Academic literature on the topic 'Electrosensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrosensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrosensor"

1

Liu, Jiangtao, Mingying Zhang, Jianbo Liu, and Jianbin Zheng. "Synthesis of Ag@Pt core–shell nanoparticles loaded onto reduced graphene oxide and investigation of its electrosensing properties." Analytical Methods 8, no. 5 (2016): 1084–90. http://dx.doi.org/10.1039/c5ay02672e.

Full text
Abstract:
Nanocomposites of Ag@Pt core–shell nanoparticles loaded on graphene (Ag@Pt–graphene) were synthesized, and further fabricated into an electrosensor to detect hydrogen peroxide (H2O2).
APA, Harvard, Vancouver, ISO, and other styles
2

Papp, G., and F. M. Peeters. "Resistance maps for a submicron Hall electrosensor in the diffusive regime." Journal of Applied Physics 101, no. 11 (June 2007): 113717. http://dx.doi.org/10.1063/1.2745345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qin, Xiaojiao, Shuxia Xu, Li Deng, Rongfu Huang, and Xinfeng Zhang. "Photocatalytic electrosensor for label-free and ultrasensitive detection of BRCA1 gene." Biosensors and Bioelectronics 85 (November 2016): 957–63. http://dx.doi.org/10.1016/j.bios.2016.05.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neiva, Eduardo G. C., Marcio F. Bergamini, Marcela M. Oliveira, Luiz H. Marcolino, and Aldo J. G. Zarbin. "PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor." Sensors and Actuators B: Chemical 196 (June 2014): 574–81. http://dx.doi.org/10.1016/j.snb.2014.02.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kan, Xianwen, Tingting Liu, Hong Zhou, Chen Li, and Bin Fang. "Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination." Microchimica Acta 171, no. 3-4 (September 19, 2010): 423–29. http://dx.doi.org/10.1007/s00604-010-0455-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rani, Reetu, Akash Deep, Boris Mizaikoff, and Suman Singh. "Copper Based Organic Framework Modified Electrosensor for Selective and Sensitive Detection of Ciprofloxacin." Electroanalysis 32, no. 11 (October 28, 2020): 2442–51. http://dx.doi.org/10.1002/elan.202060274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Wenjuan, Tingcheng Xia, Huaying Zhang, Minghui Zhao, Luyan Wang, and Meishan Pei. "A Molecularly Imprinting Electrosensor Based on the Novel Nanocomposite for the Detection of Tryptamine." Science of Advanced Materials 10, no. 12 (December 1, 2018): 1805–12. http://dx.doi.org/10.1166/sam.2018.3388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

HOFMANN, MICHAEL H., MARIANNE FALK, and LON A. WILKENS. "ELECTROSENSORY BRAIN STEM NEURONS COMPUTE THE TIME DERIVATIVE OF ELECTRIC FIELDS IN THE PADDLEFISH." Fluctuation and Noise Letters 04, no. 01 (March 2004): L129—L138. http://dx.doi.org/10.1142/s0219477504001732.

Full text
Abstract:
For many aquatic animals, the electrosense is an important sensory system used to detect prey or conspecifics at short to medium range and for long-range orientation. Passive electroreceptive animals sense the minute electric fields of animate and inanimate sources and it has been thought that they are most sensitive to sources that modulate the field around a few Hertz. Our data on the properties of the electrosensory system in the paddlefish reveal that the firing rate of electrosensory brain stem neurons represents the first derivative of the stimulus, i.e. the rate of change in intensity of an electric field. Furthermore, the responses to several non-periodic stimuli suggest that the electrosensory system monitors changes in field intensity caused by the relative movement between source and receiver and converts spatial field structure into its time derivative form. This new interpretation solves a number of contradictions between behavioural observations and electrophysiological studies on the electrosensory system of vertebrates.
APA, Harvard, Vancouver, ISO, and other styles
9

Sutton, Erin E., Alican Demir, Sarah A. Stamper, Eric S. Fortune, and Noah J. Cowan. "Dynamic modulation of visual and electrosensory gains for locomotor control." Journal of The Royal Society Interface 13, no. 118 (May 2016): 20160057. http://dx.doi.org/10.1098/rsif.2016.0057.

Full text
Abstract:
Animal nervous systems resolve sensory conflict for the control of movement. For example, the glass knifefish, Eigenmannia virescens , relies on visual and electrosensory feedback as it swims to maintain position within a moving refuge. To study how signals from these two parallel sensory streams are used in refuge tracking, we constructed a novel augmented reality apparatus that enables the independent manipulation of visual and electrosensory cues to freely swimming fish ( n = 5). We evaluated the linearity of multisensory integration, the change to the relative perceptual weights given to vision and electrosense in relation to sensory salience, and the effect of the magnitude of sensory conflict on sensorimotor gain. First, we found that tracking behaviour obeys superposition of the sensory inputs, suggesting linear sensorimotor integration. In addition, fish rely more on vision when electrosensory salience is reduced, suggesting that fish dynamically alter sensorimotor gains in a manner consistent with Bayesian integration. However, the magnitude of sensory conflict did not significantly affect sensorimotor gain. These studies lay the theoretical and experimental groundwork for future work investigating multisensory control of locomotion.
APA, Harvard, Vancouver, ISO, and other styles
10

Neven, Liselotte, Hanan Barich, Nick Sleegers, Rocío Cánovas, Gianni Debruyne, and Karolien De Wael. "Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry." Analytica Chimica Acta 1206 (May 2022): 339732. http://dx.doi.org/10.1016/j.aca.2022.339732.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electrosensor"

1

Oswald, Anne-Marie Michelle. "Burst firing in electrosensory processing." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29244.

Full text
Abstract:
Processing of sensory input requires information transfer between neurons primarily via action potentials. The interaction between synaptic input and the ionic mechanisms of action potential generation leads to stereotyped sequences of action potential events. It is hypothesized that these spike sequences code for the sensory inputs. Spike trains often consist of sequences of single action potentials and clusters of action potentials or bursts. Investigations in this thesis are directed toward identifying candidate coding mechanisms in the processing of electrosensory input by pyramidal cells of the electrosensory lateral line lobe (ELL). These studies employ electrophysiological techniques combined with computational analysis and neural modeling to study the responses of pyramidal cells to mimics of electrosensory stimuli and feedback from higher brain centers. The major findings of this thesis are that the timing of isolated action potentials is correlated with a broad range of frequencies present in electrosensory stimuli whereas burst timing is correlated mainly with low frequency stimulus content. The timing of both single action potentials and bursts is reproducible and occurs with low variability in response to repeated stimulus presentations. In addition, within burst events, the time intervals between consecutive action potentials are correlated with stimulus intensity. Thus, bursts can detect low frequency stimulus events as well as estimate their intensity. Finally, feedback input to ELL pyramidal cells from higher brain regions is highly plastic. A subset of these feedback fibers synapse on the region of pyramidal cell dendrites that are responsible for burst generation; thus feedback synaptic input might modulate burst responses and perhaps enhance the detection of low frequency stimuli. The main conclusions of this thesis are that isolated action potentials and spike bursts code for different stimulus frequencies and that the time between burst spikes codes for the intensity of stimulus events. In addition, I speculate that feedback can modify coding by regulating bursting.
APA, Harvard, Vancouver, ISO, and other styles
2

Rochman, Rebecca. "Electrosensory-based Search Strategies In Weakly Electric Fish." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/31947.

Full text
Abstract:
Effective exploration of the environment is a critical aspect of adaptive behaviour, enabling animals to identify food sources, potential mates, refuge locations, and other important resources. The particular strategies used during exploratory behaviours depend on a variety of factors including context, personality traits and natural ecology. Weakly electric fish rely specifically on a short-range electric sense to search and locate objects in their environment in low-light conditions. However, little is known about the exploratory strategies used. We characterized the exploratory movements of two species of weakly electric fish, Apteronotus leptorhynchus and Apteronotus albifrons, in a laboratory setting. Our results suggest that there are behavioural differences between species in their exploratory strategies. Apteronotus albifrons spent more time in the open, travelled at a slower speed when out in the open, and had a higher total feeding time. Interestingly, Apteronotus leptorhynchus had a higher total displacement and preference for wall-following. A subsequent study on the behavioural function of wall-following in the two species suggested that wall-following is used for exploration in weakly electric fish, rather than for protection, and is not an artifact of restricted movement and tank shape.
APA, Harvard, Vancouver, ISO, and other styles
3

Lemon, Neal Allen Scott. "Control of oscillatory discharge in an electrosensory neuron." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0016/MQ49634.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mathieson, William Bruce. "An electrosensory lateral line lobe slice preparation pyramidal cell electrophysiology." Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/5448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Ke. "Design and Implementation of Bio-inspired Underwater Electrosense." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/68277.

Full text
Abstract:
Underwater electrosense, manipulating underwater electric field for sensing purpose, is a growing technology bio-inspired by weakly electric fish that can navigate in dark or cluttered water. We studied its theoretical foundations and developed sophisticated sensing algorithms including some first-introduced techniques such as discrete dipole approximation (DDA) and convolutional neural networks (CNN), which were tested and validated by simulation and a planar sensor prototype. This work pave a solid way to applications on practical underwater robots.
APA, Harvard, Vancouver, ISO, and other styles
6

Rashid, Asim J. "Contribution of Kv3 potassium channels to signal processing by electrosensory neurons." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38513.

Full text
Abstract:
Gamma-frequency burst discharge in pyramidal cells of the apteronotid electrosensory lateral line lobe (ELL) is necessary for signal processing. Bursting is dependent on an interaction between somatic and apical dendritic currents, in which spike broadening in the apical dendrite potentiates a somatic afterpotential that follows each rapid somatic spike. Somatic spike repolarization must be consistent in order for the afterpotential to be expressed soon after. The work presented in this thesis describes how the expression and differential subcellular distribution of two Kv3-type K+ channels in ELL pyramidal cells may contribute to this mechanism of burst discharge.
I cloned a family of Kv3 channels from an apteronotid brain cDNA library and demonstrated that two of these channels, homologues of the mammalian subtypes Kv3.1 and Kv3.3, are expressed in ELL pyramidal cells. Immunohistochemical analysis demonstrated that the AptKv3.3 K+ channel is distributed throughout the dendrites of pyramidal cells while the AptKv3.1 channel is restricted in its expression to pyramidal cell somata, basilar dendrites and proximal apical dendrites. Heterologous expression of each channel in HEK 293 cells indicated that AptKv3.3 encodes a high-threshold inactivating K + current while AptKv3.1 encodes a high-threshold K+ current which does not display inactivation upon prolonged membrane depolarization. Based on these results as well as pharmacological analysis of native ELL pyramidal cells, I propose that AptKv3.3 mediates spike repolarization in the apical dendrite and inactivation of the channel during repetitive firing allows spike broadening. In contrast, AptKv3.1 likely contributes towards rapid and consistent spike repolarization in the cell soma. Therefore, the expression and differential distribution of these two Kv3 channels in ELL pyramidal cells may underlie the compartmental differences in spike repolarzation that is necessary for burst discharge.
The extensive dendritic localization of AptKv3.3 observed in ELL pyramidal cells as well as in other hindbrain neurons has not previously been demonstrated for members of the Kv3 family of K+ channels. The differential localization of AptKv3.1. AptKv3.3 and possibly AptKv3.3 splice variants that I have identified presents an opportunity to examine the molecular mechanisms of Kv3 channel targeting in neurons. Preliminary data is presented which provides the foundation for future studies on channel targeting.
APA, Harvard, Vancouver, ISO, and other styles
7

Deemyad, Tara. "Serotonergic modulation of potassium channels: implications for signal processing in electrosensory neurons." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110476.

Full text
Abstract:
Most sensory systems need to discriminate between wide ranges of behaviorally relevant signals. In order to achieve this, neurons need to adjust their response properties, such as firing rate and filtering capabilities. In the experiments presented in this thesis, I studied modifications mediated by serotonin in the response properties of neurons that receive direct sensory inputs from peripheral sensors in the weakly electric fish. These neurons also receive a rich serotonergic innervation from the raphe nuclei. In a first set of studies, in an in vitro preparation I found that the effect of serotonin is mediated through down regulation of two different potassium channels, namely SK and M channels. Using specific blockers in vitro, I found that SK and M potassium channels contributed to the observed effects of serotonin through a reduction in after hyperpolarization (AHP). Blocking of either channel resulted in burst firing and decreased the time constant of spike frequency adaptation. Surprisingly, SK an M channel block had opposite effects on frequency tuning of neurons. Blocking SK channels increased oscillations in membrane potential in the theta range, thus increasing the response of neurons to low frequency stimuli. In contrast, blocking M channels resulted in an increase in high frequency tuning. Occlusion experiments showed that serotonin down regulates both SK and M channels, the overall effect being a reduction in the response of neurons to low frequency stimuli (i.e., <40Hz).To study the effect of serotonin on neuronal activity and information coding at the network level, I performed sharp electrode intracellular and extracellular recordings from pyramidal neurons in immobilized behaving fish. I either applied serotonin or electrically stimulated the raphe nuclei. Similar to the slice preparation, serotonin induced burst activity by reducing the AHP. Furthermore, I found that serotonin improves detection of low-frequency beats – which mimic the presence of same sex animal in the electrical field – as measured by an increase in phase-locking of responses to low frequency sinusoidal stimuli. Surprisingly, in contrast to in vitro conditions, serotonin application resulted in an increase in neuronal responses to low frequency stimuli. This finding suggests that serotonin also affects the feedback inputs that are not present in vitro, but remain intact in vivo.Previous studies have shown a positive correlation between serotonergic activity and harm avoidance in different animals. Here, I found that detection of small chirp stimuli improved in the presence of serotonin, as shown by a decrease in the variability and latency of the first spike after the stimulus. Since small chirp is an aggressive signal used for initiating fights between male fish, these findings suggest that serotonin release is beneficial for faster detection of stimuli and harm avoidance behaviors. These results provide electrophysiological correlates for known behavioral effects of serotonin. In contrast, prey-like and courtship signals were not affected in any way by serotonin injection. Taken together, these results provide a link between changes in membrane properties of neurons by serotonin (i.e., down-regulation of potassium channels) to a change in the firing pattern and consequently the filtering properties of neurons, which is reflected in better detection of signals related to same sex interactions and aggressive behaviors. Furthermore, this neuromodulator commands a "shut up and listen" order for the animal in threatening conditions: serotonin reduces the rate of chirp generation and increases small chirp detection. Thus, the findings of studies in the present thesis provide evidence at the cellular and network levels for the role of neuromodulators in adjusting response properties of neurons in order to better detect behaviorally relevant stimuli at the systems level.
La plupart des systèmes sensoriels doivent faire la différence entre un large panel de signaux qui peuvent être pertinent comportementalement. Pour réaliser cette différentiation, un neurone doit ajuster les propriétés de sa réponse, comme sa fréquence de décharge ou sa capacité de filtrage. Une façon d'ajuster ces propriétés neuronale est d'utiliser des substances endogènes comme la sérotonine, la dopamine, ou l'histamine. Lors des expériences présentées dans cette thèse, j'étudie les modifications engendrées par la sérotonine, sur les propriétés de réponse de neurones qui sont directement connectes a des capteurs sensoriels périphériques chez le poisson «faiblement électrique». Cette zone reçoit une innervation « sérotonergique » importante en provenance des noyaux raphe. Dans un premier groupe d'expériences, j'ai trouve, dans une préparation in vitro, que les effets de la sérotonine sont régulés par deux canaux a potassium différents : canal SK et canal M. En utilisant des bloqueurs spécifiques, j'ai trouve que les canaux a potassium SK et M contribuent aux effets de la sérotonine: réduction après hyperpolarisation (AHP). Bloquer l'un ou l'autre des canaux a pour conséquence une rafale de potentiels d'action et une diminution de la constante de temps de l'adaptation de la fréquence de décharge. Etonnamment, bloquer les canaux SK et M a un effet oppose sur l'ajustement fréquentiel du neurone. Bloquer les canaux SK augmente les oscillations du potentiel de membrane dans la gamme thêta, ce qui a pour conséquence d'augmenter la réponse neuronal aux basses fréquences. Bloquer les canaux M a pour conséquence une augmentation de l'ajustement neuronal aux hautes fréquences.Les expériences d'occlusion ont montrées que la sérotonine régule les deux canaux SK et M, avec un effet global de diminution de la réponse neuronal aux basses fréquences (<40Hz). La sérotonine a aussi pour effet d'augmenter la décharge des neurones pyramidaux avec des rafales d'activité et des potentiels d'action transportant de l'information sur les basses et hautes fréquences, respectivement. Dans le but d'étudier les effets de la sérotonine sur l'activité neuronale et le codage de l'information au niveau des réseaux neuronaux j'ai réalisé des enregistrements intracellulaire et extracellulaire des neurones pyramidaux chez le poisson immobilisé. J'ai soit délivré de la sérotonine soit stimule électriquement le noyau raphe. De la même façon que pour la préparation in vitro, la sérotonine provoque une rafale de potentiel d'actions à cause de la réduction de l'AHP. De plus, j'ai trouve que la sérotonine améliore la détection des battements a basse fréquence, ce qui simule la présence d'un animal de même sexe dans le champ électrique. Cela a été mesure par une augmentation de l'asservissement de la phase de la réponse aux sinusoïdes à basse fréquence. Il est surprenant de constater qu'à l'inverse des résultats in vitro, l'application de la sérotonine a pour conséquence l'augmentation de la densité de l'information mutuelle. Pris dans leur ensemble, ces résultats montrent comment des changements de propriétés de membrane induit par la sérotonine (Diminution de l'activité des canaux a potassium) ont des conséquences sur le modèle de décharge et incidemment, sur les propriétés de filtrage du neurone, ce qui se reflète dans une meilleur détection des signaux lie aux interactions avec des pairs de même sexe et aux comportements agressifs. De plus, ce neuromodulateur commande un ordre de « tais toi et écoutes » pour l'animal en condition de menace : la sérotonine réduit la production de pépiement et améliore la détection de petit pépiements. Les résultats des études présentées dans cette thèse, fournissent donc des évidences au niveau cellulaire et au niveau des réseaux neuronaux du rôle de neuromodulateurs dans l'ajustement des propriétés de réponses du neuronales dans le but de mieux détecter des stimuli pertinent au niveau du system.
APA, Harvard, Vancouver, ISO, and other styles
8

Jordan, Laura Katherine. "Structure and function of stingray mechanosensory lateral line canals and electrosensory systems." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1712249181&sid=5&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jesus, Bacelo Machado Sousa Joao Antonio. "Sensory processing in the Electrosensory Lobe of the weakly electric fish Gnathonemus petersii." Paris 6, 2007. http://www.theses.fr/2007PA066341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mileva, Gerri. "Short Term Synaptic Plasticity Across Multiple Electrosensory Maps in the Weakly Electric Fish Apteronotus leptorhynchus." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28637.

Full text
Abstract:
The electrosensory lateral line lobe (ELL) is the first order electrosensory processing station in the brain of the electric fish Apteronotus leptorhynchus, and is the only nucleus to receive input from electroreceptors on the skin. The ELL is subdivided into three maps: the centromedial segment (CMS), centrolateral segment (CLS), and lateral segment (LS) which receive input from tuberous electroreceptors processing high frequency signals. Two feedback pathways from higher order nuclei, the nucleus praemenintialis (nP) and the eminentia posterior granularis (EGp) are integral to processing in the ELL and show synaptic plasticity on various time scales. This thesis focuses on characterizing short term plasticity (STP) in nP-ELL synapses between the CMS, CLS and LS, and the development of an in vitro slice containing the entire direct feedback pathway. We find that LS pyramidal cells show greater facilitation in response to high frequency stimulation of direct feedback fibres as compared to CMS.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electrosensor"

1

Nelson, Mark E. "Adaptive Filtering in the Electrosensory System." In Computation in Neurons and Neural Systems, 209–14. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Perks, Krista, and Nathaniel B. Sawtell. "Influences of Motor Systems on Electrosensory Processing." In Electroreception: Fundamental Insights from Comparative Approaches, 315–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29105-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bodxnick, David. "Comparisons Between Electrosensory and Mechanosensory Lateral Line Systems." In The Mechanosensory Lateral Line, 653–78. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3560-6_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paulin, Michael G. "Neural System Identification Applied to Modelling Dogfish Electrosensory Neurons." In Computation in Neurons and Neural Systems, 191–96. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tricas, Timothy C., and Joseph A. Sisneros. "Ecological Functions and Adaptations of the Elasmobranch Electrosense." In The Senses of Fish, 308–29. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1060-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Zhian, Jeremy R. Payne, and Mark E. Nelson. "System Identification and Modeling of Primary Electrosensory Afferent Response Dynamics." In Computation in Neurons and Neural Systems, 197–202. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

von der Emde, Gerhard. "Electric Fields and Electroreception: How Electrosensory Fish Perceive Their Environment." In Ecology of Sensing, 313–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-22644-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Caputi, Angel Ariel, and Javier Nogueira. "Identifying Self- and Nonself-Generated Signals: Lessons from Electrosensory Systems." In Advances in Experimental Medicine and Biology, 107–25. New York, NY: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1704-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fritzsch, Bernd. "Diversity and Regression in the Amphibian Lateral Line and Electrosensory System." In The Mechanosensory Lateral Line, 99–114. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3560-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Payne, Jeremy R., Zhian Xu, and Mark E. Nelson. "A Network Model of Automatic Gain Control in the Electrosensory System." In Computation in Neurons and Neural Systems, 203–8. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrosensor"

1

Wang, Ke, Khac Duc Do, and Lei Cui. "An underwater electrosensor for identifying objects of similar volume and aspect ratio using convolutional neural network." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, Brandon R., Mary E. Hughes, and John C. Hutchison. "Extracellular signal fluctuations in shark electrosensors." In SPIE's First International Symposium on Fluctuations and Noise, edited by Sergey M. Bezrukov, Hans Frauenfelder, and Frank Moss. SPIE, 2003. http://dx.doi.org/10.1117/12.498789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Van den Bergh, Bertold, Domenico Giustiniano, Hector Cordobes, Markus Fuchs, Roberto Calvo-Palomino, Sofie Pollin, Sreeraj Rajendran, and Vincent Lenders. "Electrosense: Crowdsourcing spectrum monitoring." In 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017. http://dx.doi.org/10.1109/dyspan.2017.7920766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lafferriere, Gerardo, and Patrick D. Roberts. "Stable feedback models for electrosensory filtering in mormyrid fish." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Ke, Lei Cui, and Khac Duc Do. "An underwater electrosensory membrane bio-inspired by weakly electric fish." In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Silverman, Yonatan, James Snyder, Yang Bai, and Malcolm A. MacIver. "Location and orientation estimation with an electrosense robot." In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6386167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bai, Yang, James Snyder, Yonatan Silverman, Michael Peshkin, and Malcolm A. MacIver. "Sensing capacitance of underwater objects in bio-inspired electrosense." In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6386174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Ke, Lei Cui, and Khac Duc Do. "A discrete dipole approximation approach to underwater active electrosense problems." In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Petkov, Ivan. "Polymer/dye composition as component for interactive paper used as photochemical or electrosensors." In First International Conference on Interactive Paper, edited by Graham G. Allan and Jean J. Robillard. SPIE, 1997. http://dx.doi.org/10.1117/12.280786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peng, Haoran, Qiao Hu, Guangyu Jiang, Dan Xu, and Tongqiang Fu. "Direction Identification of Underwater Moving Target with Active Electrosense and CNN." In 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2021. http://dx.doi.org/10.1109/robio54168.2021.9739322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography