Academic literature on the topic 'Electrospininig'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrospininig.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrospininig"
Lu, Shen-Zhou, Xiao-Ping Zhang, Juan Wang, Tie-Ling Xing, and Jian Jin. "Effect of degumming ph value on electrospining of silk fibroin." Thermal Science 18, no. 5 (2014): 1703–4. http://dx.doi.org/10.2298/tsci1405703l.
Full textChu, Yun Yun, and Yu Chou Chao. "Fabricate Dye-Sensitized Solar Cell with Electrospining." Advanced Materials Research 335-336 (September 2011): 1117–20. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.1117.
Full textYermagambet, B. T., M. K. Kazankapova, A. T. Nauryzbaeva, Z. A. Mansurov, G. T. Smagulova, and B. B. Kaidar. "PRODUCTION OF CARBON FIBERS BY ELECTROSPINING METHOD." NEWS of National Academy of Sciences of the Republic of Kazakhstan 4, no. 436 (August 15, 2019): 86–94. http://dx.doi.org/10.32014/2019.2518-170x.101.
Full textLiu, Yang, Jie Li, and Zhi Juan Pan. "Effect of Wet Post-Drawn on Structures and Properties of PA6/MWNTs Nanofiber Filaments." Advanced Materials Research 175-176 (January 2011): 90–94. http://dx.doi.org/10.4028/www.scientific.net/amr.175-176.90.
Full textTeng, Yu, Jinliang Zhang, Yingjuan Li, Chuanxiong Cai, and Fuliang Chen. "Preparation of Fe3O4 @ CaP magnetic fiber scaffold with electrospining." IOP Conference Series: Earth and Environmental Science 692, no. 2 (March 1, 2021): 022012. http://dx.doi.org/10.1088/1755-1315/692/2/022012.
Full textJiang, Guo Jun, Wen Min Zhao, and Xiao Hong Qin. "Composite Nanofibers Containing Microparticles Produced via a Stepped Pyramid-Shaped Spinneret." Advanced Materials Research 893 (February 2014): 149–52. http://dx.doi.org/10.4028/www.scientific.net/amr.893.149.
Full textChu, Yun Yun, and Yu Chou Chao. "Preparation of Photoanode of Dye-Sensitized Solar Cell by Electrospining." Advanced Materials Research 627 (December 2012): 896–99. http://dx.doi.org/10.4028/www.scientific.net/amr.627.896.
Full textEl-Newehy, Mohamed H., Mehrez E. El-Naggar, Saleh Alotaiby, Hany El-Hamshary, Meera Moydeen, and Salem Al-Deyab. "Green Electrospining of Hydroxypropyl Cellulose Nanofibres for Drug Delivery Applications." Journal of Nanoscience and Nanotechnology 18, no. 2 (February 1, 2018): 805–14. http://dx.doi.org/10.1166/jnn.2018.13852.
Full textLiao, Sheng-Hui, Shi-Yu Lu, Shu-Juan Bao, Ya-Nan Yu, and Min-Qiang Wang. "NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation." Analytica Chimica Acta 905 (January 2016): 72–78. http://dx.doi.org/10.1016/j.aca.2015.12.017.
Full textXia, Su, Zheng Wang, Jing Quan Yang, Li Mei Hao, and Jin Hui Wu. "Preparation and Characterization of Antibacterial Electrospun Polyurethane Fibers Containing TiO2-Ag Nanoparticles." Advanced Materials Research 79-82 (August 2009): 667–70. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.667.
Full textDissertations / Theses on the topic "Electrospininig"
Misiurev, Denis. "Strukturální a elektrické vlastnosti PVDF-CNT kompozitu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442593.
Full textAleksandra, Miletić. "Funkcionalni materijali na bazi elektrospinovanih nanovlakana." Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=111138&source=NDLTD&language=en.
Full textFunctional materials based on electrospun nanofibers are increasingly used in various fields of industry: biomedicine, pharmacy, sensors, filtration, packaging, etc. Electrospining technique is one of the methods for obtaining nanofibers from polymer solutions using high voltage. The use of electrospinning technique has many advantages over conventional techniques, primarily because of the ease of incorporation of the active component into the polymer matrix, as well as the specific morphology and 3D structure, because due to the nanometer dimensions, the fibers have a large ratio of specific surface area to volume and porosity, and thus a high contact surface with substrates, reactive agents, and microorganisms. Due to the production of materials at the nanoscale, the active component is finely dispersed within the polymer matrix, thereby ensuring better activity of these materials. Unlike conventional films, functional materials based on electrospinned nanofibers are active throughout the volume. The aim of this PhD thesis was to optimize the electrospining process parameters and validate the activity of functional materials for various applications, which was achieved by proper selection of materials and active components, optimization of material composition, characterization of materials by appropriate methods and validation of material activity. Materials have been developed for use in the fields of cosmetics, packaging, filtration, sensors, dentistry and conductive materials, the activity of which has been verified under laboratory conditions (TRL 4).
Chu, Yun-Yun, and 朱芸芸. "Preparation of the Photoanode of Dye-Sensitized Solar Cells by Electrospining." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/zujmxp.
Full text國立臺北科技大學
工程科技研究所
101
Generally, the efficiency of the electron-injection process is strongly dependent on the bonding structure of the dye molecules absorbed on the TiO2 film. In addition, electron transfer in the DSSC is strongly affected by the electrostatic and chemical interactions between the TiO2 surface and the absorbed dye molecules. The TiO2 film usually need to coat more than twice. In order to let dye molecules suffieiently absorbed on the TiO2 film, it usually immerse the film into the dye solution more than 8 hours. We have successfully demonstrated that the electrospun photoanode could provide a competitive alternative to the fabrication of DSSCs with less time and lower cost. We believe the simple and cheap merits of electrospinning will increase its potential in DSSCs and help them move to commercialisation quickly. The overall conversion efficiency of DSSC with photoanode prepared by the electrospun process showed slightly lower than that of conventional process.
Bo-Chiun-chen and 陳博群. "Electrospining nano-structure photo-catalyst of TiO2 synthesized by sol-gel method." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/umexcn.
Full text國立高雄海洋科技大學
微電子工程研究所
103
In this study, titanium dioxide (TiO2) photocatalyst powder was prepared by sol-gel method .Titaniumisopropoxide mixed with deionized water DI was used to precursor for titaniumisopropoxidesynthesization. After synthesization Tio2was centrifugallyseparated and DI water washing. The route of separation and washing was repeatedseveral time. The as synthesized powder was dried at 80℃ in an oven. The as dried TiO2powder was treated with post sinteredat 300~900℃ in air. From XRD analysis , the crystallineof TiO2powder were better with sintering temperature .The structure of TiO2samples sintered at 500~600℃change from anatase into rutile phase. The crystalline of TiO2was more obvious by sol-gel method at 80℃as compared to that synthesized at room temperature . The as prepared TiO2 powder was added to polyvinyl alcohol (PVA) and deionized water for Electrostatic spinning nanowire. The as electrostatic spinning TiO2nanowire were applied for degradation measurement. From the study, it helpus explore and understand the key functions of different phases ofTiO2applied for photocatalystic degradation and the preparing process of nanowire films. Keywords:Sol-gel ,TiO2, photocatalyst, electrospinning
Fernandes, Patrícia Esteves. "Develpment of polymeric matrices for application in skin regeneration." Master's thesis, 2015. http://hdl.handle.net/10400.6/4725.
Full textA pele é o maior órgão do corpo humano e este órgão está envolvido na preservação da homeostase dos fluidos corporais, manutenção da temperatura e protecção contra agentes infecciosos. Quando a estrutura da pele é comprometida inicia-se um complexo processo de regeneração. Para promover este processo a pele pode ser revestida com biomateriais com o objectivo de reduzir o risco de infecção, desidratação, dor e a formação de cicatriz. No presente estudo foram desenvolvidas novas esponjas (S) para a regeneração da pele. Os materiais utilizados na sua produção foram: O Quitosano e a Gelatina. Por outro lado as esponjas também foram revestidas com uma membrana (M), em que os materiais usados foram o Quitosano desacetilado, Óxido de polietileno (PEO) e policaprolactona (PCL), imitando a anatomia e fisiologia natural da pele. A esponja revestida (CS) é biocompatível, biodegradável, possi uma estrutura porosa com propriedades antimicrobianas, que permite a difusão de nutrientes e produtos residuais. Além disso, no interior do CS as células permacem viáveis e ocorre a proliferação. O Ibuprofeno foi também incorporado nas esponjas para acelarar a regeneração da pele, ao diminuir o edema da ferida por diminuição da produção de mediadores inflamatórios. A estrutura dos biomateriais produzidos, foram analisadas por espectroscopia de infravermelho com transformada de Fourier (FTIR). A morfologia da superfície e do interior das esponjas foi caracterizada por microscopia eletrónica de varrimento (SEM). A adesão celular e internalização das células nas estruturas porosas foram visualizadas através de imagens de microscopia confocal. Os perfis citotoxidos dos biomateriais foram caracterizados por meio de ensaios de viabilidade celular, e os resultados obtidos confirmaram a sua biocompatibilidade. A actividade antimicrobiana dos biomateriais foi também avaliada e os resultados mostraram que as esponjas inibem o crescimento na sua superfície, do microrganismo mais comum das infecções de pele (Staphylococcus aureus). As estruturas porosas têm propriedades adequadas para melhorar o processo de cicatrização de feridas cutâneas.
Book chapters on the topic "Electrospininig"
Farias, Taisa Lorene Sampaio, Maria Oneide Silva de Moraes, Walter Ricardo Brito, Marcos Marques da Silva Paula, and João de Deus Pereira de Moraes Segundo. "Membrana formada por blenda de Poli (ɛ-Caprolactona) e acetado de celulose contendo composto fenólico produzida pela técnica electrospining." In Ensino, pesquisa e extensão: uma abordagem pluralista (Volume VI). Editora Conhecimento Livre, 2020. http://dx.doi.org/10.37423/200902696.
Full textConference papers on the topic "Electrospininig"
Shi, Yong, Shiyou Xu, and Sang-Gook Kim. "Partially Aligned Piezoelectric Nanofibers by Sol-Gel Electrospining Process." In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87082.
Full textLin, Y. L., Z. H. Liu, C. T. Pan, L. W. Lin, C. K. Yen, Z. Y. Ou, and C. H. Taso. "Characteristic of single-fiber PVDF nanoharvester via new hollow cylindrical near-field electrospining process." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627078.
Full textZhang, Zhichun, Xueyong Jiang, Yanju Liu, and Jinsong Leng. "Fabrication and EM shielding properties of electrospining PANi/MWCNT/PEO fibrous membrane and its composite." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Nakhiah C. Goulbourne and Zoubeida Ounaies. SPIE, 2012. http://dx.doi.org/10.1117/12.915110.
Full textBalaban, O., I. Grygorchak, A. Borysyuk, M. Larkin, O. Hevus, N. Mitina, A. Zaichenko, V. Datsyuk, and S. Trotsenko. "Electrospining and physical properties of nanofiber polymer-inorganic planar quantum layers, hybridized with 0-D Fe2O3." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190260.
Full textLiu, Zong-Hsin, Cheng-Teng Pan, Zong-Yu Ou, and Wei-Chuan Wang. "Hollow cylindrical near-field electrospining high β-phase crystallisation of large PVDF nanofiber array for flexible energy conversion." In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411290.
Full text