Contents
Academic literature on the topic 'Éléments halogènes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Éléments halogènes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Éléments halogènes"
Augustin, Thiebaut d'. "Les éléments halogènes dans les magmas, du traçage des conditions de stockage aux flux éruptifs." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS370.
Full textHalogen elements have a characteristic S2P5 electronic configuration which gives them a very high electronegativity. Hence, they form highly reactive halide ions (X-, where X is a halogen element). Because of their volatile and incompatible behaviour in most of the minerals crystallising in magma reservoirs, their concentration increases in the residual liquid phase during fractional crystallisation. As the magma rises to the surface, the solubility of the volatile elements (including the halogen elements) decreases and they exsolve from the magma as gases. The gases emitted during plinian eruptions are propelled several kilometres into the atmosphere and, depending on the size of the eruption, they may reach the stratosphere. Once the halogen elements injected into the stratosphere, their residence time depend on the element and the compound it forms, and can reach several years. The halogen elements destabilise chemical balances in the stratosphere and cause the destruction of stratospheric ozone. The method used in this thesis consists in an estimate of the total volume of a given volatile element that is emitted during an eruption, from the difference in concentration of the element in the magma before and after eruption. The degassing thus corresponds to the difference in concentration of the element before and after eruption. This method has the double advantage of allowing to measure the total concentration of the element in the magma, in a non-specific way, and of not requiring direct observation at the time of the eruption
Balcone-Boissard, Hélène. "Le comportement des éléments halogènes au cours du dégazage des magmas en relation avec leur chimie et le style éruptif." Paris 7, 2008. http://www.theses.fr/2008PA077202.
Full textVolatile degassing, in particular H₂O, embodies the driving-force of volcanic eruptions involving differentiated magmas. Halogens, whose behaviour is defined respect to H₂O, have already been used as tracers of the volatile phase evolution. This thesis presents the study of the degassing processes through the detailed investigations of halogen behaviours in relation with magma chemistry and eruptive style. This work is based on the development of a precised apprroach, from sampling to data acquisition, linking eruptive clast geochemistry and texture and applied to several eruptions from different volcanoes. The acquisition of reliable and precise halogen concentration data required thé setting up of an analytical procedure for F and Cl measurements by electronic microprobe and analytical development for Br and I measurements by ICP-MS. Results highlight that halogens are not always sensitive to H₂O exsolution. During pre-eruptive conditions, we demonstrate that, in alkaline domain (phonolitic melts) Cl, and probably Br and I, are effîciently extracted from magmatic melt. Moreover, under particular Temperature-Pressure-Cl composition conditions, Cl embodies a strong indicator of pre-eruptive saturation conditions. During one eruption, halogen extraction effîciency depends on eruptive style: lava-dome forming eruptions are more efficient at extracting halogens than explosive éruptions, plinian or vulcanian. We also show that halogen ratios between Cl, Br and I are preserved whatever the eruptive process, but variable within volcanic Systems; F always behaves as an incompatible and non-volatile element whatever the magma composition and the eruptive style. Thus halogen ratios determined in eruptive clasts constitute an indicator of the halogen composition of deep magma from which differentiated melts originate. We also illustrate the importance of diffusive processes: for F and Cl, the role of the dominant alkaline element, Na or K, on their diffosivities in phonolitic melts is clearly demonstrated by the experimental data acquired. In addition, we propose that the différences in Cl behaviour during degassing processes may not only be explained by kinetic effects but also due to Cl and H₂O speciation
Moune, Severine. "Volatils mineurs (S, Cl, F) et éléments traces dans les magmas pré-éruptifs et les gaz volcaniques. Etude des processus de dégazage magmatique sur les volcans Hekla (Islande) et Masaya (Nicaragua)." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2005. http://tel.archives-ouvertes.fr/tel-00011542.
Full textUne étude sur les inclusions magmatiques (MIs) a permis de suivre l'évolution des volatils dissous dans le système volcanique d'Hekla au cours de la différenciation magmatique (cristallisation fractionnée). Ceci a permis d'estimer les concentrations en volatils dissous "attendues" dans le liquide pré-éruptif. Cette approche permet donc de ne pas sous-estimer les concentrations des liquides piégés dans les MIs et améliore ainsi les contraintes sur la masse de volatils émise dans l'atmosphère. Cette étude indique que, lors de l'éruption de février 2000, Hekla a émis dans l'atmosphère 0.1 Mt de HCl, 0.2 Mt de HF et 3.8 Mt de SO2. La chimie de la phase sub-Plinienne de cette éruption a été étudiée, de façon plus approfondie, grâce aux averses neigeuses qui ont traversé le panache volcanique. L'étude de ces neiges a montré que l'enrichissement des éléments volatils est lié à un processus de dégazage sous forme de chlorures, fluorures et sulfates. En revanche, l'enrichissement des éléments réfractaires est expliqué par un processus de dissolution non-stoechiométrique des téphras par la phase gazeuse riche en fluor au sein du panache éruptif.
Une étude basée sur les MIs a permis de confirmer la théorie de Walker et al. (1993) selon laquelle la différenciation des magmas tholéiitiques du Masaya se produit à basse pression à partir d'un magma relativement "sec" de composition homogène dans le temps. La caractérisation physico-chimique des aérosols par MEB et la chimie de la phase éruptive du volcan Masaya suggèrent que la plupart des éléments traces sont dégazés sous forme de chlorures, mais aussi sous forme de sulfates et chloro-sulfates. De plus, la quantification des flux de matière a montré que le dégazage au Masaya est une source importante de pollution atmosphérique.
Debret, Baptiste. "Serpentinites, vecteurs des circulations fluides et des transferts chimiques de l'océanisation à la subduction : exemple dans les Alpes occidentales." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-01037950.
Full textPhan, Thanh Long. "Etude fondamentale des mécanismes physico-chimiques de gravure plasma basés sur les effets stériques et de diffusion. Comportements prévisionnels de la gravure des éléments de la colonne IV et des composés III-V par les halogènes : loi de similitude." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-01062182.
Full textSkřínský, Jan. "Microwave and diode laser spectroscopy of discharge and flame plasma." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10151.
Full textTwo studies have been carried out during this work. On the one hand, pure rotational spectrum of the gas phase of the monoiodomethyl radical (ground state: X̃2B1) has been observed for the first time in the millimeter¬wave region. The CH2I• radical was created by the reaction of either diiodomethane (CH2I2) or iodomethane (CH3I) with the products of 2450 MHz microwave discharge of Cl2. The 331 millimeterwave a-type R-branch transitions have been observed with fully resolved fine and partly resolved hyperfine components. The small positive inertial defect, Δ0 = 0.03665(3) amu.A2, indicates that the radical is planar in the ground vibronic state. The observed fine and hyperfine interaction constants are consistent with 2B1 symmetry, i.e. with the unpaired electron occupying a pπ orbital extending perpendicular to the molecular plane. On the other hand, infrared spectroscopic studies on several molecular species, stable (C3H4, OCS and CH3OH) and reactive (the ion ArD+, the radicals CN• and O3•) have been carried out to test the possibility of atmospheric trace gas monitoring. Based on the mathematical evaluation of the calculated signal-to-noise ratios of absorption spectra, optimum values of frequency and amplitude modulation were found. The concept of the Allan variance has then been utilized with two experimental methods well-known for the detection of trace gas: diode-laser spectroscopy and CO2 laser photoacoustic spectroscopy. Detection of the above mentioned stable molecules and reactive unstable species have been compared on the basis of Allan variance calculations
Faranda, Carmela Federica. "Behavior of halogens (Cl, Br, I) in alkali-rich felsic magmas at crustal depth : an experimental approach." Electronic Thesis or Diss., Orléans, 2023. http://www.theses.fr/2023ORLE1066.
Full textThe behavior of halogens (F, Cl, Br and I) in magmatic systems is far from being clearly understood. The scientific community has only a fragmentary understanding of the processes that influence the behaviour of these elements during magma storage and ascent to the surface. Recent studies of heavy halogens (Br and I) behaviour have focused mainly on subduction-related magmas, in the context of the geochemical cycle of the halogens from subduction to the atmosphere. Previous studies of halogens solubility (at brine saturation) have shown that felsic, highly-polymerized calc-alkaline melts have lower halogens (except F) solubility than felsic alkali-rich melts. In addition, alkali-rich melts can produce large volume eruptions (e.g., East Africa Rift System), leading to potential massive release of halogens into the atmosphere. Emissions of halogens to the atmosphere are therefore likely to be underestimated, due to the lack of detailed understanding of the behavior of halogens (and in particular bromine and iodine) during magmatic degassing. In this work, we have addressed this gap by experimentally constraining fluid/melt halogen partitioning in felsic alkali-rich systems, with a focus on Br and I, and by a preliminary study of halogens abundances in natural mafic to felsic alkali-rich glasses from different geodynamic contexts. We performed HP-HT experiments (800°-1100 °C; 10 -200 MPa; NNO-0.6 -NNO+3.4) using four melt compositions, with variable SiO2 contents and [(Na₂O+K₂O)/Al₂O₃] molar ratios (natural phonolite, comendite and pantellerite and a synthetic analogue of phonolitic composition). Our results show that melt composition has a strong effect on the partitioning of halogens between fluid and melt. Dhalogens (with Dhalogens = halogen concentration in the fluid phase / halogen concentration in the silicate melt) increases with SiO₂ content and decreases with melt alkalinity, in agreement with the solubility data. We have carried out a systematic investigation of the influence of temperature and pressure on the fluid-melt partitioning of halogens and the results show that temperature has a more pronounced effect on partitioning than pressure. The effect of the redox conditions on halogens fluid/melt partitioning was also explored and the results indicate that DI decreases with decreasing fO₂, whereas DBr and DCl show the opposite effect. We present the first determination of heavy halogens (Br and I) abundances in felsic alkali-rich glasses, with concentrations in the order of ~10 ppm of Br and up to ~1 ppm of I in alkali-rich rhyolites. Iodine concentrations for these melts are at least an order of magnitude higher than concentrations determined by bulk rock analysis of calc-alkaline volcanic rocks in previous studies, highlighting the need for further quantification of heavy halogens in magmas to better assess their atmospheric emission and impact
Shinada, Nicolas. "Détection, caractérisation et comparaison des interactions protéine - ligand." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC090.
Full textApprehending the binding mechanism in a protein – ligand complex is a major goal in pharmaceutical industry. The objective of this thesis was to improve the understanding of this mechanism through molecular interactions study. Consequently, a large-scale contact detection protocol was designed to achieve this goal. The first chapters highlight known interaction types observed in the literature and the resulting tools that were developed during this thesis. Using our dataset of intermolecular contacts, a comprehensive analysis underlines the intricacy of describing interaction patterns of halogen atoms in the protein-ligand context. Then, a structural comparison of ligand binding modes quantitatively assesses its diversity on the entire PDB dataset. Finally, protein function and interaction mechanism are strongly related to its structure. Using a clustering approach, dynamic behavior of helix structures was highlighted through transitional patterns and unsuspected stable conformations for rare helices
Wu, Dan. "Synergie d'effets stériques, électroniques et bifonctionnels pour la conception de catalyseurs métalliques hautement sélectifs promus par des éléments non métalliques." Thesis, Lille, 2020. http://www.theses.fr/2020LILUR056.
Full textThe depletion of fossil resources and increasing environmental concerns encourage the production of sustainable chemicals and fuels from biomass resources. Selectivity is the primary parameter for heterogeneous catalytic processes, especially for the catalytic conversion of biomass-based molecules, containing a lot of functional groups with generation of various products. Recently, rational modification towards surface chemistry of metal catalysts has attracted intensive attention to tune the activity and selectivity. In this thesis, the modification of noble metal catalysts such as Pd and Ru with various non-metallic promoters such as iodine, bromine, and amines has been developed. These modifications lead to various effects like in-situ acidity generation, selective deactivation, electronic effect, and molecular imprinting. Important industrial reactions such as reductive etherification, hydrodeoxygenation, cleavage of lignin model compounds, and aromatics hydrogenation were investigated. The thesis consists of 7 chapters and 219 pages.In Chapter 1, a literature review of the recent progress in tuning catalytic properties of metal catalysts with non-metallic modifiers will be introduced. Different modification strategies will be clarified. And a general analysis will be proposed about the effects imposed by non-metallic modifiers of metal catalysts. Various industrial important reactions with the selectivity problems are discussed to elucidate the promotion effects of the non-metallic modifiers in catalysis.Chapter 2 introduces the experimental details about the preparation, characterization, and catalytic evaluation of the catalysts. Modification of Pd catalyst with iodine and bromine was investigated in Chapter 3 ~ 4. The structure-performance relationships were studied by catalytic reactions and various in-situ and ex-situ characterizations. We found that iodine and bromine withdraw electrons from Pd, leading to negative charged iodine and bromine atoms on Pd surface. Heterolytic dissociation of hydrogen on the Pd-I and Pd-Br sites leads to the in-situ generation of Brönsted acidity. The acid-metal bifunctional Pd-I and Pd-Br catalysts exhibited high efficiency for the reductive etherification of aldehydes with alcohol and the hydrodeoxygenation of 5-hydroxymethylfurfural to dimethylfuran, respectively.In Chapter 5, the modification of metal catalysts with halogens was extended to Ru catalyst. Ru-Br catalyst has been developed and demonstrated high selectivity for the cleavage of lignin model compound diphenyl ether to mono aromatics. Further investigations indicate that the terrace sites on Ru nanoparticles, which are responsible for aromatic-rings hydrogenation, selectively deactivated by Br atoms. Moreover, Br as a strongly electronegative element withdraws electrons from Ru, leading to positively charged Ru nanoparticles. The electron-deficient Ru nanoparticles exhibited enhanced activity for hydrogenolysis of electron-rich C-O bonds. The synergy of selective deactivation and electronic effect enabled Ru-Br catalyst high efficiency for the production of phenol and benzene from diphenyl ether with high selectivity.Based on the deep understanding of the multifunctional effects of non-metallic modifiers of metal catalysts, a molecularly imprinting strategy has been proposed in Chapter 6. Molecular imprinting for the preparation of imprinted heterogeneous catalyst involves adsorption of a template molecule, deactivation with poisoners with reservation of non-poisoned active islands with pre-determined shape and size for selective transformation of the molecules corresponding to templates. We demonstrate this strategy for selective hydrogenation of aromatic molecules with different alkyl radicals by preliminary deposition of these molecules as template over Pd catalyst and deactivation using dimethylaminopropylamine (DMAPA)