To see the other types of publications on this topic, follow the link: Electronics front-end.

Journal articles on the topic 'Electronics front-end'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electronics front-end.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Salomon, F., P. Edelbruck, G. Brulin, A. Boiano, G. Tortone, A. Ordine, M. Bini, S. Barlini, and S. Valdré. "FAZIA front-end electronics." EPJ Web of Conferences 88 (2015): 01015. http://dx.doi.org/10.1051/epjconf/20158801015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, G. "LHC front-end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, no. 1-2 (October 2000): 353–64. http://dx.doi.org/10.1016/s0168-9002(00)00657-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Luengo, S., D. Gascón, A. Comerma, L. Garrido, J. Riera, S. Tortella, and X. Vilasís. "SPD very front end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 567, no. 1 (November 2006): 310–14. http://dx.doi.org/10.1016/j.nima.2006.05.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Antonelli, A., G. Corradi, M. Moulson, C. Paglia, M. Raggi, T. Spadaro, D. Tagnani, et al. "The NA62 LAV front-end electronics." Journal of Instrumentation 7, no. 01 (January 26, 2012): C01097. http://dx.doi.org/10.1088/1748-0221/7/01/c01097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bailly, P., C. Beigbeder, R. Bernier, D. Breton, G. Bonneaud, T. Caceres, R. Chase, et al. "BaBar DIRC electronics front-end chain." IEEE Transactions on Nuclear Science 45, no. 4 (1998): 1898–906. http://dx.doi.org/10.1109/23.710959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cardarelli, R., G. Aielli, P. Camarri, A. Di Ciaccio, L. Di Stante, B. Liberti, E. Pastori, R. Santonico, and A. Zerbini. "RPC performance vs. front-end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 661 (January 2012): S198—S200. http://dx.doi.org/10.1016/j.nima.2010.09.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manfredi, P. F., and M. Manghisoni. "Front-end electronics for pixel sensors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 465, no. 1 (June 2001): 140–47. http://dx.doi.org/10.1016/s0168-9002(01)00374-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Geronimo, G., P. O'Connor, V. Radeka, and B. Yu. "Front-end electronics for imaging detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, no. 1-2 (September 2001): 192–99. http://dx.doi.org/10.1016/s0168-9002(01)00963-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weilhammer, Peter. "Front-end electronics for RICH detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, no. 1-2 (August 1999): 413–25. http://dx.doi.org/10.1016/s0168-9002(99)00541-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Artuso, Marina. "The BTeV RICH front end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 553, no. 1-2 (November 2005): 130–34. http://dx.doi.org/10.1016/j.nima.2005.08.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

FARTHOUAT, PHILIPPE. "ATLAS ELECTRONICS: AN OVERVIEW." International Journal of Modern Physics A 25, no. 09 (April 10, 2010): 1761–84. http://dx.doi.org/10.1142/s0217751x10049335.

Full text
Abstract:
The readout electronics development of ATLAS has been driven by the large number of channels of the different subdetectors and by particular environment constraints. This paper gives an overview of the developments made for the front-end electronics, the front-end links, the back-end electronics and the power distribution. It also shows how common issues across the experiment have been handled.
APA, Harvard, Vancouver, ISO, and other styles
12

Shchablo, K., A. Samalan, M. Tytgat, N. Zaganidis, G. A. Alves, F. Marujo, F. Torres Da Silva De Araujo, et al. "Front-end electronics for CMS iRPC detectors." Journal of Instrumentation 16, no. 05 (May 1, 2021): C05002. http://dx.doi.org/10.1088/1748-0221/16/05/c05002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shitenkov, M., D. Dementev, A. Voronin, I. Kovalev, I. Kudryashov, A. Kurganov, and Yu Murin. "Front-End Electronics for BM@N STS." Physics of Particles and Nuclei 52, no. 4 (July 2021): 826–29. http://dx.doi.org/10.1134/s1063779621040559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Buchanan, N. J., L. Chen, D. M. Gingrich, S. Liu, H. Chen, D. Damazio, F. Densing, et al. "ATLAS liquid argon calorimeter front end electronics." Journal of Instrumentation 3, no. 09 (September 22, 2008): P09003. http://dx.doi.org/10.1088/1748-0221/3/09/p09003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Raut, Anil N., Vilas Bhalerao, and A. Praveen Kumar. "Front-end electronics for the upgraded GMRT." IOP Conference Series: Materials Science and Engineering 44 (April 23, 2013): 012025. http://dx.doi.org/10.1088/1757-899x/44/1/012025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Salomon, F., P. Edelbruck, G. Brulin, B. Borderie, A. Richard, M. F. Rivet, G. Verde, et al. "Front-end electronics for the FAZIA experiment." Journal of Instrumentation 11, no. 01 (January 26, 2016): C01064. http://dx.doi.org/10.1088/1748-0221/11/01/c01064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Antilogus, P., D. Aston, T. Bienz, F. Bird, S. Dasu, W. Dunwoodie, G. Hallewell, et al. "Cherenkov Ring Imaging Detector front-end electronics." IEEE Transactions on Nuclear Science 38, no. 2 (April 1991): 408–16. http://dx.doi.org/10.1109/23.289334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Klein, S. R., P. Barale, E. Beuville, F. Bieser, K. Dao, S. Kleinfelder, V. Lindenstruth, et al. "Front end electronics for the STAR TPC." IEEE Transactions on Nuclear Science 43, no. 3 (June 1996): 1768–72. http://dx.doi.org/10.1109/23.507219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aielli, G., P. Camarri, R. Cardarelli, A. Di Ciaccio, L. Di Stante, B. Liberti, A. Paoloni, E. Pastori, and R. Santonico. "Test of ATLAS RPCs Front-End electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 508, no. 1-2 (August 2003): 189–93. http://dx.doi.org/10.1016/s0168-9002(03)01349-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Yaping, Ke Ma, Hans Muller, Xu Cai, Daicui Zhou, Zhongbao Yin, Terry C. Awes, and Dong Wang. "Front-end electronics for the ALICE calorimeters." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 617, no. 1-3 (May 2010): 369–71. http://dx.doi.org/10.1016/j.nima.2009.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Arfelli, F., V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, P. Cristaudo, M. Di Michiel, et al. "SYRMEP front-end and read-out electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 409, no. 1-3 (May 1998): 351–53. http://dx.doi.org/10.1016/s0168-9002(97)01297-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lutz, G., W. Buttler, H. Bergmann, P. Holl, B. J. Hosticka, P. F. Manfredi, and G. Zimmer. "Low noise monolithic CMOS front end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 263, no. 1 (January 1988): 163–73. http://dx.doi.org/10.1016/0168-9002(88)91030-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Drake, G., T. F. Droege, C. A. Nelson, S. L. Segler, W. Stuermer, K. J. Turner, and S. Kuhlmann. "CDF front end electronics: The rabbit system." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 269, no. 1 (June 1988): 68–81. http://dx.doi.org/10.1016/0168-9002(88)90863-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cundiff, T., J. W. Dawson, L. Dalmonte, G. Drake, T. Fitzpatrick, W. Haberichter, D. Huffman, et al. "The MINOS near detector front end electronics." IEEE Transactions on Nuclear Science 53, no. 3 (June 2006): 1347–55. http://dx.doi.org/10.1109/tns.2006.876771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Barbosa, Joao, Federico Alessio, Luis Cardoso, Clara Gaspar, and Paolo Durante. "Front-End Electronics Control and Monitoring for the LHCb Upgrade." EPJ Web of Conferences 214 (2019): 01002. http://dx.doi.org/10.1051/epjconf/201921401002.

Full text
Abstract:
The LHCb experiment, one of the four operating in the LHC, will be enduring a major upgrade of its electronics during the third long shutdown period of the particle accelerator. One of the main objectives of the upgrade effort is to implement a 40MHz readout of collision data. For this purpose, the Front-End electronics will make extensive use of a radiation resistant chipset, the Gigabit Transceiver (GBT), for readout as well as for slow control, monitoring and synchronization. At LHCb, the tools to operate the front-end electronics are developed by a central team and distributed to the users. This contribution describes the architecture of the system that implements the slow control and monitoring of all Front-End electronics using the GBT chipset, namely the GBTx and GBT-SCA. The system is implemented in 3 layers starting with an FPGA based electronic board that interfaces the GBT chipset directly through optical fibers. The second layer is composed by a PCIe driver and a number of processes to operate these boards. The user operates the system in the third layer which is the WinCC OA SCADA that is interfaced with the Front-Ends via a message broker called DIM. The requirements of the system as well as the design and integration of each layer are discussed in detail. The results of the firmware implementation in hardware and operational tests are shown and the overall performance of the system is discussed.
APA, Harvard, Vancouver, ISO, and other styles
26

Abgrall, N., M. Amman, I. J. Arnquist, F. T. Avignone, A. S. Barabash, C. J. Barton, P. J. Barton, et al. "The Majorana Demonstrator readout electronics system." Journal of Instrumentation 17, no. 05 (May 1, 2022): T05003. http://dx.doi.org/10.1088/1748-0221/17/05/t05003.

Full text
Abstract:
Abstract The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
27

Sanjuán, J., A. Lobo, M. Nofrarias, J. Ramos-Castro, and P. J. Riu. "Thermal diagnostics front-end electronics for LISA Pathfinder." Review of Scientific Instruments 78, no. 10 (October 2007): 104904. http://dx.doi.org/10.1063/1.2800776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Penny, R. D., D. K. Lathrop, B. D. Thorson, B. R. Whitecotton, R. H. Koch, and J. R. Rosen. "Wideband front end for high-frequency SQUID electronics." IEEE Transactions on Appiled Superconductivity 7, no. 2 (June 1997): 2323–26. http://dx.doi.org/10.1109/77.621704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Antonelli, A., G. Corradi, F. Gonnella, M. Moulson, C. Paglia, M. Raggi, T. Spadaro, et al. "Performance of the NA62 LAV front-end electronics." Journal of Instrumentation 8, no. 01 (January 15, 2013): C01020. http://dx.doi.org/10.1088/1748-0221/8/01/c01020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bailly, P., C. Beigbeder, R. Bernier, D. Breton, G. Bonneaud, T. Caceres, R. Chase, et al. "The DIRC front-end electronics chain for BaBar." IEEE Transactions on Nuclear Science 47, no. 6 (2000): 2106–13. http://dx.doi.org/10.1109/23.903856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Drake, G., D. Frei, S. R. Hahn, C. A. Nelson, S. L. Segler, and W. Stuermer. "The upgraded CDF front end electronics for calorimetry." IEEE Transactions on Nuclear Science 39, no. 5 (1992): 1281–85. http://dx.doi.org/10.1109/23.173191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Anderson, B. E., K. Anderson, A. Charalambous, A. Cotta-Ramusino, M. Dallavalle, H. Evans, A. Eyring, et al. "The OPAL silicon-tungsten calorimeter front end electronics." IEEE Transactions on Nuclear Science 41, no. 4 (1994): 845–52. http://dx.doi.org/10.1109/23.322818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hall, G. "Front end electronics for silicon tracking at LHC." IEEE Transactions on Nuclear Science 41, no. 4 (1994): 1086–90. http://dx.doi.org/10.1109/23.322863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lo, C. C., S. Olson, and J. Bistirlich. "Front end electronics for the Jet Drift Chamber." IEEE Transactions on Nuclear Science 36, no. 1 (1989): 462–64. http://dx.doi.org/10.1109/23.34483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, H., G. De Geronimo, F. Lanni, D. Lissauer, D. Makowiecki, V. Radeka, S. Rescia, C. Thorn, and B. Yu. "Front End Readout Electronics of the MicroBooNE Experiment." Physics Procedia 37 (2012): 1287–94. http://dx.doi.org/10.1016/j.phpro.2012.02.471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sakaguchi, T., Y. Akiba, K. Ebisu, S. Frank, H. Hamagaki, H. Hara, R. S. Hayano, et al. "Development of front end electronics for PHENIX RICH." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, no. 1-2 (October 2000): 382–85. http://dx.doi.org/10.1016/s0168-9002(00)00661-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yin, Zhongbao, Hans Muller, Rui Pimenta, Dieter Röhrich, Iouri Sibiriak, Bernhard Skaali, Dong Wang, Yaping Wang, and Daicui Zhou. "Front-end electronics of the ALICE photon spectrometer." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623, no. 1 (November 2010): 472–74. http://dx.doi.org/10.1016/j.nima.2010.03.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baur, R., P. Ernst, G. Gramegna, and M. Richter. "Front-end electronics for the CERES TPC-detector." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 409, no. 1-3 (May 1998): 278–85. http://dx.doi.org/10.1016/s0168-9002(97)01280-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bailly, P., J. Chauveau, L. Del Buono, J. F. Genat, H. Lebbolo, L. Roos, B. Zhang, et al. "The DIRC front-end electronics chain for BaBar." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, no. 1-2 (August 1999): 450–55. http://dx.doi.org/10.1016/s0168-9002(99)00461-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sauerzopf, Clemens, Lukas Gruber, Ken Suzuki, Johann Zmeskal, and Eberhard Widmann. "Intelligent Front-end Electronics for Silicon photodetectors (IFES)." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 819 (May 2016): 163–66. http://dx.doi.org/10.1016/j.nima.2016.02.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Garozzo, S., D. Marano, G. Bonanno, A. Grillo, G. Romeo, M. C. Timpanaro, D. Lo Presti, et al. "Front-end electronics for the Muon Portal project." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 833 (October 2016): 169–80. http://dx.doi.org/10.1016/j.nima.2016.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Phogat, Aman, Ankit Gaur, Moh Rafik, Ashok Kumar, and Md Naimuddin. "New front-end electronics for INO-ICAL experiment." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 905 (October 2018): 193–98. http://dx.doi.org/10.1016/j.nima.2018.07.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Badura, E., R. Seifert, A. H. Walenta, and H. Z. Xu. "Front-end electronics for the ZEUS vertex detector." Nuclear Physics B - Proceedings Supplements 23, no. 1 (July 1991): 239–46. http://dx.doi.org/10.1016/0920-5632(91)90054-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Amoroso, A., M. Colantoni, O. Denisov, A. Ferrero, V. Frolov, A. Grasso, A. Korentchenko, et al. "The front-end electronics for the COMPASS MWPCs." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 518, no. 1-2 (February 2004): 495–97. http://dx.doi.org/10.1016/j.nima.2003.11.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Beneyton, R., C. Gaspar, B. Jost, and S. Schmeling. "Controlling front-end electronics boards using commercial solutions." IEEE Transactions on Nuclear Science 49, no. 2 (April 2002): 474–77. http://dx.doi.org/10.1109/tns.2002.1003779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Barish, K., W. C. Chang, O. Dietzsch, T. Ferdousi, A. Franz, J. Fried, S. Y. Fung, et al. "Front-end electronics for PHENIX time expansion chamber." IEEE Transactions on Nuclear Science 49, no. 3 (June 2002): 1141–46. http://dx.doi.org/10.1109/tns.2002.1039627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Capra, S., G. Secci, B. Million, L. Manara, S. Coelli, M. Citterio, D. De Salvador, et al. "N3G project: front-end electronics and mechanical advances." Journal of Instrumentation 19, no. 01 (January 1, 2024): C01011. http://dx.doi.org/10.1088/1748-0221/19/01/c01011.

Full text
Abstract:
Abstract The higher counting-rate and radiation hardness required by modern gamma spectroscopy experiments highlight the need for a new generation of High-Purity Germanium detectors based on electrons-collecting electrodes. To achieve this goal, new doping technologies are required. The one studied by the N3G (Next Generation Germanium Gamma detectors) project is the Pulsed Laser Melting. Besides the development of innovative segmented High-Purity Germanium crystals, the project is also aimed at developing a detector case complete of contact structures and front-end electronics. A specific integrated circuit pre-amplifier is being designed: a first version was tested at room temperature, using a pulser as pre-amplifier input. A resolution of 1.08 keV with 15 pF input capacitance, reproducing the one of a detector single segment, was obtained with 6 µs shaping time.
APA, Harvard, Vancouver, ISO, and other styles
48

Axani, S. N., S. Futagi, M. Garcia, C. Grant, K. Hosokawa, S. Ieki, K. Inoue, et al. "RFSoC-based front-end electronics for pulse detection." Journal of Instrumentation 19, no. 03 (March 1, 2024): P03013. http://dx.doi.org/10.1088/1748-0221/19/03/p03013.

Full text
Abstract:
Abstract Radiation measurement relies on pulse detection, which can be performed using various configurations of high-speed analog-to-digital converters (ADCs) and field-programmable gate arrays (FPGAs). For optimal power consumption, design simplicity, system flexibility, and the availability of DSP slices, we consider the Radio Frequency System-on-Chip (RFSoC) to be a more suitable option than traditional setups. To this end, we have developed custom RFSoC-based electronics and verified its feasibility. The ADCs on RFSoC exhibit a flat frequency response of 1–125 MHz. The root-mean-square (RMS) noise level is 2.1 ADC without any digital signal processing. The digital signal processing improves the RMS noise level to 0.8 ADC (input equivalent 40 μVrms). Baseline correction via digital signal processing can effectively prevent photomultiplier overshoot after a large pulse. Crosstalk between all channels is less than -55 dB. The measured data transfer speed can support up to 32 kHz trigger rates (corresponding to 750 Mbps). Overall, our RFSoC-based electronics are highly suitable for pulse detection, and after some modifications, they will be employed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND).
APA, Harvard, Vancouver, ISO, and other styles
49

Farnese, Christian. "The new front end and DAQ of the ICARUS detector." EPJ Web of Conferences 182 (2018): 03003. http://dx.doi.org/10.1051/epjconf/201818203003.

Full text
Abstract:
ICARUS is the largest imaging LAr TPC ever operated. During its LNGS run on the CNGS neutrino beam, from 2010 to 2013, produced some thousands neutrino events of unprecedented quality. This was possible thanks its mechanical precision and stability, liquid argon purity and electronics front-end and DAQ. Actually ICARUS T600, in view of its operation at FNAL on the SBN neutrino beam, is undergoing a major overhauling that implies cathode mechanics improvement, additional PMTs installation and a new electronics front-end and DAQ. This electronics implements a new architecture, integrated onto the flange proprietary design, and a new front-end that improves S/N and induction signals treatment. This issue will be presented in detail together with data recently recorder at CERN in the FLIC, 50 litres, LAr facility.
APA, Harvard, Vancouver, ISO, and other styles
50

Flatscher, M., M. Neumayer, and T. Bretterklieber. "Holistic analysis for electrical capacitance tomography front-end electronics." Journal of Physics: Conference Series 1065 (August 2018): 092008. http://dx.doi.org/10.1088/1742-6596/1065/9/092008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography