To see the other types of publications on this topic, follow the link: Electroorganic.

Journal articles on the topic 'Electroorganic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electroorganic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Breinbauer, Rolf. "Electroorganic Reductions Syntheses." Synthesis 2006, no. 17 (September 2006): 2974. http://dx.doi.org/10.1055/s-2006-951382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Montenegro, I. "Modern electroorganic chemistry." Journal of Electroanalytical Chemistry 387, no. 1-2 (May 1995): 152. http://dx.doi.org/10.1016/0022-0728(95)90299-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gieshoff, Tile, Anton Kehl, Dieter Schollmeyer, Kevin D. Moeller, and Siegfried R. Waldvogel. "Electrochemical synthesis of benzoxazoles from anilides – a new approach to employ amidyl radical intermediates." Chemical Communications 53, no. 20 (2017): 2974–77. http://dx.doi.org/10.1039/c7cc00927e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lateef, Shaik, Srinivasulu Reddy Krishna Mohan, and Srinivasulu Reddy Jayarama Reddy. "Electroorganic synthesis of benzathine." Tetrahedron Letters 48, no. 1 (January 2007): 77–80. http://dx.doi.org/10.1016/j.tetlet.2006.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nematollahi, Davood, and Esmail Tammari. "Electroorganic Synthesis of Catecholthioethers." Journal of Organic Chemistry 70, no. 19 (September 2005): 7769–72. http://dx.doi.org/10.1021/jo0508301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Waldvogel, S. R. "Challenges in Electroorganic Synthesis." Chemie Ingenieur Technik 86, no. 9 (August 28, 2014): 1447. http://dx.doi.org/10.1002/cite.201450707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cantillo, David. "Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability." Chemical Communications 58, no. 5 (2022): 619–28. http://dx.doi.org/10.1039/d1cc06296d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Momeni, Shima, and Davood Nematollahi. "Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell." Green Chemistry 20, no. 17 (2018): 4036–42. http://dx.doi.org/10.1039/c8gc01727a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shin, Samuel J., Sangmee Park, Jin-Young Lee, Jae Gyeong Lee, Jeongse Yun, Dae-Woong Hwang, and Taek Dong Chung. "Cathodic electroorganic reaction on silicon oxide dielectric electrode." Proceedings of the National Academy of Sciences 117, no. 52 (December 14, 2020): 32939–46. http://dx.doi.org/10.1073/pnas.2005122117.

Full text
Abstract:
The faradaic reaction at the insulator is counterintuitive. For this reason, electroorganic reactions at the dielectric layer have been scarcely investigated despite their interesting aspects and opportunities. In particular, the cathodic reaction at a silicon oxide surface under a negative potential bias remains unexplored. In this study, we utilize defective 200-nm-thick n+-Si/SiO2 as a dielectric electrode for electrolysis in an H-type divided cell to demonstrate the cathodic electroorganic reaction of anthracene and its derivatives. Intriguingly, the oxidized products are generated at the cathode. The experiments under various conditions provide consistent evidence supporting that the electrochemically generated hydrogen species, supposedly the hydrogen atom, is responsible for this phenomenon. The electrogenerated hydrogen species at the dielectric layer suggests a synthetic strategy for organic molecules.
APA, Harvard, Vancouver, ISO, and other styles
10

TOKUDA, Masao. "Organometallic compounds in electroorganic synthesis." Journal of Synthetic Organic Chemistry, Japan 43, no. 6 (1985): 522–32. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

BECK, Fritz, and Hiroshi SUGINOME. "Industrial Electroorganic Synthesis in Europe." Journal of Synthetic Organic Chemistry, Japan 49, no. 9 (1991): 798–808. http://dx.doi.org/10.5059/yukigoseikyokaishi.49.798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

TORII, Sigeru. "Organometal Complexes in Electroorganic Synthesis." Journal of Synthetic Organic Chemistry, Japan 51, no. 11 (1993): 1024–42. http://dx.doi.org/10.5059/yukigoseikyokaishi.51.1024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yoshida, Jun-ichi, Kazuhide Kataoka, Roberto Horcajada, and Aiichiro Nagaki. "Modern Strategies in Electroorganic Synthesis." Chemical Reviews 108, no. 7 (July 2008): 2265–99. http://dx.doi.org/10.1021/cr0680843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Elsherbini, Mohamed, and Thomas Wirth. "Electroorganic Synthesis under Flow Conditions." Accounts of Chemical Research 52, no. 12 (November 6, 2019): 3287–96. http://dx.doi.org/10.1021/acs.accounts.9b00497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gütz, Christoph, Bernhard Klöckner, and Siegfried R. Waldvogel. "Electrochemical Screening for Electroorganic Synthesis." Organic Process Research & Development 20, no. 1 (December 21, 2015): 26–32. http://dx.doi.org/10.1021/acs.oprd.5b00377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Atobe, Mahito, Yoshifumi Kado, and Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes." Ultrasonics Sonochemistry 7, no. 3 (July 2000): 97–102. http://dx.doi.org/10.1016/s1350-4177(99)00036-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Atobe, Mahito, Michiaki Sasahira, and Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes." Ultrasonics Sonochemistry 7, no. 3 (July 2000): 103–7. http://dx.doi.org/10.1016/s1350-4177(99)00044-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pletcher, Derek. "Novel trends in electroorganic synthesis." Journal of Electroanalytical Chemistry 422, no. 1-2 (February 1997): 201. http://dx.doi.org/10.1016/s0022-0728(97)80113-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Grimshaw, James. "Recent advances in electroorganic synthesis." Electrochimica Acta 33, no. 9 (September 1988): 1255. http://dx.doi.org/10.1016/0013-4686(88)80160-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bouzek, Karel, Vladimír Jiřičný, Roman Kodým, Jiří Křišťál, and Tomáš Bystroň. "Microstructured reactor for electroorganic synthesis." Electrochimica Acta 55, no. 27 (November 2010): 8172–81. http://dx.doi.org/10.1016/j.electacta.2010.05.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Atobe, Mahito, Naohiro Yamada, Toshio Fuchigami, and Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes." Electrochimica Acta 48, no. 12 (May 2003): 1759–66. http://dx.doi.org/10.1016/s0013-4686(03)00153-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cignitti, M. "Recent Advances in Electroorganic Synthesis." Bioelectrochemistry and Bioenergetics 19, no. 1 (March 1988): 187–88. http://dx.doi.org/10.1016/0302-4598(88)85026-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pletcher, D. "Emerging Opportunities for Electroorganic Processes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 195, no. 2 (November 1985): 439. http://dx.doi.org/10.1016/0022-0728(85)80065-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hasegawa, Masaru, and Toshio Fuchigami. "Electroorganic reactions in ionic liquids." Electrochimica Acta 49, no. 20 (August 2004): 3367–72. http://dx.doi.org/10.1016/j.electacta.2004.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chaloner, Penny A. "Electroorganic Synthesis; Best synthetic Methods." Journal of Organometallic Chemistry 418, no. 1 (October 1991): C17—C18. http://dx.doi.org/10.1016/0022-328x(91)86358-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Atobe, Mahito, Naohiro Yamada, and Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes." Electrochemistry Communications 1, no. 11 (November 1999): 532–35. http://dx.doi.org/10.1016/s1388-2481(99)00111-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

MAKI, Shojiro, and Haruki NIWA. "The Application of Electroorganic Chemical Reaction." Journal of Synthetic Organic Chemistry, Japan 56, no. 9 (1998): 725–35. http://dx.doi.org/10.5059/yukigoseikyokaishi.56.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Takahashi, Machiko, Masato Fujita, and Masatoki Ito. "SERS application to some electroorganic reactions." Surface Science Letters 158, no. 1-3 (July 1985): A424. http://dx.doi.org/10.1016/0167-2584(85)90023-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Horcajada, Roberto, Masayuki Okajima, Seiji Suga, and Jun-ichi Yoshida. "Microflow electroorganic synthesis without supporting electrolyte." Chemical Communications, no. 10 (2005): 1303. http://dx.doi.org/10.1039/b417388k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Takahashi, Machiko, Masato Fujita, and Masatoki Ito. "SERS application to some electroorganic reactions." Surface Science 158, no. 1-3 (July 1985): 307–13. http://dx.doi.org/10.1016/0039-6028(85)90305-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ogawa, Kelli A., and Andrew J. Boydston. "Recent Developments in Organocatalyzed Electroorganic Chemistry." Chemistry Letters 44, no. 1 (January 5, 2015): 10–16. http://dx.doi.org/10.1246/cl.140915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Baizer, M. M. "Electroorganic processes practiced in the world." Pure and Applied Chemistry 58, no. 6 (January 1, 1986): 889–94. http://dx.doi.org/10.1351/pac198658060889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nguyen, Zachary A., Dylan Boucher, and Shelley D. Minteer. "Electrolyte Induced Solvent Cage Effects for Enantioselective Electrosynthesis." ECS Meeting Abstracts MA2022-02, no. 53 (October 9, 2022): 2514. http://dx.doi.org/10.1149/ma2022-02532514mtgabs.

Full text
Abstract:
Electrochemistry provides a tunable, regioselective, and green alternative to traditional synthetic organic methods, and access to reactive intermediates. Problematically, electrochemical redox events often go through planar radical intermediates, thus destroying enantioselectivity. As such, researchers have sought the “chiral electron”, a general methodology to impart enantioselectivity to electroorganic reactions. One strategy has been asymmetric transition metal catalysis while replacing the typical stochiometric redox reagent needed with electricity, thus providing a chiral pathway for elecoorganic reactions. However, the general physical parameters that govern enantioselectivity at electrochemical interfaces, remains poorly understood. Here, we focus on the effects of supporting electrolyte in synthetic organic electrochemistry, specifically its role in enantioselective reactions. Cyclic voltammetry provides a tool to investigate the mechanistic consequences of changes in electrolyte. Using the model reaction of enantioselective carboxylation with a cobalt catalyst, we observe changes in mechanism as the electrolyte size is varied. Specifically, electrolyte identity effects the lifetime of the chiral Co-alkyl intermediate. These fundamental electroanalytical studies provide a sound mechanistic basis for the origin of enantioselectivity in electroorganic reactions. In summary, these results of a general interest as a strategy to tune and improve enantioselectivity in electrochemical transformations.
APA, Harvard, Vancouver, ISO, and other styles
34

Beil, Sebastian B., Dennis Pollok, and Siegfried R. Waldvogel. "Reproducibility in Electroorganic Synthesis—Myths and Misunderstandings." Angewandte Chemie International Edition 60, no. 27 (March 3, 2021): 14750–59. http://dx.doi.org/10.1002/anie.202014544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Regenbrecht, Carolin, and Siegfried R. Waldvogel. "Efficient electroorganic synthesis of 2,3,6,7,10,11-hexahydroxytriphenylene derivatives." Beilstein Journal of Organic Chemistry 8 (October 10, 2012): 1721–24. http://dx.doi.org/10.3762/bjoc.8.196.

Full text
Abstract:
2,3,6,7,10,11-Hexahydroxytriphenylene of good quality and purity can be obtained via anodic treatment of catechol ketals and subsequent acidic hydrolysis. The electrolysis is conducted in propylene carbonate circumventing toxic and expensive acetonitrile. The protocol is simple to perform and superior to other chemical or electrochemical methods. The key of the method is based on the low solubility of the anodically trimerized product. The shift of potentials is supported by cyclic voltammetry studies.
APA, Harvard, Vancouver, ISO, and other styles
36

SHONO, Tatsuya. "Electroorganic chemistry in organic synthesis. General survey." Journal of Synthetic Organic Chemistry, Japan 43, no. 6 (1985): 491–95. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

FUCHIGAMI, Toshio. "Selective Electroorganic Reactions Using Transition Metal Complexes." Journal of Japan Oil Chemists' Society 39, no. 10 (1990): 888–94. http://dx.doi.org/10.5650/jos1956.39.10_888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gütz, Christoph, Andreas Stenglein, and Siegfried R. Waldvogel. "Highly Modular Flow Cell for Electroorganic Synthesis." Organic Process Research & Development 21, no. 5 (May 4, 2017): 771–78. http://dx.doi.org/10.1021/acs.oprd.7b00123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bellamy, A. J. "Electroorganic synthesis Festschriff for Manuel M. Baizer." Electrochimica Acta 39, no. 1 (January 1994): 158. http://dx.doi.org/10.1016/0013-4686(94)85028-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Guetz, Christoph, Bernhard Kloeckner, and Siegfried R. Waldvogel. "ChemInform Abstract: Electrochemical Screening for Electroorganic Synthesis." ChemInform 47, no. 11 (February 2016): no. http://dx.doi.org/10.1002/chin.201611252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

TORII, S. "ChemInform Abstract: Organometal Complexes in Electroorganic Synthesis." ChemInform 25, no. 13 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199413303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

NONAKA, Tsutomu, and Toshio FUCHIGAMI. "Modified electrodes and their applications to electroorganic reactions." Journal of Synthetic Organic Chemistry, Japan 43, no. 6 (1985): 565–74. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

NISHIGUCHI, Ikuzo. "Experimental methods for electroorganic synthesis in a laboratory." Journal of Synthetic Organic Chemistry, Japan 43, no. 6 (1985): 617–33. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

HISAEDA, Yoshio. "Electroorganic Reactions Mediated by Vitamin B12 Model Complexes." Journal of Synthetic Organic Chemistry, Japan 54, no. 10 (1996): 859–67. http://dx.doi.org/10.5059/yukigoseikyokaishi.54.859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rauen, Anna Lisa, Frank Weinelt, and Siegfried R. Waldvogel. "Sustainable electroorganic synthesis of lignin-derived dicarboxylic acids." Green Chemistry 22, no. 18 (2020): 5956–60. http://dx.doi.org/10.1039/d0gc02210a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

KASHIWAGI, Yoshitomo. "Construction of Functional Electrode Interface for Electroorganic Synthesis." YAKUGAKU ZASSHI 127, no. 7 (July 1, 2007): 1047–57. http://dx.doi.org/10.1248/yakushi.127.1047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Navarro, Marcelo. "Recent advances in experimental procedures for electroorganic synthesis." Current Opinion in Electrochemistry 2, no. 1 (April 2017): 43–52. http://dx.doi.org/10.1016/j.coelec.2017.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Thomas, F. B., P. A. Ramachandran, M. P. Dudukovic, and R. E. W. Jansson. "Laminar radial flow electrochemical reactors. III. Electroorganic sysnthesis." Journal of Applied Electrochemistry 19, no. 6 (November 1989): 856–67. http://dx.doi.org/10.1007/bf01007933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nishiguchi, Ikuzo. "Some Progress and Development on Synthetic Electroorganic Chemistry." ECS Transactions 2, no. 22 (December 21, 2019): 19–24. http://dx.doi.org/10.1149/1.2409000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pragst, F., and M. Niazymbetov. "Electrogenerated chemiluminescence in mechanistic investigations of electroorganic reactions." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 197, no. 1-2 (January 1986): 245–64. http://dx.doi.org/10.1016/0022-0728(86)80153-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography