Academic literature on the topic 'Electronics Printing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electronics Printing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electronics Printing"
DONG, WENTAO, XIAO CHENG, and XIAOMING WANG. "THEORETICAL AND EXPERIMENTAL STUDY OF TAPE TRANSFER PRINTING FOR STRETCHABLE ELECTRONIC FABRICATION." Journal of Mechanics in Medicine and Biology 18, no. 04 (June 2018): 1850045. http://dx.doi.org/10.1142/s0219519418500458.
Full textJung, Hyunsuk, Wonbeom Lee, and Jiheong Kang. "Recent Progress in Printing Conductive Materials for Stretchable Electronics." Journal of Flexible and Printed Electronics 1, no. 2 (December 2022): 137–53. http://dx.doi.org/10.56767/jfpe.2022.1.2.137.
Full textLi, Lu Hai, Yi Fang, Zhi Qing Xin, Xiao Jun Tang, Peng Du, and Wen Zhao. "Features of Printing and Display." Key Engineering Materials 428-429 (January 2010): 372–78. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.372.
Full textAl-Amri, Amal M. "Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications." Polymers 15, no. 15 (July 29, 2023): 3234. http://dx.doi.org/10.3390/polym15153234.
Full textBeedasy, Vimanyu, and Patrick J. Smith. "Printed Electronics as Prepared by Inkjet Printing." Materials 13, no. 3 (February 4, 2020): 704. http://dx.doi.org/10.3390/ma13030704.
Full textSawamura, Fumiya, Chen Yi Ngu, Raiki Hanazaki, Kaito Kozuki, Sayaka Kado, Masatoshi Sakai, and Kazuhiro Kudo. "Dry Printing of Ag–Ni Conductive Particles Using Toner-Type Printed Electronics." Applied Sciences 12, no. 19 (September 25, 2022): 9616. http://dx.doi.org/10.3390/app12199616.
Full textRodes-Carbonell, Ana María, Josué Ferri, Eduardo Garcia-Breijo, Ignacio Montava, and Eva Bou-Belda. "Influence of Structure and Composition of Woven Fabrics on the Conductivity of Flexography Printed Electronics." Polymers 13, no. 18 (September 18, 2021): 3165. http://dx.doi.org/10.3390/polym13183165.
Full textMATSUOKA, Riki. "Printing Inks for Electronics Industry." Journal of Japan Oil Chemists' Society 35, no. 10 (1986): 835–42. http://dx.doi.org/10.5650/jos1956.35.835.
Full textSheats, Jayna R., David Biesty, Julien Noel, and Gary N. Taylor. "Printing technology for ubiquitous electronics." Circuit World 36, no. 2 (May 18, 2010): 40–47. http://dx.doi.org/10.1108/03056121011041690.
Full textQu, Shaoxing. "3D printing of hydrogel electronics." Nature Electronics 5, no. 12 (December 19, 2022): 838–39. http://dx.doi.org/10.1038/s41928-022-00900-0.
Full textDissertations / Theses on the topic "Electronics Printing"
Tehrani, Payman. "Electrochemical Switching in Conducting Polymers – Printing Paper Electronics." Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15132.
Full textDagligen kommer vi i kontakt med olika plastmaterial. Dessa har vanligtvis mycket dålig elektrisk ledningsförmåga och används oftast som isolerande material. Det finns dock en klass av plaster som är halvledande eller ledande. Sedan upptäckten av dessa material för mer än 30 år sedan har nya material och användningsområden utvecklats och nu börjar de första produkterna baserad på organisk elektronik komma ut på marknaden. En stor fördel med de ledande plasterna är att egenskaperna kan anpassas genom att ändra den kemiska strukturen. Man kan dessutom lösa upp dem och skapa ledande bläck, som sedan kan användas i vanliga tryckmaskiner. Detta gör det möjligt att på ett enkelt och billigt sätt tillverka elektronik på liknande sätt som till exempel tidningar trycks idag. Den här avhandlingen behandlar en del av det nya området som berör elektrokemiska komponenter och några av dess tillämpningar. Fokus ligger främst på billig, tryckt elektronik. Bland annat presenteras ett sätt att fördubbla kontrasten för tryckta pappersdisplayer, ett nytt sätt att mönstra ledande plaster och elektrokemisk temperaturloggningsetikett som kan övervaka temperaturen för förpackningar under transport. Den mekanism som förstör ledningsförmågan vid höga spänningar har varit ett återkommande inslag i de studier som har genomförts här. Denna mekanism förstör komponenterna under drift men kan också användas för att ta bort ledningsförmågan som mönstringsmetod eller för att lagra information, permanent, i temperaturloggningsetiketten.
Yoshioka, Yuka. "Inkjet printing for fabrication of organic photonics and electronics." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280578.
Full textMannerbro, Richard, and Martin Ranlöf. "Inkjet and Screen Printed Electrochemical Organic Electronics." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8117.
Full textLinköpings Universitet och Acreo AB i Norrköping bedriver ett forskningssamarbete rörande organisk elektrokemisk elektronik och det man kallar papperselektronik. Målet på Acreo är att kunna trycka denna typ av elektronik med snabba trycktekniker så som offset- eller flexotryck. Idag görs de flesta demonstratorer och prototyper, baserade på denna typ av elektrokemisk elektronik, med manuella och subtraktiva mönstringsmetoder. Det skulle vara intressant att hitta fler verktyg och automatiserade tekniker som kan underlätta detta arbete. Målet med detta examensarbete har varit att utvärdera vilken potential bläckstråleteknik respektive screentryck har som tillverkningsmetoder för organiska elektrokemiska elektroniksystem samt att jämföra de båda teknikernas för- och nackdelar. Vad gäller bläckstråletekniken, så ingick även i uppgiften att modifiera en bläckstråleskrivare avsedd för kontor/hemmabruk för att möjliggöra tryckning av de två grundläggande materialen inom organisk elektrokemisk elektronik - den konjugerade polymeren PEDOT och en elektrolyt.
I denna uppsats rapporteras om hur en procedur för produktion av elektrokemisk elektronik har utvecklats. Världens första elektrokemiska transistor som producerats helt med bläckstråleteknik presenteras tillsammans med fullt fungerande implementeringar i logiska kretsar. Karaktärisering av filmer, komponenter och kretsar som producerats med bläckstråle- och screentrycksteknik har legat till grund för den utvärdering och jämförelse som har gjorts av teknikerna. Resultaten ser lovande ut och kan motivera vidare utveckling av bläckstrålesystem för produktion av prototyper och mindre serier. En kombination av de båda nämnda teknikerna är också ett tänkbart alternativ för småskalig tillverkning.
Linköping University and the research institute Acreo AB in Norrköping are in collaboration conducting research on organic electrochemical electronic devices. Acreo is pushing the development of high-speed reel-to-reel printing of this type of electronics. Today, most demonstrators and prototypes are made using manual, subtractive patterning methods. More tools, simplifying this work, are of interest. The purpose of this thesis work was to evaluate the potential of both inkjet and screen printing as manufacturing tools of electrochemical devices and to conduct a comparative study of these two additive patterning technologies. The work on inkjet printing included the modification of a commercially available desktop inkjet printer in order to print the conjugated polymer PEDOT and an electrolyte solution - these are the two basic components of organic electrochemical devices. For screen printing, existing equipment at Acreo AB was employed for device production.
In this report the successful development of a simple system and procedure for the inkjet printing of organic electrochemical devices is described. The first all-inkjet printed electrochemical transistor (ECT) and fully functional implementations of these ECTs in printed electrochemical logical circuits are presented.
The characterization of inkjet and screen printed devices has, along with an evaluation of how suitable the two printing procedures are for prototype production, been the foundation of the comparison of the two printing technologies.
The results are promising and should encourage further effort to develop a more complete and easily controlled inkjet system for this application. At this stage of development, a combination of the two technologies seems like an efficient approach.
Lim, Ying Ying. "Printing conductive traces to enable high frequency wearable electronics applications." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17880.
Full textWinarski, David J. "Development of zinc oxide based flexible electronics." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1558088851479794.
Full textMustonen, T. (Tero). "Inkjet printing of carbon nanotubes for electronic applications." Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514293092.
Full textPalacios, Sebastian R. "A smart wireless integrated module (SWIM) on organic substrates using inkjet printing technology." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51906.
Full textAlasmar, Rawsam. "A quantitative analysis of the value added services produced by digital color printers as perceived by print buyers /." Online version of thesis, 1996. http://hdl.handle.net/1850/11966.
Full textHines, Daniel R. "Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7685.
Full textThesis research directed by: Dept. of Chemical Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Tangvichachan, Theera. "Conversion of solid ink density and dot gain specifications into colorimetric specifications /." Online version of thesis, 1993. http://hdl.handle.net/1850/11886.
Full textBooks on the topic "Electronics Printing"
Graphic communications: The printed image. South Holland, Ill: Goodheart-Willcox, 1989.
Find full textReiner, Eschbach, Marcu Gabriel G, IS & T--the Society for Imaging Science and Technology., and Society of Photo-optical Instrumentation Engineers., eds. Color imaging XII: Processing, hardcopy, and applications : 30 January-1 February, 2007, San Jose, California, USA. Bellingham, Wash: SPIE, 2007.
Find full textFink, Johannes Karl. The Chemistry of Printing Inks and Their Electronics and Medical Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119041337.
Full textB, Beretta Giordano, Eschbach Reiner, Society of Photographic Instrumentation Engineers., and IS & T--the Society for Imaging Science and Technology., eds. Color imaging: Device-independent color, color hardcopy, and graphic arts IV : 26-29 January, 1999, San Jose, California. Bellingham, Washington: SPIE--the International Society for Optical Engineering, 1998.
Find full textB, Beretta Giordano, Eschbach Reiner, IS & T--the Society for Imaging Science and Technology., and Society of Photo-optical Instrumentation Engineers., eds. Color imaging: Device-independent color, color hard copy, and graphic arts II : 10-14 February, 1997, San Jose, California. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 1997.
Find full textReiner, Eschbach, Marcu Gabriel G, IS & T--the Society for Imaging Science and Technology., and Society of Photo-optical Instrumentation Engineers., eds. Color imaging IX: Processing, hardcopy, and applications : 20-22 January 2004, San Jose, California, USA. Bellingham, Wash., USA: SPIE, 2004.
Find full textExploring digital prepress. Clifton Park, NY: Thomson/Delmar Learning, 2007.
Find full text(1996), TAPPI New Printing Technologies Symposium. 1996 TAPPI New Printing Technologies Symposium: Proceedings. Atlanta, GA: Tappi press, 1996.
Find full textEschbach, Reiner. Color imaging XIII: Processing, hardcopy, and applications : 29-31 January 2008, San Jose, California, USA. Bellingham, Wash: SPIE, 2008.
Find full textReiner, Eschbach, Marcu Gabriel G, IS & T--the Society for Imaging Science and Technology., and Society of Photo-optical Instrumentation Engineers., eds. Color imaging XI: Processing, hardcopy, and applications : 17-19 January, 2006, San Jose, California, USA. Bellingham, Wash: SPIE, 2006.
Find full textBook chapters on the topic "Electronics Printing"
Hood-Daniel, Patrick, and James Floyd Kelly. "Mounting Electronics." In Printing in Plastic, 285–300. Berkeley, CA: Apress, 2011. http://dx.doi.org/10.1007/978-1-4302-3444-9_16.
Full textKeeler, Robert. "Screen Printing." In The Electronics Assembly Handbook, 293–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-13161-9_50.
Full textLin, Jian. "Printing Processes and Equipments." In Printed Electronics, 106–44. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016. http://dx.doi.org/10.1002/9781118920954.ch4.
Full textBois, Chloé, Marie-Ève Huppé, Michael Rozel, and Ngoc Duc Trinh. "Printing Techniques." In Flexible, Wearable, and Stretchable Electronics, 107–36. First edition. | Boca Raton : CRC Press, 2020. | Series: Devices, circuits, & systems: CRC Press, 2020. http://dx.doi.org/10.1201/9780429263941-4.
Full textTorrisi, Felice, and Tian Carey. "Printing 2D Materials." In Flexible Carbon-based Electronics, 131–205. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804894.ch6.
Full textMurr, Lawrence E. "3D Printing: Printed Electronics." In Handbook of Materials Structures, Properties, Processing and Performance, 613–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-01815-7_35.
Full textMurr, Lawrence E. "3D Printing: Printed Electronics." In Handbook of Materials Structures, Properties, Processing and Performance, 1–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01905-5_35-1.
Full textLee, Hee Hyun, John Rogers, and Graciela Blanchet. "Thermal Imaging and Micro-contact Printing." In Organic Electronics, 233–70. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608753.ch10.
Full textSubramanian, Vivek, Alejandro de la Fuente Vornbrock, Steve Molesa, Daniel Soltman, and Huai-Yuan Tseng. "Printing Techniques for Thin-Film Electronics." In Organic Electronics II, 235–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527640218.ch7.
Full textTeunissen, Pit, Robert Abbel, Tamara Eggenhuizen, Michiel Coenen, and Pim Groen. "Inkjet Printing for Printed Electronics." In Handbook of Industrial Inkjet Printing, 599–616. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687169.ch35.
Full textConference papers on the topic "Electronics Printing"
Furukawa, Tadahiro. "Printing technology for electronics." In 2016 International Conference on Electronics Packaging (ICEP). IEEE, 2016. http://dx.doi.org/10.1109/icep.2016.7486793.
Full textSirringhaus, H. "Polymer electronics - printing going submicron." In The Third International Seminar on Advances in Carbon Electronics. IEE, 2004. http://dx.doi.org/10.1049/ic:20040537.
Full textKadija, Igor. "Flexible Electronics Printing by Electroplating." In 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC). IEEE, 2019. http://dx.doi.org/10.23919/empc44848.2019.8951820.
Full textKim, Jihyeon, Dongho Oh, Youngjin Kim, Taehyeong Kim, and Byeongcheol Lee. "Printing Pressure Uniformization Through Adaptive Feedforward Control in Roll-to-Roll Printing Process." In ASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/isps-mipe2018-8511.
Full textHsiao, Wei-Han, Chun-Wei Su, Hsin-Chung Wu, Yi-Chi Yang, Cheng-Yi Shih, and Chau-Jie Zhan. "Printing functional substrate for flexible electronics." In 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2016. http://dx.doi.org/10.1109/impact.2016.7800069.
Full textTaba, Adib, Zabihollah Ahmadi, Aarsh Patel, Parvin Fathi-Hafshejani, Seungjong Lee, Nima Shamsaei, and Masoud Mahjouri-Samani. "Dry printing electronics on biodegradable papers." In Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2023, edited by Andrei V. Kabashin, Maria Farsari, and Masoud Mahjouri-Samani. SPIE, 2023. http://dx.doi.org/10.1117/12.2650717.
Full textLu, Yanfeng, Morteza Vatani, Ho-Chan Kim, Rae-Chan Lee, and Jae-Won Choi. "Development of Direct Printing/Curing Process for 3D Structural Electronics." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63068.
Full textDelaporte, Ph, A. Ainsebaa, A. P. Alloncle, M. Benetti, C. Boutopoulos, D. Cannata, F. Di Pietrantonio, et al. "Applications of laser printing for organic electronics." In SPIE LASE, edited by Xianfan Xu, Guido Hennig, Yoshiki Nakata, and Stephan W. Roth. SPIE, 2013. http://dx.doi.org/10.1117/12.2004062.
Full textBower, Christopher A., Etienne Menard, Joseph Carr, and John A. Rogers. "3-D Heterogeneous Electronics by Transfer Printing." In 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). IEEE, 2007. http://dx.doi.org/10.1109/vtsa.2007.378922.
Full textWang, Lei, and Jing Liu. "Liquid Metal Inks for Flexible Electronics and 3D Printing: A Review." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37993.
Full textReports on the topic "Electronics Printing"
Forrest, Stephen R. Direct Printing of Organic Electronics at the Nanometer Scale. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada457753.
Full textSpano, Michael. Electronics & 3D printing for the Modern Chemical Biology Laboratory. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1969226.
Full textHudson, Tracy D., and Carrie D. Hill. Three-Dimensional (3-D) Plastic Part Extrusion And Conductive Ink Printing For Flexible Electronics. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada559396.
Full textGaponenko, Artiom, and Andrey Golovin. Electronic magazine with rating system of an estimation of individual and collective work of students. Science and Innovation Center Publishing House, October 2017. http://dx.doi.org/10.12731/er0043.06102017.
Full text