Academic literature on the topic 'Electrosensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrosensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrosensor"
Liu, Jiangtao, Mingying Zhang, Jianbo Liu, and Jianbin Zheng. "Synthesis of Ag@Pt core–shell nanoparticles loaded onto reduced graphene oxide and investigation of its electrosensing properties." Analytical Methods 8, no. 5 (2016): 1084–90. http://dx.doi.org/10.1039/c5ay02672e.
Full textPapp, G., and F. M. Peeters. "Resistance maps for a submicron Hall electrosensor in the diffusive regime." Journal of Applied Physics 101, no. 11 (June 2007): 113717. http://dx.doi.org/10.1063/1.2745345.
Full textQin, Xiaojiao, Shuxia Xu, Li Deng, Rongfu Huang, and Xinfeng Zhang. "Photocatalytic electrosensor for label-free and ultrasensitive detection of BRCA1 gene." Biosensors and Bioelectronics 85 (November 2016): 957–63. http://dx.doi.org/10.1016/j.bios.2016.05.076.
Full textNeiva, Eduardo G. C., Marcio F. Bergamini, Marcela M. Oliveira, Luiz H. Marcolino, and Aldo J. G. Zarbin. "PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor." Sensors and Actuators B: Chemical 196 (June 2014): 574–81. http://dx.doi.org/10.1016/j.snb.2014.02.041.
Full textKan, Xianwen, Tingting Liu, Hong Zhou, Chen Li, and Bin Fang. "Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination." Microchimica Acta 171, no. 3-4 (September 19, 2010): 423–29. http://dx.doi.org/10.1007/s00604-010-0455-5.
Full textRani, Reetu, Akash Deep, Boris Mizaikoff, and Suman Singh. "Copper Based Organic Framework Modified Electrosensor for Selective and Sensitive Detection of Ciprofloxacin." Electroanalysis 32, no. 11 (October 28, 2020): 2442–51. http://dx.doi.org/10.1002/elan.202060274.
Full textGuo, Wenjuan, Tingcheng Xia, Huaying Zhang, Minghui Zhao, Luyan Wang, and Meishan Pei. "A Molecularly Imprinting Electrosensor Based on the Novel Nanocomposite for the Detection of Tryptamine." Science of Advanced Materials 10, no. 12 (December 1, 2018): 1805–12. http://dx.doi.org/10.1166/sam.2018.3388.
Full textHOFMANN, MICHAEL H., MARIANNE FALK, and LON A. WILKENS. "ELECTROSENSORY BRAIN STEM NEURONS COMPUTE THE TIME DERIVATIVE OF ELECTRIC FIELDS IN THE PADDLEFISH." Fluctuation and Noise Letters 04, no. 01 (March 2004): L129—L138. http://dx.doi.org/10.1142/s0219477504001732.
Full textSutton, Erin E., Alican Demir, Sarah A. Stamper, Eric S. Fortune, and Noah J. Cowan. "Dynamic modulation of visual and electrosensory gains for locomotor control." Journal of The Royal Society Interface 13, no. 118 (May 2016): 20160057. http://dx.doi.org/10.1098/rsif.2016.0057.
Full textNeven, Liselotte, Hanan Barich, Nick Sleegers, Rocío Cánovas, Gianni Debruyne, and Karolien De Wael. "Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry." Analytica Chimica Acta 1206 (May 2022): 339732. http://dx.doi.org/10.1016/j.aca.2022.339732.
Full textDissertations / Theses on the topic "Electrosensor"
Oswald, Anne-Marie Michelle. "Burst firing in electrosensory processing." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29244.
Full textRochman, Rebecca. "Electrosensory-based Search Strategies In Weakly Electric Fish." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/31947.
Full textLemon, Neal Allen Scott. "Control of oscillatory discharge in an electrosensory neuron." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0016/MQ49634.pdf.
Full textMathieson, William Bruce. "An electrosensory lateral line lobe slice preparation pyramidal cell electrophysiology." Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/5448.
Full textWang, Ke. "Design and Implementation of Bio-inspired Underwater Electrosense." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/68277.
Full textRashid, Asim J. "Contribution of Kv3 potassium channels to signal processing by electrosensory neurons." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38513.
Full textI cloned a family of Kv3 channels from an apteronotid brain cDNA library and demonstrated that two of these channels, homologues of the mammalian subtypes Kv3.1 and Kv3.3, are expressed in ELL pyramidal cells. Immunohistochemical analysis demonstrated that the AptKv3.3 K+ channel is distributed throughout the dendrites of pyramidal cells while the AptKv3.1 channel is restricted in its expression to pyramidal cell somata, basilar dendrites and proximal apical dendrites. Heterologous expression of each channel in HEK 293 cells indicated that AptKv3.3 encodes a high-threshold inactivating K + current while AptKv3.1 encodes a high-threshold K+ current which does not display inactivation upon prolonged membrane depolarization. Based on these results as well as pharmacological analysis of native ELL pyramidal cells, I propose that AptKv3.3 mediates spike repolarization in the apical dendrite and inactivation of the channel during repetitive firing allows spike broadening. In contrast, AptKv3.1 likely contributes towards rapid and consistent spike repolarization in the cell soma. Therefore, the expression and differential distribution of these two Kv3 channels in ELL pyramidal cells may underlie the compartmental differences in spike repolarzation that is necessary for burst discharge.
The extensive dendritic localization of AptKv3.3 observed in ELL pyramidal cells as well as in other hindbrain neurons has not previously been demonstrated for members of the Kv3 family of K+ channels. The differential localization of AptKv3.1. AptKv3.3 and possibly AptKv3.3 splice variants that I have identified presents an opportunity to examine the molecular mechanisms of Kv3 channel targeting in neurons. Preliminary data is presented which provides the foundation for future studies on channel targeting.
Deemyad, Tara. "Serotonergic modulation of potassium channels: implications for signal processing in electrosensory neurons." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110476.
Full textLa plupart des systèmes sensoriels doivent faire la différence entre un large panel de signaux qui peuvent être pertinent comportementalement. Pour réaliser cette différentiation, un neurone doit ajuster les propriétés de sa réponse, comme sa fréquence de décharge ou sa capacité de filtrage. Une façon d'ajuster ces propriétés neuronale est d'utiliser des substances endogènes comme la sérotonine, la dopamine, ou l'histamine. Lors des expériences présentées dans cette thèse, j'étudie les modifications engendrées par la sérotonine, sur les propriétés de réponse de neurones qui sont directement connectes a des capteurs sensoriels périphériques chez le poisson «faiblement électrique». Cette zone reçoit une innervation « sérotonergique » importante en provenance des noyaux raphe. Dans un premier groupe d'expériences, j'ai trouve, dans une préparation in vitro, que les effets de la sérotonine sont régulés par deux canaux a potassium différents : canal SK et canal M. En utilisant des bloqueurs spécifiques, j'ai trouve que les canaux a potassium SK et M contribuent aux effets de la sérotonine: réduction après hyperpolarisation (AHP). Bloquer l'un ou l'autre des canaux a pour conséquence une rafale de potentiels d'action et une diminution de la constante de temps de l'adaptation de la fréquence de décharge. Etonnamment, bloquer les canaux SK et M a un effet oppose sur l'ajustement fréquentiel du neurone. Bloquer les canaux SK augmente les oscillations du potentiel de membrane dans la gamme thêta, ce qui a pour conséquence d'augmenter la réponse neuronal aux basses fréquences. Bloquer les canaux M a pour conséquence une augmentation de l'ajustement neuronal aux hautes fréquences.Les expériences d'occlusion ont montrées que la sérotonine régule les deux canaux SK et M, avec un effet global de diminution de la réponse neuronal aux basses fréquences (<40Hz). La sérotonine a aussi pour effet d'augmenter la décharge des neurones pyramidaux avec des rafales d'activité et des potentiels d'action transportant de l'information sur les basses et hautes fréquences, respectivement. Dans le but d'étudier les effets de la sérotonine sur l'activité neuronale et le codage de l'information au niveau des réseaux neuronaux j'ai réalisé des enregistrements intracellulaire et extracellulaire des neurones pyramidaux chez le poisson immobilisé. J'ai soit délivré de la sérotonine soit stimule électriquement le noyau raphe. De la même façon que pour la préparation in vitro, la sérotonine provoque une rafale de potentiel d'actions à cause de la réduction de l'AHP. De plus, j'ai trouve que la sérotonine améliore la détection des battements a basse fréquence, ce qui simule la présence d'un animal de même sexe dans le champ électrique. Cela a été mesure par une augmentation de l'asservissement de la phase de la réponse aux sinusoïdes à basse fréquence. Il est surprenant de constater qu'à l'inverse des résultats in vitro, l'application de la sérotonine a pour conséquence l'augmentation de la densité de l'information mutuelle. Pris dans leur ensemble, ces résultats montrent comment des changements de propriétés de membrane induit par la sérotonine (Diminution de l'activité des canaux a potassium) ont des conséquences sur le modèle de décharge et incidemment, sur les propriétés de filtrage du neurone, ce qui se reflète dans une meilleur détection des signaux lie aux interactions avec des pairs de même sexe et aux comportements agressifs. De plus, ce neuromodulateur commande un ordre de « tais toi et écoutes » pour l'animal en condition de menace : la sérotonine réduit la production de pépiement et améliore la détection de petit pépiements. Les résultats des études présentées dans cette thèse, fournissent donc des évidences au niveau cellulaire et au niveau des réseaux neuronaux du rôle de neuromodulateurs dans l'ajustement des propriétés de réponses du neuronales dans le but de mieux détecter des stimuli pertinent au niveau du system.
Jordan, Laura Katherine. "Structure and function of stingray mechanosensory lateral line canals and electrosensory systems." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1712249181&sid=5&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textJesus, Bacelo Machado Sousa Joao Antonio. "Sensory processing in the Electrosensory Lobe of the weakly electric fish Gnathonemus petersii." Paris 6, 2007. http://www.theses.fr/2007PA066341.
Full textMileva, Gerri. "Short Term Synaptic Plasticity Across Multiple Electrosensory Maps in the Weakly Electric Fish Apteronotus leptorhynchus." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28637.
Full textBook chapters on the topic "Electrosensor"
Nelson, Mark E. "Adaptive Filtering in the Electrosensory System." In Computation in Neurons and Neural Systems, 209–14. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_34.
Full textPerks, Krista, and Nathaniel B. Sawtell. "Influences of Motor Systems on Electrosensory Processing." In Electroreception: Fundamental Insights from Comparative Approaches, 315–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29105-1_11.
Full textBodxnick, David. "Comparisons Between Electrosensory and Mechanosensory Lateral Line Systems." In The Mechanosensory Lateral Line, 653–78. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3560-6_33.
Full textPaulin, Michael G. "Neural System Identification Applied to Modelling Dogfish Electrosensory Neurons." In Computation in Neurons and Neural Systems, 191–96. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_31.
Full textTricas, Timothy C., and Joseph A. Sisneros. "Ecological Functions and Adaptations of the Elasmobranch Electrosense." In The Senses of Fish, 308–29. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1060-3_14.
Full textXu, Zhian, Jeremy R. Payne, and Mark E. Nelson. "System Identification and Modeling of Primary Electrosensory Afferent Response Dynamics." In Computation in Neurons and Neural Systems, 197–202. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_32.
Full textvon der Emde, Gerhard. "Electric Fields and Electroreception: How Electrosensory Fish Perceive Their Environment." In Ecology of Sensing, 313–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-22644-5_16.
Full textCaputi, Angel Ariel, and Javier Nogueira. "Identifying Self- and Nonself-Generated Signals: Lessons from Electrosensory Systems." In Advances in Experimental Medicine and Biology, 107–25. New York, NY: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1704-0_7.
Full textFritzsch, Bernd. "Diversity and Regression in the Amphibian Lateral Line and Electrosensory System." In The Mechanosensory Lateral Line, 99–114. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3560-6_5.
Full textPayne, Jeremy R., Zhian Xu, and Mark E. Nelson. "A Network Model of Automatic Gain Control in the Electrosensory System." In Computation in Neurons and Neural Systems, 203–8. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_33.
Full textConference papers on the topic "Electrosensor"
Wang, Ke, Khac Duc Do, and Lei Cui. "An underwater electrosensor for identifying objects of similar volume and aspect ratio using convolutional neural network." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206378.
Full textBrown, Brandon R., Mary E. Hughes, and John C. Hutchison. "Extracellular signal fluctuations in shark electrosensors." In SPIE's First International Symposium on Fluctuations and Noise, edited by Sergey M. Bezrukov, Hans Frauenfelder, and Frank Moss. SPIE, 2003. http://dx.doi.org/10.1117/12.498789.
Full textVan den Bergh, Bertold, Domenico Giustiniano, Hector Cordobes, Markus Fuchs, Roberto Calvo-Palomino, Sofie Pollin, Sreeraj Rajendran, and Vincent Lenders. "Electrosense: Crowdsourcing spectrum monitoring." In 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017. http://dx.doi.org/10.1109/dyspan.2017.7920766.
Full textLafferriere, Gerardo, and Patrick D. Roberts. "Stable feedback models for electrosensory filtering in mormyrid fish." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434558.
Full textWang, Ke, Lei Cui, and Khac Duc Do. "An underwater electrosensory membrane bio-inspired by weakly electric fish." In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759727.
Full textSilverman, Yonatan, James Snyder, Yang Bai, and Malcolm A. MacIver. "Location and orientation estimation with an electrosense robot." In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6386167.
Full textBai, Yang, James Snyder, Yonatan Silverman, Michael Peshkin, and Malcolm A. MacIver. "Sensing capacitance of underwater objects in bio-inspired electrosense." In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6386174.
Full textWang, Ke, Lei Cui, and Khac Duc Do. "A discrete dipole approximation approach to underwater active electrosense problems." In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759216.
Full textPetkov, Ivan. "Polymer/dye composition as component for interactive paper used as photochemical or electrosensors." In First International Conference on Interactive Paper, edited by Graham G. Allan and Jean J. Robillard. SPIE, 1997. http://dx.doi.org/10.1117/12.280786.
Full textPeng, Haoran, Qiao Hu, Guangyu Jiang, Dan Xu, and Tongqiang Fu. "Direction Identification of Underwater Moving Target with Active Electrosense and CNN." In 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2021. http://dx.doi.org/10.1109/robio54168.2021.9739322.
Full text