrovirus humain endogènes, un espoir thérapeutique dans la schizophrénie." European Psychiatry 30, S2 (November 2015): S25. http://dx.doi.org/10.1016/j.eurpsy.2015.09.077.
Full textHeninger, I., M. Potin-Gautier, M. Astruc, L. Galvez, and V. Vignier. "Mise au point de techniques analytiques pour la spéciation du sélénium dans les boues de stations d'épuration d'eaux résiduaires urbaines." Revue des sciences de l'eau 11, no. 3 (April 12, 2005): 333–46. http://dx.doi.org/10.7202/705310ar.
Full textDissertations / Theses on the topic "Éléments potentiellement toxiques"
Foucault, Yann. "Réhabilitation écologique et gestion durable d’un site industriel urbain : cas d’une pollution historique en éléments inorganiques potentiellement toxiques (Pb, Cd, Zn, Cu, Sb et As." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0090/document.
Full textRehabilitation of brownfields in urban areas is a major challenge for the sustainable development of cities. Management and conversion of these sites, imposed by regulation, however, require the development of tools for environmental risk assessment and health and sustainable remediation techniques. This thesis focused on the establishment of multidisciplinary tools for the sustainable management of polluted site, with the particular case of rehabilitation recycling of lead batteries with a mainly historical lead pollution and other inorganic pollutants (Cd, Sb, As, Cu and Zn), currently defined as Metal Trace Elements (MTE). While trying to answer questions of applied research, this work has sought to investigate the mechanisms involved in the soil-plant pollutants to strengthen the consideration of the overall quality of soil management for industrial sites. In addition to the tools and procedures conventionally used to assess, control and reduce environmental and health risks caused by polluted soils; measures of bioavailability (plants and humans) and ecotoxicity (different bioassays: inhibition of the mobility of Daphnia magna, Microtox® and induction of bioluminescent bacteria and microbiology) have been developed with the aim to refine the classification of contaminated soils in terms of dangerousness. Moreover, green manure plants (borage, phacelia and mustard), commonly used in agriculture or by gardeners because they improve the bio-physico-chemical properties of soils with a root system and a large production of root exudates were tested for re-functionalization of polluted soils. Finally, the mechanisms involved in the fate of pollutants in the rhizosphere and their microorganisms in the plant were studied. The main results provide some answers and ways of improving the management of soils contaminated by metals and metalloids. (1) First, the size separation for soil fractions allows a significant reduction in tonnages of contaminated material and therefore costs for the landfill excavated soil with a gain result in terms of ecological footprint. (2) Then, calculation for the differents polluted soil samples of eco-scores based on the results of ecotoxicity tests can discriminate more accurately compared to physicochemical parameters required by the regulations. Differences in sensitivity were observed depending on the nature of the bioassay, the origin of the sample, physico-chemical properties and total concentrations of pollutants. (3) Unlike phacelia, borage and mustard improve soil respiration, ecotoxicity and reduce theamount of bioaccessible and total lead in soil, respectively by phytostabilisation and storage in roots (Pb, Sb) or phytoextraction and storage in aerial parts. Further, these plants could be field tested for use in phytoremediation of brownfields and gardens moderately polluted. Depending on the nature of the metal, the type of soil and plant, compartmentalization and speciation of the pollutant differ, and in conjunction with agronomic characteristics of soil and rhizosphere microbial activity. Molecular screening and meta-analysis of microbial genomics have enabled highlight differences in bacterial communities studied by species and growing conditions
Hattab, Nour. "Ecodynamique des éléments traces et caractérisation de l’exposition des sols contaminés : expérimentation et modélisation par les réseaux de neurones artificiels." Thesis, Orléans, 2013. http://www.theses.fr/2013ORLE2020/document.
Full textSoils contaminated with potentially toxic trace elements (PTTE) often have serious consequences for terrestrial ecosystems. Several phytoremediaction have been developped to reclaim contaminated soils; however the efficiency and capacity of these techniques to reduce excessive concentrations of trace elements or their (phyto) availability in contaminated soils have to be assessed. The present work is focused on studying the effectiveness of two phyoremediation options such as phytostabilisation and phytoextraction assisted by organic and inorganic amendments to remediatethe high concentrations of PTTE in contaminated natural soils and technosoils. Total PTTE concentrations were determined in soil pore water (SPW) sampled by Rhizon soil moisture samplers. The soil exposure intensity was assessed by DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. Then a model of artificial neural network was applied to understand the factors most relevant for the variability on the phytoavailability of trace elements. Both options were found to be able to reduce the concentrations or phytoavailability of PTTE in the presence of amendments. The artificial neural network has been very effective to predict missing results and to determine the control parameters of the variability of the PTTE phytoavailoability from the soil parameters
Hattab, Nour. "Ecodynamique des éléments traces et caractérisation de l'exposition des sols contaminés : expérimentation et modélisation par les réseaux de neurones artificiels." Phd thesis, Université d'Orléans, 2013. http://tel.archives-ouvertes.fr/tel-01069449.
Full textAchour, Yosra. "Etude de la mobilité des métaux (Pb, Zn, Cd) et des métalloïdes (As, Sb) dans les sols carbonatés contaminés par les rejets miniers." Electronic Thesis or Diss., Orléans, 2022. https://theses.univ-orleans.fr/prive/accesESR/2022ORLE1041_va.pdf.
Full textThis thesis provides answers on the ecodynamics and phytoavailability of potentially toxic elements (PTE) in agricultural soils heavily contaminated by mining waste developed on a carbonated bedrock of northern Tunisia (Jebel Ressas (JRS), Jebel Hallouf (JH1) and Sidi Bouaoune (SB) in a semi-arid climate.The main contaminants in question are Zn, Pb, Cd, As and Sb which can respectively reach 185037 mg.kg-1 at JRS, 28,000 mg.kg-1 at (JH1), 1021 mg.kg-1 at JRS, 1,355 mg.kg-1 and 338 mg.kg-1 at (JH1).These soils are essentially made up of clays (kaolinite, illite, and montmorillonite), carbonates (calcite, dolomite, and hydrozincite), silicates (quartz and hemimorphite), and sulfates (barite and anglesite).The rhizospheric effect on the mobility of PTE has been investigated using kinetic test with a mixture of low molecular weight organic acids. The results showed an increase in the pH of the solution (initial pH 2.8) up to near neutrality, leading to the dissolution of carbonates. Our results suggest that the most extractable elements are Cd and Zn and to a lesser extent Pb. an extraction percentage not exceeding 1% for Sb and 0.1% for As, respectively, was observed. for metalloids (As and Sb) their extractibility was relatively low with the exception of the soils of Jebel Hallouf and Sidi Bouaouane, with an extraction percentage not exceeding 1% for Sb and 0.1% for As, respectively.For the determination of the forms of the PTE in soils, two methods of sequential extractions were applied (BCR and Maiz). Jointly, the total dissolved concentration in pore waters, the labile fraction (DGT probes) and the absorption by plants (barley and peas) were measured in order to study the speciation, mobility and phytoavailability of two sites post-mining (Jebel Hallouf - Sidi Bouaouane and Jebel Ressas).Our résultats showed that the PTE in the mobile and mobilisable fraction(Maiz scheme) of the soils are low compared to their total concentrations. The BCR scheme revealed that most of the PTE are bound to the residual fraction with the exception of Zn at JRS which is much more concentrated in the exchangeable fraction. An exception was also observed for Pb in JH(1) and JH(2) soils where it was distributed evenly in the exchangeable, oxidizable and residual fractions, the percentage of which varies between 23 % and 32 %.The response of plants to these contaminants shows that peas and barley have accumulated TPE levels exceeding the levels absorbed by plants in control soils.Total dissolved concentrations soil power water as well as concentrations measured by DGT are not correlated with primary plant leaf content. This result is explained by the fact that the concentrations of PTE accumulated in the plants are higher than those available in the power waters and that the replenishment of the solid phase is practically negligible.The risk of transfer of PTE to water was studied by percolation in saturated conditions in soil columns reproducing the surface profile. A progressive decrease in the redox potential related to the concentration of organic carbon in the soil induced an increase in the mobility of arsenic probably related to the microbial reduction of iron oxides