Academic literature on the topic 'Elegans embryos'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elegans embryos.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Elegans embryos"
Hajeri, Vinita A., Brent A. Little, Mary L. Ladage, and Pamela A. Padilla. "NPP-16/Nup50 Function and CDK-1 Inactivation Are Associated with Anoxia-induced Prophase Arrest in Caenorhabditis elegans." Molecular Biology of the Cell 21, no. 5 (March 2010): 712–24. http://dx.doi.org/10.1091/mbc.e09-09-0787.
Full textWatts, J. L., D. G. Morton, J. Bestman, and K. J. Kemphues. "The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry." Development 127, no. 7 (April 1, 2000): 1467–75. http://dx.doi.org/10.1242/dev.127.7.1467.
Full textKeating, H. H., and J. G. White. "Centrosome dynamics in early embryos of Caenorhabditis elegans." Journal of Cell Science 111, no. 20 (October 15, 1998): 3027–33. http://dx.doi.org/10.1242/jcs.111.20.3027.
Full textBrowning, H., and S. Strome. "A sperm-supplied factor required for embryogenesis in C. elegans." Development 122, no. 1 (January 1, 1996): 391–404. http://dx.doi.org/10.1242/dev.122.1.391.
Full textEdgar, L. G., N. Wolf, and W. B. Wood. "Early transcription in Caenorhabditis elegans embryos." Development 120, no. 2 (February 1, 1994): 443–51. http://dx.doi.org/10.1242/dev.120.2.443.
Full textZhang, Haining, Jayne M. Squirrell, and John G. White. "RAB-11 Permissively Regulates Spindle Alignment by Modulating Metaphase Microtubule Dynamics in Caenorhabditis elegans Early Embryos." Molecular Biology of the Cell 19, no. 6 (June 2008): 2553–65. http://dx.doi.org/10.1091/mbc.e07-09-0862.
Full textLee, Kenneth K., Yosef Gruenbaum, Perah Spann, Jun Liu, and Katherine L. Wilson. "C. elegans Nuclear Envelope Proteins Emerin, MAN1, Lamin, and Nucleoporins Reveal Unique Timing of Nuclear Envelope Breakdown during Mitosis." Molecular Biology of the Cell 11, no. 9 (September 2000): 3089–99. http://dx.doi.org/10.1091/mbc.11.9.3089.
Full textBasham, Stephen E., and Lesilee S. Rose. "The Caenorhabditis elegans polarity gene ooc-5 encodes a Torsin-related protein of the AAA ATPase superfamily." Development 128, no. 22 (November 15, 2001): 4645–56. http://dx.doi.org/10.1242/dev.128.22.4645.
Full textZilberman, Yuliya, Joshua Abrams, Dorian C. Anderson, and Jeremy Nance. "Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis." Journal of Cell Biology 216, no. 11 (September 13, 2017): 3729–44. http://dx.doi.org/10.1083/jcb.201611061.
Full textRose, L. S., and K. Kemphues. "The let-99 gene is required for proper spindle orientation during cleavage of the C. elegans embryo." Development 125, no. 7 (April 1, 1998): 1337–46. http://dx.doi.org/10.1242/dev.125.7.1337.
Full textDissertations / Theses on the topic "Elegans embryos"
Bringmann, Henrik Philipp. "Experiments concerning the mechanism of cytokinesis in Caenorhabditis elegans embryos." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1170257008922-66010.
Full textBringmann, Henrik Philipp. "Experiments concerning the mechanism of cytokinesis in Caenorhabditis elegans embryos." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A25039.
Full textSchlaitz, Anne-Lore. "Regulation of Mitotic Spindle Assembly in Caenorhabditis elegans Embryos." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1181247079528-57268.
Full textSchonegg, Stephanie. "Rho GTPase family members in establishment of polarity in C. elegans embryos." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1139490285625-55732.
Full textSchonegg, Stephanie. "Rho GTPase family members in establishment of polarity in C. elegans embryos." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24640.
Full textTenlen, Jennifer R. "Linking PAR polarity proteins to cell fate regulation : analysis of MEX-5 localization in Caenorhabditis elegans embryos /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5009.
Full textWu, Edlyn. "MicroRNA-mediated deadenylation of natural UTRs in C. elegans embryos is prevalent and requires miRISC collaboration." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86859.
Full textLes microARNs (miARNs) sont des petits ARNs qui jouent un rôle important dans la régulation post-transcriptionnelle des gènes. Ces ARNs régulateurs s'associent à des protéines, nommées les Argonautes, afin de former un complexe de répression induit par les miARNs (miRISCs). Chez les métazoaires, les miRISCs ciblent l'expression des gènes par une hybridation imparfaite avec la région non-codante en 3' (3'UTR) de l'ARN messager (ARNm) ciblé, ce qui a pour effet d'affecter la traduction des ARNm, et/ou de réduire leur stabilité. Malgré le fait que les miARNs jouent plusieurs rôles significatifs dans divers processus biologiques, leur mécanisme de contrôle de régulation génique demeure incompris. En utilisant un système in vitro chez les embryons de C. elegans, on se concentre sur le mécanisme d'action des miARNs et sur l'importance de la queue de poly(A) dans la répression des ARNm par le biais de miARNs pendant le développement. Nos résultats démontrent que suite à l'incubation de l'ARN avec l'extrait de C. elegans, nos gènes rapporteurs de luciférase-miARN ont commencé à être déadénylés après 20 minutes. Ce procédé est dépendant des Argonautes ALG-1 et ALG-2. On a aussi détecté la présence d'un deuxième ARN intermédiaire plus court après deux heures d'incubation de l'ARNm ciblé avec l'extrait. L'apparition de cet intermédiaire est indépendante du cap m7GTP, indiquant une voie de dégradation 3'->5'. On présente également un essai de déadénylation pour examiner les ARNm endogènes ciblés par la famille des miARNs maternelles, miR-35-42. Cette famille de miARNs est exprimée abondamment dans l'embryon et est essentielle pour l'embryogenèse. On a identifié un membre de la famille tolloid/BMP-1, toh-1, comme un ARNm ciblé et déadénylé. Le pro-apoptotique egl-1 a aussi été identifié comme un ARNm ciblé de la famille miR-35-42 ainsi que de miR-58, un miARN exprimé zygotiquement. Nos résultats démontrent$
Redemann, Stefanie, Jacques Pecreaux, Nathan W. Goehring, Khaled Khairy, Ernst H. K. Stelzer, Anthony A. Hyman, and Jonathon Howard. "Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-185631.
Full textRedemann, Stefanie, Jacques Pecreaux, Nathan W. Goehring, Khaled Khairy, Ernst H. K. Stelzer, Anthony A. Hyman, and Jonathon Howard. "Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos." PloS, 2010. https://tud.qucosa.de/id/qucosa%3A29013.
Full textSamandar, eweis Dureen. "Asymmetric division in single cell nematode embryos outside the Caenorhabditis genus." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS063.
Full textAsymmetric cell division is an essential process of development. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo. Asymmetric division of the single-cell embryo is a conserved process in nematode species, however, the cellular features leading up to division are surprisingly variable. During my PhD, I aimed to study these differences by using two non-C. elegans embryos: Diploscapter pachys and Pristionchus pacificus. D. pachys is the closest parthenogenetic relative to C. elegans. Since the polarity cue in C. elegans is brought by the sperm, how polarity is triggered in D. pachys remains unknown. My results show that the nucleus inhabits principally the hemisphere of the D. pachys embryo that will become the posterior pole. Moreover, in embryos where the nucleus is forced to one pole by centrifugation, it returns to its preferred pole. Although the embryo is polarized, cortical ruffling and actin cytoskeleton at both poles appear identical. Interestingly, the location of the meiotic spindle also correlates with the future posterior cell. In some oocytes, a slight actin enrichment along with unusual microtubule structures emanating from the meiotic spindle are observed at the future posterior pole. Overall, my main PhD project shows that polarity of the D. pachys embryo is attained during meiosis wherein the meiotic spindle could potentially be playing a role by a mechanism that may be present but suppressed in C. elegans. For P. pacificus, biolistic transgenesis has been shown recently successful. However, due to a lack of a stringent selection marker, the continuation of this project was unfeasible during my PhD. Altogether, the results of my PhD add to the understanding of non-C. elegans early embryogenesis and emphasizes on the importance of using these species for comparative studies
Book chapters on the topic "Elegans embryos"
Tzur, Yonatan B., and Yosef Gruenbaum. "Nuclear Envelope Breakdown and Reassembly in C. elegans." In Nuclear Envelope Dynamics in Embryos and Somatic Cells, 103–10. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0129-9_8.
Full textTegha-Dunghu, Justus, Eva M. Gusnowski, and Martin Srayko. "Measuring Microtubule Growth and Gliding in Caenorhabditis elegans Embryos." In Methods in Molecular Biology, 103–16. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0329-0_7.
Full textO’Toole, Eileen, and Thomas Müller-Reichert. "Electron Tomography of Microtubule End-Morphologies in C. elegans Embryos." In Methods in Molecular Biology, 135–44. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-993-2_8.
Full textWood, William B. "Determination of Pattern and Fate in Early Embryos of Caenorhabditis elegans." In The Molecular Biology of Cell Determination and Cell Differentiation, 57–78. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-6817-9_2.
Full textO’Connell, Kevin F., and Andy Golden. "Confocal Imaging of the Microtubule Cytoskeleton in C. elegans Embryos and Germ Cells." In Confocal Microscopy, 257–72. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-60761-847-8_13.
Full textMikl, Martin, and Carrie R. Cowan. "Cell Polarity in One-Cell C. elegans Embryos: Ensuring an Accurate and Precise Spatial Axis During Development." In Cell Polarity 2, 3–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14466-5_1.
Full textFarhadifar, Reza, and Daniel Needleman. "Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C. elegans Embryos." In Methods in Molecular Biology, 41–45. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0329-0_3.
Full textRobertson, Scott, and Rueyling Lin. "The Oocyte-to-Embryo Transition." In Germ Cell Development in C. elegans, 351–72. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4015-4_12.
Full textHardin, Jeff, Joel Serre, Ryan King, Elise Walck-Shannon, and David Reiner. "Imaging Epidermal Cell Rearrangement in the C. elegans Embryo." In Methods in Molecular Biology, 345–76. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2035-9_22.
Full textFielmich, Lars-Eric, and Sander van den Heuvel. "Polarity Control of Spindle Positioning in the C. elegans Embryo." In Cell Polarity 2, 119–41. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14466-5_5.
Full textConference papers on the topic "Elegans embryos"
Oibayashi, Takumi, Takaya Ueda, Yuki Kimura, Yukako Tohsato, and Ikuko Nishikawa. "Phenotype Anomaly Detection in Early C. elegans Embryos by Variational Auto-Encoder." In 2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). IEEE, 2021. http://dx.doi.org/10.1109/icbcb52223.2021.9459228.
Full textKolotuev, Irina. "Virtual correlative light microscopy-EM Time Series of C. elegans: Automated Single Cell Identification in embryos during development." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.328.
Full textAviles-Espinosa, Rodrigo, Susana I. C. O. Santos, Andreas Brodschelm, Wilhelm G. Kaenders, Cesar Alonso-Ortega, David Artigas, and Pablo Loza-Alvarez. "In-vivo third-harmonic generation microscopy at 1550nm three-dimensional long-term time-lapse studies in living C. elegans embryos." In SPIE BiOS, edited by Jose-Angel Conchello, Carol J. Cogswell, Tony Wilson, and Thomas G. Brown. SPIE, 2011. http://dx.doi.org/10.1117/12.874931.
Full textDong, Li, Jingwei Zhang, Thomas Lehnert, and Martin A. M. Gijs. "8-Channel single embryo pipette for accurate C. elegans bioassays." In 2018 IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018. http://dx.doi.org/10.1109/memsys.2018.8346755.
Full textDatta, Rupsa, Kelsey Tweed, and Melissa Skala. "Label-free metabolic imaging of early C. elegans embryo development." In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/omp.2021.oth1e.4.
Full textWang, Yijie, Jun Chen, Yuan Zhang, and Kee-Hong Kim. "Measurements of Morphology and Locomotion of Caenorhabditis Elegans With Digital Holographic Microscopy." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20177.
Full textPetrášek, Zdeněk, Carsten Hoege, Anthony A. Hyman, and Petra Schwille. "Two-photon fluorescence imaging and correlation analysis applied to protein dynamics in C. elegans embryo." In Biomedical Optics (BiOS) 2008, edited by Ammasi Periasamy and Peter T. C. So. SPIE, 2008. http://dx.doi.org/10.1117/12.761722.
Full text