Academic literature on the topic 'Electronics front-end'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electronics front-end.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electronics front-end"
Salomon, F., P. Edelbruck, G. Brulin, A. Boiano, G. Tortone, A. Ordine, M. Bini, S. Barlini, and S. Valdré. "FAZIA front-end electronics." EPJ Web of Conferences 88 (2015): 01015. http://dx.doi.org/10.1051/epjconf/20158801015.
Full textHall, G. "LHC front-end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, no. 1-2 (October 2000): 353–64. http://dx.doi.org/10.1016/s0168-9002(00)00657-4.
Full textLuengo, S., D. Gascón, A. Comerma, L. Garrido, J. Riera, S. Tortella, and X. Vilasís. "SPD very front end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 567, no. 1 (November 2006): 310–14. http://dx.doi.org/10.1016/j.nima.2006.05.112.
Full textAntonelli, A., G. Corradi, M. Moulson, C. Paglia, M. Raggi, T. Spadaro, D. Tagnani, et al. "The NA62 LAV front-end electronics." Journal of Instrumentation 7, no. 01 (January 26, 2012): C01097. http://dx.doi.org/10.1088/1748-0221/7/01/c01097.
Full textBailly, P., C. Beigbeder, R. Bernier, D. Breton, G. Bonneaud, T. Caceres, R. Chase, et al. "BaBar DIRC electronics front-end chain." IEEE Transactions on Nuclear Science 45, no. 4 (1998): 1898–906. http://dx.doi.org/10.1109/23.710959.
Full textCardarelli, R., G. Aielli, P. Camarri, A. Di Ciaccio, L. Di Stante, B. Liberti, E. Pastori, R. Santonico, and A. Zerbini. "RPC performance vs. front-end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 661 (January 2012): S198—S200. http://dx.doi.org/10.1016/j.nima.2010.09.136.
Full textManfredi, P. F., and M. Manghisoni. "Front-end electronics for pixel sensors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 465, no. 1 (June 2001): 140–47. http://dx.doi.org/10.1016/s0168-9002(01)00374-6.
Full textDe Geronimo, G., P. O'Connor, V. Radeka, and B. Yu. "Front-end electronics for imaging detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, no. 1-2 (September 2001): 192–99. http://dx.doi.org/10.1016/s0168-9002(01)00963-9.
Full textWeilhammer, Peter. "Front-end electronics for RICH detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, no. 1-2 (August 1999): 413–25. http://dx.doi.org/10.1016/s0168-9002(99)00541-0.
Full textArtuso, Marina. "The BTeV RICH front end electronics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 553, no. 1-2 (November 2005): 130–34. http://dx.doi.org/10.1016/j.nima.2005.08.021.
Full textDissertations / Theses on the topic "Electronics front-end"
Pratte, Jean-Francois. "The RatCAP front-end electronics." Thèse, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/1833.
Full textLuengo, Álvarez Sonia. "Scintillator Pad Detector: Very Front End Electronics." Doctoral thesis, Universitat Ramon Llull, 2008. http://hdl.handle.net/10803/9150.
Full textEl SPD és part del Calorímetre de LHCb. Aquest sistema proporciona possibles hadrons d'alta energia, electrons i fotons pel primer nivell de trigger. El SPD està format per una làmina centellejeadora de plàstic, dividida en 600 cel.les de diferent tamany per obtenir una millor granularitat aprop del feix. Les partícules carregades que travessin el centellejador generaran una ionització del mateix, a diferència dels fotons que no la ionitzaran. Aquesta ionització, generarà un pols de llum que serà recollit per una WLS que està enrotllada dins de les cel.les centellejadores. La llum serà transmesa al sistema de lectura mitjançant fibres clares. Per reducció de costos, aquestes 6000 cel.les estan dividides en grups, usant MAPMT (fotomultiplicadors multiànode) de 64 canals per rebre la informació en el sistema de lectura. El senyal de sortida dels fotomultilplicadors és irregular degut al baix nivell de fotoestadística, uns 20-30 fotoelectrons per MIP, i degut també a la resposta de la fibra WLS, que té un temps de baixada lent. Degut a tot això, el processat del senyal, es realitza primer durant la integració de la càrrega total i finalment per la correcció de la cua que conté el senyal provinent del PMT.
Aquesta Tesi està enfocada en el sistema de lectura de l'electrònica del VFE del SPD. Aquest, està format per un ASIC (dissenyat pel grup de la UB) encarregat d'integrar el senyal, compensar el senyal restant i comparar el nivell d'energia obtingut amb un llindar programable (fa la distinció entre electrons i fotons), una FPGA que programa aquests llindars i compensacions de cada ASIC i fa el mapeig de cada canal rebut en el detector i finalment usa serialitzadors LVDS per enviar la informació de sortida al trigger de primer nivell. En el disseny d'aquest tipus d'electrònica s'haurà de tenir en compte, per un costat, restriccions de tipus mecànic: l'espai disponible per l'electrònica és limitat i escàs, i per un altre costat, el nivell de radiació que deurà suportar és considerable i s'haurà de comprobar que tots els components superin un cert test de radiació, i finalment, també s'haurà de tenir en compte la distància que separa els VFE dels racks on la informació és enviada i el tipus de senyal amb el que es treballa en aquest tipus d'experiments: mixta i de poc rang.
El Laboratorio de Altas Energías de la Salle es un miembro de un grupo acreditado por La Generalitat. Este grupo está formado por parte del departamento de Estructura i Constituents de la Matèria de la Facultad de Física de la Universidad de Barcelona, parte del departamento de Electrónica de la misma Facultad y el grupo de La Salle. Todos ellos están involucrados en el diseño de un subdetector en el experimento de LHCb del CERN: El SPD (Scintillator Pad Detector).
El SPD es parte del Calorímetro de LHCb. Este sistema proporciona posibles hadrones de alta energía, electrones y fotones para el primer nivel de trigger.El SPD está diseñado para distinguir entre electrones y fotones para el trigger de primer nivel. Este detector está formado por una lámina centelleadora de plástico, dividida en 6000 celdas de diferente tamaño para obtener una mejor granularidad cerca del haz. Las partículas cargadas que atraviesen el centelleador generarán una ionización del mismo, a diferencia de los fotones que no la generarán. Esta ionización generará, a su vez, un pulso de luz que será recogido por una WLS que está enrollada dentro de las celdas centelleadoras. La luz será transmitida al sistema de lectura mediante fibras claras. Para reducción de costes, estas 6000 celdas están divididas en grupos, utilizando un MAPMT (fotomultiplicadores multiánodo) de 64 canales para recibir la información en el sistema de lectura. La señal de salida de los fotomultiplicadores es irregular debido al bajo nivel de fotoestadística, unos 20-30 fotoelectrones por MIP, y debido también a la respuesta de la fibra WLS, que tiene un tiempo de bajada lento. Debido a todo esto, el procesado de la señal, se realiza primero mediante la integración de la carga total y finalmente por la substracción de la señal restante fuera del período de integración.
Esta Tesis está enfocada en el sistema de lectura de la electrónica del VFE del SPD. Éste, está formado por un ASIC (diseñado por el grupo de la UB) encargado de integrar la señal, compensar la señal restante y comparar el nivel de energía obtenido con un umbral programable (que distingue entre electrones y fotones), y una FPGA que programa estos umbrales y compensaciones de cada ASIC, y mapea cada uno de los canales recibidos en el detector y finalmente usa serializadores LVDS para enviar la información de salida al trigger de primer nivel. En el diseño de este tipo de electrónica se deberá tener en cuenta, por un lado, restricciones del tipo mecánico: el espacio disponible para la electrónica en sí, es limitado y escaso, por otro lado, el nivel de radiación que deberá soportar es considerable y se tendrá que comprobar que todos los componentes usado superen un cierto test de radiación, y finalmente, también se deberá tener en cuenta la distancia que separa los VFE de los racks dónde la información es enviada y el tipo de señal con el que se trabaja en este tipo de experimentos: mixta y de poco rango.
Laboratory in La Salle is a member of a Credited Research Group by La Generatitat. This group is formed by a part of the ECM department, a part of the Electronics department at UB (University of Barcelona) and La Salle's group. Together, they are involved in the design of a subdetector at LHCb Experiment at CERN: the SPD (Scintillator Pad Detector).
The SPD is a part of LHCb Calorimeter. That system provides high energy hadrons, electron and photons candidates for the first level trigger.
The SPD is designed to distinguish electrons and photons for this first level trigger. This detector is a plastic scintillator layer, divided in about 6000 cells of different size to obtain better granularity near the beam. Charged particles will produce, and photons will not, ionisation on the scintillator. This ionisation generates a light pulse that is collected by a Wavelength Shifting (WLS) fibre that is twisted inside the scintillator cell. The light is transmitted through a clear fibre to the readout system.
For cost reduction, these 6000 cells are divided in groups using a MAPMT of 64 channels for receiving information in the readout system. The signal outing the SPD PMTs is rather unpredictable as a result of the low number of photostatistics, 20-30 photoelectrons per MIP, and the due to the response of the WLS fibre, which has low decay time. Then, the signal processing must be performed by first integrating the total charge and later subtracting to avoid pile-up.
This PhD is focused on the VFE (Very Front End) of SPD Readout system. It is performed by a specific ASIC (designed by the UB group) which integrates the signal, makes the pile-up compensation, and compares the level obtained to a programmable threshold (distinguishing electrons and photons), an FPGA which programs the ASIC thresholds, pile-up subtraction and mapping the channels in the detector and finally LVDS serializers, in order to send information to the first level trigger system.
Not only mechanical constraints had to be taken into account in the design of the card as a result of the little space for the readout electronics but also, on one hand, the radiation quote expected in the environment and on the other hand, the distance between the VFE electronics and the racks were information is sent and the signal range that this kind of experiments usually have.
Li, Lin. "RF transceiver front-end design for testability." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2256.
Full textIn this thesis, we analyze the performance of a loop-back built-in-self-test for a RF transceiver front-end. The tests aim at spot defects in a transceiver front-end and they make use of RF specifications such as NF (Noise Figure), G (power gain) and IIP3 (third order Intercept point). To enhance fault detectability, RF signal path sensitization is introduced. We use a functional RF transceiver model that is implemented in MatLab™ to verify this analysis.
De, La Taille C. "Front-End Electronics in calorimetry : from LHC to ILC." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00438183.
Full textGarcía, García Eduardo José. "Novel Front-end Electronics for Time Projection Chamber Detectors." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/16980.
Full textGarcía García, EJ. (2012). Novel Front-end Electronics for Time Projection Chamber Detectors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16980
Palancia
Li, Mengxiong. "5 GHz optical front end in 0.35μm CMOS." Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/10368/.
Full textRabén, Hans. "Receiver Front-End Design for WiMAX/LTE in 90 nm CMOS : Receiver Front-End Design for WiMAX/LTE in 90 nm CMOS." Thesis, University of Gävle, Ämnesavdelningen för elektronik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-5425.
Full textChen, Yingtao. "Simulations and electronics development for the LHAASO experiment." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112147/document.
Full textThis thesis is focused on the study of the front-end electronics for the wide field of view Cherenkov telescope array (WFCTA), which is one of the large high altitude air shower observatory (LHAASO) detectors. The thesis manuscript covers six main topics going from the physics simulations to the implementation of a new data acquisition system. The physics of cosmic rays and the LHAASO experiment is presented giving foundation for discussion of the main topics of the thesis. Simulations were performed to understand the propagation of cosmic rays in the atmosphere and to determine the characteristics of the input signal of the electronics. These simulations allow also understand the specifications of the telescope and to verify them. A new PMT model was successfully built for both physical and electronic simulations. This new model is compared to other models and its performance is evaluated. Behavior models for the designs based on the classical electronics and application-specific integrated circuit (ASIC) were built and studied. It is shown that both solutions fit the requirements of the telescope. However, considering the development of the micro-electronics, it is proposed that the electronics of the high-performance telescopes should be based on ASIC. The selected ASIC, PARISROC 2, is evaluated by using the existing application boards. The results showed that the designs considered could not fully demonstrate the real performance of the chip. Therefore, a prototype front-end electronics board, based on PARISROC 2, was designed, implemented and fabricated. Several modifications and enhancements were made to improve the performance of the new design. A detailed description of the development is presented and discussed in the manuscript. Furthermore, a new data acquisition system was developed to enhance the readout capabilities in the front-end test bench.Finally, a series of tests were performed to verify the concept of the design and to evaluate the front-end board. The results show the good general performance of the PARISROC 2 and that this design globally meets the specifications of the WFCTA. Based on the results of this thesis work, a new ASIC chip, better adapted for telescopes such as WFCTA, has been designed and is currently being fabricated
Kantasuwan, Thana. "RF front-end CMOS design for build-in-self-test." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2642.
Full textIn this master degree work, a digital attenuator and a low noise amplifier (LNA) have been designed and integrated with the RF front-end receiver for IEEE 802.11b Wireless LAN standard. Firstly, the 4-bit digitally controlled attenuator has been designed with theattenuation range of 50 to 80 dB and reflection coefficient less than -25 dB. Next, the single stage wide band low noise amplifier with voltage gain larger than 14 dB and noise figure below 4 dB has been designed to operate at frequency 2.4 GHz. Finally, the integration with a down-conversion mixer has been done and evaluated its performance.
The attenuator and low noise amplifier desired in this thesis have been implemented using standard CMOS 0.35µm technology and validated by the simulation tools Cadence Spectre-RF.
Asmussen, Jeremy Dennis. "Wideband body enabled RF front end transceiver in 0.18-[micrometer] technology." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Fall2009/j_asmussen_111509.pdf.
Full textTitle from PDF title page (viewed on Jan. 14, 2010). "Department of Electrical Engineering and Computer Science." Includes bibliographical references (p. 62-63).
Books on the topic "Electronics front-end"
Sullivan, Love Janine, and Ajluni Cheryl J, eds. RF front-end: World class designs. Amsterdam: Newnes/Elsevier, 2009.
Find full textRivetti, Angelo. Cmos: Front-End Electronics for Radiation Sensors. Taylor & Francis Group, 2018.
Find full textCmos: Front-End Electronics for Radiation Sensors. Taylor & Francis Group, 2015.
Find full textRivetti, Angelo. Cmos: Front-End Electronics for Radiation Sensors. Taylor & Francis Group, 2018.
Find full textRivetti, Angelo. Cmos: Front-End Electronics for Radiation Sensors. Taylor & Francis Group, 2017.
Find full textRivetti, Angelo. Cmos: Front-End Electronics for Radiation Sensors. Taylor & Francis Group, 2018.
Find full textRivetti, Angelo. Cmos: Front-End Electronics for Radiation Sensors. Taylor & Francis Group, 2018.
Find full textLai, Jih-sheng. 3-phase Active-front-end Power Conversion (Synthesis Lectures on Power Electronics). Morgan & Claypool Publishers, 2007.
Find full textDarabi, Hooman, and Ahmad Mirzaei. Integration of Passive RF Front-End Components in Socs. Cambridge University Press, 2013.
Find full textIntegration Of Passive Rf Front End Components In Socs. Cambridge University Press, 2013.
Find full textBook chapters on the topic "Electronics front-end"
Velure, Arild. "Front-End Electronics." In Springer Theses, 11–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71559-5_2.
Full textBindal, Ahmet. "Front-End Electronics for Embedded Systems." In Electronics for Embedded Systems, 175–200. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39439-8_8.
Full textMarzocca, Cristoforo, Fabio Ciciriello, Francesco Corsi, Francesco Licciulli, and Gianvito Matarrese. "Front-End Electronics for Silicon Photomultipliers." In Analog Electronics for Radiation Detection, 203–35. Boca Raton : Taylor & Francis, CRC Press, 2016. | Series: Devices, circuits, and systems ; 59: CRC Press, 2017. http://dx.doi.org/10.1201/b20096-9.
Full textAnghinolfi, Francis, Paul Aspell, Michael Campbell, Erik Heijne, Pierre Jarron, and Gerrit Meddeler. "Development of Front End Electronics for Future Supercollider Experiments." In New Technologies for Supercolliders, 105–23. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-1360-1_9.
Full textMalcovati, Piero, Marcello De Matteis, Alessandro Pezzotta, Marco Grassi, Marco Croce, Marco Sabatini, and Andrea Baschirotto. "A Low-Power Continuous-Time Accelerometer Front-End." In Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management, 215–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41670-0_12.
Full textPedretti, Davide, Marco Bellato, Antonio Bergnoli, Riccardo Brugnera, Daniele Corti, Flavio Dal Corso, Alberto Garfagnini, et al. "The Global Control Unit for the JUNO Front-End Electronics." In Springer Proceedings in Physics, 186–89. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1313-4_37.
Full textKulshreshtha, Tanmai, Sudhir Kumar Singh, Ruchi Chaurasia, Manish Kumar, and Naimur Rahman Kidwai. "Low-Power Front End for Continuous-Wave Doppler Harmonic Ultrasonography System." In Proceedings of Trends in Electronics and Health Informatics, 449–57. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8826-3_38.
Full textAlessandrello, A., D. V. Camin, A. Giuliani, and G. Pessina. "Considerations on Front End Electronics for Bolometric Detectors with Resistive Readout." In Low Temperature Detectors for Neutrinos and Dark Matter, 122–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72959-1_13.
Full textNewcomer, F. M., S. Tedja, R. Van Berg, J. Van der Spiegel, and H. H. Williams. "Front end Signal Processing Electronics for the SDC Straw Tracking System." In Supercollider 5, 43–46. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2439-7_10.
Full textGarcía-Vázquez, Hugo, Alexandre Quenon, Grigory Popov, and Fortunato Carlos Dualibe. "Design of an ULP-ULV RF-Powered CMOS Front-End for Low-Rate Autonomous Sensors." In Wireless Power Transmission for Sustainable Electronics, 323–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2020. http://dx.doi.org/10.1002/9781119578598.ch11.
Full textConference papers on the topic "Electronics front-end"
Spieler, Helmuth. "Front-End Electronics and Signal Processing." In INSTRUMENTATION IN ELEMENTARY PARTICLE PHYSICS. AIP, 2003. http://dx.doi.org/10.1063/1.1604074.
Full textMARTIN, F. "THE ATLAS TILE CALORIMETER FRONT END ELECTRONICS." In Proceedings of the Tenth International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704894_0077.
Full textFERRER RIBAS, E. "OVERVIEW OF LIQUID ARGON FRONT END ELECTRONICS." In Proceedings of the Tenth International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704894_0078.
Full textBRETON, DOMINIQUE. "THE FRONT-END ELECTRONICS FOR LHCB CALORIMETERS." In Proceedings of the Tenth International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704894_0080.
Full textOjarand, Jaan, Athanasios T. Giannitsis, Mart Min, and Raul Land. "Front-end electronics for impedimetric microfluidic devices." In SPIE Microtechnologies, edited by Ángel B. Rodríguez-Vázquez, Rainer Adelung, Ricardo A. Carmona-Galán, Gustavo Liñán-Cembrano, and Carsten Ronning. SPIE, 2011. http://dx.doi.org/10.1117/12.886553.
Full textScotti, Valentina, Alfonso Boiano, Lorenzo Fabris, Massimo Manghisoni, Giuseppe Osteria, Francesco Perfetto, Valerio Re, Elisa Riceputi, and Gianluigi Zampa. "Front-end Electronics for the GAPS Tracker." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0136.
Full textCosta, Jose Abritta, Tony Igor Dornelas, Rafael Antunes Nobrega, and Augusto Santiago Cerqueira. "Front-end electronics of the Neutrinos Angra Project." In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2014. http://dx.doi.org/10.1109/i2mtc.2014.6860996.
Full textGO, A., P. ASPELL, D. BARNEY, P. BLOCH, A. PEISERT, B. LOFSTEDT, S. REYNAUD, S. BORKAR, and S. LALWANI. "FRONT-END ELECTRONICS FOR THE CMS PRESHOWER DETECTOR." In Proceedings of the Tenth International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704894_0079.
Full textNELSON, C. A., and T. M. SHAW. "FRONT-END ELECTRONICS UPGRADE FOR THE CDF CALORIMETERS." In Proceedings of the Tenth International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704894_0081.
Full textTchoualack, A. T., L. Ottaviani, W. Rahajandraibe, J. P. Walder, and W. Vervisch. "Front End Electronics for SiC Based Neutron Dosimetry." In 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2020. http://dx.doi.org/10.1109/nss/mic42677.2020.9507787.
Full textReports on the topic "Electronics front-end"
Levi, M. Front-end electronics development for the SSC. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/5286319.
Full textCitterio, M., S. Rescia, and V. Radeka. Radiation effects on front-end electronics for noble liquid calorimetry. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/34408.
Full textConrad, Ryan C., Scott J. Morris, Leon E. Smith, and Daniel T. Keller. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1225159.
Full textConrad, Ryan C., Daniel T. Keller, Scott J. Morris, and Leon E. Smith. Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1225160.
Full textMedepalli, Praneeth, and Grzegorz Deptuch. Studies of Front-End Electronics for High-Precision Timing Measurements with LGADs. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1615358.
Full textEzell, N. Dianne Bull, Lorenzo Fabris, Richard J. Wunderlich, Padhraic L. Mulligan, Christian M. Petrie, and Charles L. Britton, Jr. Commercial Design of Custom Front-end Electronics for a High Temperature Fission Chamber. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1479737.
Full textJames J. Beatty Richard D. Kass. Development of a low-power, low-cost front end electronics module for large scale distributed neutrino detectors. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/948830.
Full textIliev, Metodi, and Kiril Dimitrov Ianakiev. Report on Task USA A 0931 (A.252) Implementation of Fast, Front-End Electronics for Improved Low-Dead Time Neutron Counting. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1581264.
Full textSuper conductor Supercollider front end electronics development; ring imaging Cerenkov studies; and warm liquid calorimetry. Final report. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/291148.
Full text