Academic literature on the topic 'Electroplating Environmental aspects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electroplating Environmental aspects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electroplating Environmental aspects"

1

Vinokurov, E. G., Kh A. Nevmyatullina, T. V. Guseva, and I. S. Kuroshev. "Resource efficiency and environmental performance of electroplating processes: water consumption aspects." Theoretical and Applied Ecology, no. 3 (2021): 118–25. http://dx.doi.org/10.25750/1995-4301-2021-3-118-125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MORIKAWA, Tsutomu, and Takuo NAKADE. "Environmental Aspects and Controlling Cr6+ Emissions of Chromium Electroplating." Journal of the Surface Finishing Society of Japan 68, no. 1 (2017): 14–20. http://dx.doi.org/10.4139/sfj.68.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lo, Shang-Lien, and Ya-Chi Tsao. "Economic analysis of waste minimization for electroplating plants." Water Science and Technology 36, no. 2-3 (July 1, 1997): 383–90. http://dx.doi.org/10.2166/wst.1997.0564.

Full text
Abstract:
The purpose of this study was to investigate the application of waste minimization technology to electroplating plants and to evaluate the economic aspects of such an application. Waste minimization in electroplating plants can be classified into two categories: recycling and source reduction. Generally, source reduction takes priority before the other and is the most economic tool for waste minimization. Reduction of spent cleaning solutions and drag-out minimization are two major tasks, in which 86% and 60%, respectively, of the plants reviewed were involved, while 74% of the electroplating plants utilized purification equipment to recycle raw materials. In the electroplating process, some heavy metals and rinse water can be recycled. Most of the plants that were investigated recycle the effluent water to the rinse process for further use. From the results of the case study, the cost of the equipment and the utilization rate of the facilities have greater influence on the net present value (NPV) than other factors. Therefore, if the cost or the utilization rate of the facilities varies, re-evaluation will be needed.
APA, Harvard, Vancouver, ISO, and other styles
4

Nester, Anatolyi, Larisa Tretyakova, Liudmyla Mitiuk, Natalya Prakhovnik, and Arkadii Husev. "Remediation of Soil Containing Sludge Generated by Printed Circuit Board Production and Electroplating." Environmental Research, Engineering and Management 76, no. 4 (December 18, 2020): 68–75. http://dx.doi.org/10.5755/j01.erem.76.4.25460.

Full text
Abstract:
This paper examines the environmental conditions at the premises of printed circuit boards (PCBs) manufacturers, which have electroplating plants. It provides a brief overview of the key aspects of adverse environmental impacts of wastes generated by PCB manufacture and electroplating plants. The aim of this research was to improve the test method for evaluation of wastewater effect on the soil salinity at the premises of PCBs manufacturers. The object of research was the process of extraction and use of copper from wastewater generated by PCBs manufacture and electroplating. As an example, the process of sludge formation during PCBs etching has been reviewed. With the etching line capacity of 14 m2/h, one-shift manufacturing process will result in the production of up to 2,500 kg of sludge monthly. For enterprises with capacities of 2,000–4,000 m2 circuits, this means annual accumulation at their premises of up to 70 tons of wastes in the form of sludge. Estimates suggest that the upper half-meter layer of the aeration zone will be qualified as slightly saline in one year after accumulation of the sludge. In subsequent years, the salt content will increase and saline soil can be found at the depths of 1.5–2 m over ten years of storage. The authors of this paper propose to treat spent etching solutions applying regeneration technology in order to reduce the amount of sludge. With this technology, it is possible to use the extracted metal as a secondary raw material for copper production and re-use the regenerated solution in PCBs etching. This paper provides estimated hazard indices calculated for the storage of sludge at the manufacturer’s premises before and after the implementation of the proposed technology. With regards to findings of the study, it has been proposed to reuse copper recovered from wastes as a raw material for the industry.
APA, Harvard, Vancouver, ISO, and other styles
5

Никитина, Елена, and Elena Nikitina. "Galvanic Metallisation: Best Available Technologies or Alternative Processes?" Safety in Technosphere 7, no. 4 (June 24, 2019): 65–73. http://dx.doi.org/10.12737/article_5cf66f7349d8d1.00617980.

Full text
Abstract:
The article provides a systemic analysis of environmental aspects of galvanic metallisation and examines a galvanising plant as a chemically hazardous facility using extremely/highly dangerous substances and creating a high risk of accidents and occupational diseases for the personnel. The indicators of energy and water consumption given in the article as well as the analysis of the consumption of chemical substances indicate irrationality in the use of energy and material resources. The article further shows that the best available technologies recommended for implementation in the Russian information and technical guide do not resolve environmental problems; a large part of electroplating processes are now outdated, even though many technological tasks involving the application of anticorrosive, special or decorative coatings could be performed in a more environmentally sound way. The article concludes by an overview of alternatives and innovations in the methods for the modification of surface properties
APA, Harvard, Vancouver, ISO, and other styles
6

Giurlani, Walter, Martina Vizza, Stefano Mauro Martinuzzi, Andrea Comparini, Marco Bonechi, Margherita Verrucchi, Andrea Caneschi, and Massimo Innocenti. "New Frontiers in Electrodeposition for More Sustainable Electroplating Processes." ECS Meeting Abstracts MA2022-02, no. 23 (October 9, 2022): 956. http://dx.doi.org/10.1149/ma2022-0223956mtgabs.

Full text
Abstract:
Although technological and processing advancements occurred in the past forty years, industrial firms are still struggling to provide solutions to corrosion protection as well as reduction of toxic wastes. Specifically, large-scale industrialization of electroplating techniques will continue to be limited by strict environmental regulations. Moreover, price volatility of the highly demanding electroplated materials like gold, palladium, copper and nickel will heavily impact the market in the next years. In that respect, alloy plating offers better answers in terms of economic growth and environmental sustainability due to fine tuning composition, morphology and crystallinity [1]. The main categories of alloy compounds are presented and the most important properties for the manufacturing process discussed. Particular attention is devoted to advances in industrial quality control and viable solutions for the reduction of precious metal content in electroplated accessories as well as replacement of cyanide and nickel baths with non-toxic compounds, also considering the commercial needs of wear resistance and aesthetic characteristics of gloss. The electrodeposition of Cu-Sn alloys (bronze) has earned considerable interest thanks to the chemical-physical properties of this alloy, which make it a valid substitute for nickel in fashion industry. Generally, most of the bronze coatings are electroplated starting from baths containing cyanides, and the metal precursors are selected as cyanide compounds. Free cyanide is a well-known problem in the galvanic production cycle both in terms of toxicity for the workers as well as for the environment, and in terms of costs associated with its disposal. The aim of this study is to develop an electroplating bath totally cyanide-free, therefore formulated in an innovative way and which, in addition to being free from this dangerous species, has an eco-friendly support electrolyte. To achieve this goal, methanesulfonic acid (MSA) was chosen as electrolyte, which is biodegradable as part of the natural sulfur cycle. We've studied different formulations in terms of metal precursors, organic additives and their concentrations [2-3]. The same cyanide issue is present also in for the electrodeposition of silver, for this reason the influence of polyethyleneimine (PEI) as additive for cyanide-free silver bath, in combination with 5,5-dimethylhydantoin (DMH) as complexing agent, was studied [4]. Chronoamperometry was used to investigate the electrodeposition mechanism, which is found to be a three-dimensional diffusion-controlled nucleation and growth mechanism, according to the Scharifker–Mostany’s model. Smoother, brighter and blue colored silver deposits are obtained in the presence of PEI in a Hull’s cell test, at low density current. Eventually, the influence of nitrate anion is also investigated. The presence of nitrate increases the range of current density allowing for an effective Ag deposition. We also investigated the use of modulated currents to increase the throwing power of electroplating, obtaining a more uniform deposition and reducing the amount of metals but maintaining the required characteristics. Pulsed current justifies its practical application mainly through its ability to influence the mechanisms of electrocrystallisation, which in turn control the mechanical and physical properties of the deposited metal. By simply adjusting the amplitude and length of the pulses, it is possible to control not only the composition and thickness, in atomic order, of the deposits, but to improve their characteristics such as grain size, porosity and homogeneity [5]. The authors acknowledge Regione Toscana POR CreO FESR 2014-2020 – azione 1.1.5 sub-azione a1 – Bando 1 “Progetti Strategici di ricerca e sviluppo” which made possible the projects “A.C.A.L. 4.0” (CUP 3553.04032020.158000165_1385), “A.M.P.E.R.E.” (CUP 3553.04032020.158000223_1538) and “GoodGalv” (3647.04032020.157000060). References [1] Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings 2018, 8, 260, doi:10.3390/coatings8080260. [2] Fabbri, L.; Sun, Y.; Piciollo, E.; Salvietti, E.; Zangari, G.; Passaponti, M.; Innocenti, M. Electrodeposition of White Bronzes on the Way to CZTS Absorber Films. J. Electrochem. Soc. 2020 , 167, 022513, doi: 10.1149/1945-7111/ab6c59. [3] Fabbri, L.; Giurlani, W.; Mencherini, G.; De Luca, A.; Passaponti, M.; Piciollo, E.; Fontanesi, C.; Caneschi, A.; Innocenti, M. Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte. Coatings 2022, 12, 376, doi:10.3390/coatings12030376. [4] Pizzetti, F.; Salvietti, E.; Giurlani, W.; Emanuele, R.; Fontanesi, C.; Innocenti, M. Cyanide-free silver electrodeposition with polyethyleneimine and 5,5-dimethylhydantoin as organic additives for an environmentally friendly formulation. J. Electroanal. Chem. 2022, 911, 116196, doi:10.1016/j.jelechem.2022.116196. [5] Popov, K.I.; Nikolić, N.D. General Theory of Disperse Metal Electrodeposits Formation. In; Djokić, S.S., Ed.; Modern Aspects of Electrochemistry; Springer US: Boston, MA, 2012; Vol. 54, pp. 1–62 ISBN 978-1-4614-2379-9.
APA, Harvard, Vancouver, ISO, and other styles
7

Aththanayake, A. M. K. C. B., I. V. N. Rathnayake, and M. P. Deeyamulla. "Detoxification and Removal of Hexavalent Chromium in Aquatic Systems: Applications of Bioremediation." Nepal Journal of Biotechnology 10, no. 2 (December 31, 2022): 57–76. http://dx.doi.org/10.54796/njb.v10i2.243.

Full text
Abstract:
Chromium is a transition metal with a wide range of applications in leather tanning, textile, electroplating, stainless steel production, inorganic chemical production and wood preservation industries due to yellow colouration, corrosion resistance, higher melting-point and crystalline structure with raging of oxidation states from 0 to +6. Trivalent and hexavalent chromium are the most abundant forms of chromium discharged into the aquatic environment by industries. It has been reported that hexavalent chromium is highly toxic than trivalent chromium due to the higher solubility, mobility and tendency to accumulate in higher trophic levels, which, therefore, become bioavailable and causes carcinogenic, mutagenic and teratogenic effects on most microorganisms and animals, growth inhibition, morphological and physiological changes and yield reductions in plants. Therefore, it is essential to detoxify the above hazardous pollutants up to permissible limits, which local and international authorities have legislated concerning its threat towards biotic components. Hexavalent chromium detoxification is possible to achieve using three methods i.e. physical, chemical and biological methods. These remediation processes can eliminate highly toxic hexavalent chromium or transform it into a less toxic form of trivalent chromium, completely or partially by adsorption and reduction. Biological remediation is considered a cost-effective and ecofriendly method compared to physical and chemical remediation. Further, many biological agents have been identified as agents that can tolerate the hexavalent chromium toxicity up to certain higher levels depending on the internal and external environmental factors, indicating different metal tolerance mechanisms that are assumed to be applied in metal remediation aspects. According to the testimonies of novel bioremediation studies, some hexavalent chromium tolerant organisms such as plants, bacteria, unicellular and multicellular fungi and algae are promising eco-friendly alternatives in detoxification and hexavalent chromium removal perspective. This article reviews the bioremediation approaches available for hexavalent chromium detoxification and removal and highlights the strengths and weaknesses of current bioremediation methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Pekhnyo, Vasyl, Anatoliy Omel’chuk, and Olga Linyucheva. "SCIENTIFIC ELECTROCHEMICAL SCHOOL OF KYIV." Ukrainian Chemistry Journal 88, no. 6 (July 27, 2022): 71–101. http://dx.doi.org/10.33609/2708-129x.88.06.2022.71-101.

Full text
Abstract:
An overview dedicates to the directions of scientific research and achieved results in the field of electrochemistry, initiated by scientific institutions and in higher educational institutions of Kyiv. Academician O.V. Plotnikov is the forerunner of the world- known Kyiv School of Electrochemistry, formed in the last century's twenties: M.I. Usanovych, V.O. Izbekov, Ya.A. Fialkov, Yu.K. Delimarskyi, I.A. Sheka, and many other scientists known to the general scientific community. O.V. Plotnikov and his followers are one of the first to attempt to combine the most progressive theoretical provisions on electrolytic dissociation, the chemical theory of solutions, and the chemistry of complex compounds for that time. World achievements of the Kyiv School of Electrochemistry were provided by the results of such fundamental research as the chemical theory of solutions, acid-base interactions (Usanovich's theory), the structure of the electric double layer (the Yesin-Markov effect, the reduced Antropov scale of potentials), physical chemistry and electrochemistry of molten electrolytes, kine­tics electrode processes, electrometallurgy, electrochemical materials science, electrochemical power engineering. Representatives of our School significantly expanded the knowledge of mass transfer in electrochemical systems with molten electrolytes (the phenomenon of the transfer of metals from the anode to the cathode). New technological processes of obtaining and refining heavy non-ferrous metals (bismuth, lead, indium, etc.), finishing metal surfaces, extraction of radionuclides, electroplating technology, and environmental monitoring have been introduced into the practice of industrial production. Research in electrochemical materials science is closely connected to solving the problems of electrochemical energy, particularly, the creation of new sources of current, including solid-state, hydrogen generators, and converters of solar energy into electrical power. The studies of electrochemical aspects of the extraction of some refractory metals from natural raw materials, the creation of new materials with specified functional properties, catalysts, and electrocatalysts, the latest galvanic coatings, electrode and electrolyte materials for chemical current sources and supercapacitors, valuable inorganic compounds, metal and carbon nanophases, corrosion inhibitors are expanding the scientific direction of elect­rochemical materials science.
APA, Harvard, Vancouver, ISO, and other styles
9

Haubner, Kinga, Thomas Fischer, Heiko Brunner, Ludwig Pohlmann, and Constanze Donner. "Aspects and Modeling of Oscillatory Acid Copper Electroplating." Journal of The Electrochemical Society 166, no. 1 (November 10, 2018): D3110—D3119. http://dx.doi.org/10.1149/2.0111901jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fane, A. G., A. R. Awang, M. Bolko, R. Macoun, R. Schofield, Y. R. Shen, and F. Zha. "Metal Recovery from Wastewater Using Membranes." Water Science and Technology 25, no. 10 (May 1, 1992): 5–18. http://dx.doi.org/10.2166/wst.1992.0233.

Full text
Abstract:
This paper outlines the requirements for metal recovery from wastewater, with particular reference to electroplating. The technical features of three alternative membrane processes are described. Nanofiltration is shown to separate ionic species on the basis of coulombic interactions or hydrated ion size, which leads to either a ‘charge' pattern or a ‘hydration' pattern of rejection. These rejection patterns provide ion selectivity. Ultrafiltration (UF), coupled with ion-complexing polymers or ion exchange resin, also provides efficient removal of metal ions, at high flux. The effectiveness of the UF-resin process is considerably increased as the resin size is decreased. Solvent extraction in a Liquid Membrane Contactor (LMC), which is based on microporous hollow fibre modules with aqueous and organic phases circulating through the shell or fibre lumens, achieves high fluxes of metal ions. A limitation of the LMC is the need to avoid phase leakage. The factors governing the critical displacement pressure and the effective transmembrane pressure are discussed. An LMC with a high packing density of fibres in the shell is preferred. Finally, the paper discusses criteria for selection of ‘user friendly' technologies for the electroplating industry. The membrane technologies, particularly in combined form, score highly except in terms of simplicity. This aspect needs further development.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electroplating Environmental aspects"

1

Chan, Yiu-wing, and 陳耀榮. "Impact of the water pollution control ordinance on small electroplating factories." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31252576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Ming. "Removal and recovery of heavy metals from synthetic solutions and electroplating effluents using yeast and the water fern Azolla filiculoides." Thesis, Rhodes University, 1998. http://hdl.handle.net/10962/d1004061.

Full text
Abstract:
The aims of the project were twofold. The initial objective of the study, based on previous results, was to develop an economically viable methodology for immobilizing yeast cells for the treatment of heavy metal-laden waste water. The non-viable yeast cross-linked by 13% (w/v) formaldehyde/1N HNO₃ exhibited satisfactory mechanical strength and rigidity in a continuous-flow column operation. No apparent disruption of the biomass after repeated use was observed. The cost of immobilizing 1kg dry yeast pellets was estimated at less than US$I. Zn uptake capacity of FA-cross-linked pellets, on batch trials, remained similar to that of raw yeast, reflecting that the immobilizing procedure did not hinder its metal removing capacity. In column studies, cation metals were effectively removed by the yeast pellets from aqueous solution at natural pHs, and then recovered completely by washing the pellets in situ with O.1M HCl. The recovered metals were concentrated in such small volumes that recycling or precipitation of them was facilitated. The metal uptake capacity of the regenerated biomass remained constant in comparison with cycle 1, indicating that reuse of the yeast would be possible. In the case of Cr⁶⁺, a gradual breakthrough curve of Cr in the column profile was noted, with a simultaneous reduction of Cr⁶⁺ to Cr³⁺. However, Cr⁶⁺ in the effluent can be markedly minimised either by accumulation onto the biomass or reduction to its trivalent form. Desorption of bound Cr⁶⁺ with either alkali or salt could not accomplish the regeneration of the biomass. A combination of reduction and desorption with FA/HNO₃ appeared promising in regeneration of the saturated biomass at 4°C. The metal sorption capacities of the yeast pellets, on a batch or a fixed-bed system are relatively lower than that of documented sorbents. Apparently more of the yeast pellets would be required for treating a certain volume of waste effluent, than with other sorbents. Therefore Azolla filiculoides was examined as a suitable sorbent for this purpose. This constitutes the second part of the project. Azolla filiculoides, a naturally-abundant water fern, was screened for its metal sorption and recovering capacities, mechanical stability, flow-permeability and reusability. The azolla biomass appeared to have fulfilled the required mechanical criteria during the repeated sorption-desorption column operations. It is water-insoluble and appears flexible under pressure when rinsed with water. These characters are of crucial importance in a continuous-flow system since a column can be operated at high flow rates without apparent compact of the biomass and pressure loss. Therefore, immobilization of the biomass can be avoided. The sorption isotherm data, obtained from batch removal of Cr⁶⁺, showed that the sorption process was effective, endothermic and highly pH dependent. Considerable amounts of Cr⁶⁺ were accumulated at the optimum pHs of 2-2.5. Column sorption of Cr⁶⁺ at a low flow rate and pH of 2.5 showed optimum performance with a total Cr uptake of 50.4mg/g at 60% saturation of the biomass. Removal of Cr⁶⁺ from an electroplating effluent using an azolla column was deemed reasonably satisfactory, although the uptake declined slightly. Desorption of bound Cr⁶⁺ with various desorbents was incomplete, which resulted in a low regeneration efficiency of about 50%. However, removal and recovery of Cr³⁺ using the azolla column was than that of Cr⁶⁺. Desorption of Cr³⁺ from the spent biomass column was accomplished with the recovery of 80% using O.5N H₂SO₄, The regeneration efficiencies for Cr³⁺ removal were up to 90% and demonstrated that the biomass is reusable. Cation metal uptake capacities of azolla, obtained either from batch or column experiments, are reasonably high in comparison with other sorbents. The uptake of Ni or Zn ions from solution is pH dependent showing the optimum pH of around 6 to 6.5, under the current experimental conditions. The sorption kinetics for cation metals was rapid with about 80% of the bound Ni ions being taken up in the first 10 min. The character of rapid binding is extremely important in a column sorption process, especially on a large scale since it favours an optimum uptake of metals at high flow rates. The Ni or Zn uptakes in column sorption were not markedly affected when the flow rates were increased from 80mllh up to 800ml/h for the 5g biomass used. The cation heavy metals removed from waste effluents were recovered in a concentrated solution of small volume. The desorption of bound Ni and Zn ions from the saturated biomass was accomplished with either O.2N HCl or H₂SO₄ that resulted in recoveries of more than 95%. The metals recovered, in the case of Ni and Zn, are identical to that of plating agents ego nickel sulphate or chloride, so that recycling of the metals is possible. An effluent-free, closed loop of Ni or Zn treatment system was proposed, whereby the Ni or Zn ions can be recycled to the plating bath whilst the purified water is fed back to the rinse tanks. Ca and Mg ions, commonly present in the electroplating effluents, appeared to affect sorption of heavy metals by azolla when metal concentrations were relatively low, presumedly through its competitive binding for the shared sites on surfaces of azolla. The data obtained from column sorption of Ni and Zn follows the BDST model well, enabling the application of the model to predicting design parameters for scale-up of the biosorption column system. It is interesting that the values of metal uptake, expressed in molar quantities, obtained on respective single-metal solutions and the multiple metal system, are similar, implying that the mechanisms involved in the sorption of all metal cations are similar and that the binding sites on surfaces of azolla are probably shared by all cation metals. The surface of the biomass provides sites for metal binding estimated in the range of 0.45-0.57mmol/g, based on the current experiments. The biomass has a surface area of 429 m²/g and water retention of 14.3 ml/g. The functional groups on the surface of azolla were partially identified using chemical modification and metal binding comparison. Among the functional groups examined, carboxyl groups, provided by amino acids and polysaccharides, appeared to play an important role in metal cation binding. The infrared spectra of the samples support this conclusion.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electroplating Environmental aspects"

1

Cushnie, George C. Electroplating wastewater pollution control technology. Park Ridge, N.J., U.S.A: Noyes Publications, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamil, Henry F. Fabrication and pilot scale testing of a prototype Donnan dialyzer for the removal of toxic metals from electroplating rinse waters. Cincinnati, OH: U.S. Environmental Protection Agency, Water Engineering Research Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haveman, Mark. Applying environmental accounting to elecroplating operations: An in-depth analysis. [Washington, D.C.?: U.S. Environmental Protection Agency, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haveman, Mark. Applying environmental accounting to elecroplating operations: An in-depth analysis. [Washington, D.C.?: U.S. Environmental Protection Agency, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agency, Ireland Environmental Protection. Integrated pollution control licensing: BATNEEC guidance note for electroplating operations. Wexford: Environmental Protection Agency, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cushnie, George C. Pollution prevention and control technology for plating operations. [Ann Arbor, MI]: National Center for Manufacturing Sciences, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jendrucko, Richard J. Pollution prevention assessment for a manufacturer of combustion engine piston rings. Cincinnati, OH: U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hay, K. James. Development of Venturi/Vortex Scrubber Technology for controlling chromium electroplating hazardous air emissions. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zapolʹskiĭ, A. K. Kompleksnai͡a︡ pererabotka stochnykh vod galʹvanicheskogo proizvodstva. Kiev: "Tekhnika", 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Integrated pollution control licensing: BATNEEC guidance note for the production of cement. Ardcavan: Environmental Protection Agency, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electroplating Environmental aspects"

1

Tomkiewicz, Micha. "Environmental Aspects of Electrodeposition." In Modern Electroplating, 555–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470602638.ch26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography