Journal articles on the topic 'Electronic Transport Properties -Graphene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electronic Transport Properties -Graphene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wakabayashi, Katsunori. "Electronic transport properties of graphene nanostructures." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C197. http://dx.doi.org/10.1107/s2053273314098027.
Full textCUONG, NGUYEN TIEN, HIROSHI MIZUTA, BACH THANH CONG, NOBUO OTSUKA, and DAM HIEU CHI. "AB-INITIO CALCULATIONS OF ELECTRONIC PROPERTIES AND QUANTUM TRANSPORT IN U-SHAPED GRAPHENE NANORIBBONS." International Journal of Computational Materials Science and Engineering 01, no. 03 (September 2012): 1250030. http://dx.doi.org/10.1142/s2047684112500303.
Full textPradeepkumar, Aiswarya, D. Kurt Gaskill, and Francesca Iacopi. "Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review." Applied Sciences 10, no. 12 (June 24, 2020): 4350. http://dx.doi.org/10.3390/app10124350.
Full textWakabayashi, Katsunori, Yositake Takane, Masayuki Yamamoto, and Manfred Sigrist. "Electronic transport properties of graphene nanoribbons." New Journal of Physics 11, no. 9 (September 30, 2009): 095016. http://dx.doi.org/10.1088/1367-2630/11/9/095016.
Full textRasmussen, Jesper Toft, Tue Gunst, Peter Bøggild, Antti-Pekka Jauho, and Mads Brandbyge. "Electronic and transport properties of kinked graphene." Beilstein Journal of Nanotechnology 4 (February 15, 2013): 103–10. http://dx.doi.org/10.3762/bjnano.4.12.
Full textKolli, Venkata Sai Pavan Choudary, Vipin Kumar, Shobha Shukla, and Sumit Saxena. "Electronic Transport in Oxidized Zigzag Graphene Nanoribbons." MRS Advances 2, no. 02 (2017): 97–101. http://dx.doi.org/10.1557/adv.2017.55.
Full textFujimoto, Yoshitaka. "Quantum transport, electronic properties and molecular adsorptions in graphene." Modern Physics Letters B 35, no. 08 (February 9, 2021): 2130001. http://dx.doi.org/10.1142/s0217984921300015.
Full textAndo, Tsuneya. "Exotic electronic and transport properties of graphene." Physica E: Low-dimensional Systems and Nanostructures 40, no. 2 (December 2007): 213–27. http://dx.doi.org/10.1016/j.physe.2007.06.003.
Full textWakabayashi, Katsunori, Yositake Takane, and Manfred Sigrist. "Electronic transport properties of disordered graphene nanoribbons." Journal of Physics: Conference Series 150, no. 2 (February 1, 2009): 022097. http://dx.doi.org/10.1088/1742-6596/150/2/022097.
Full textTreske, Uwe, Frank Ortmann, Björn Oetzel, Karsten Hannewald, and Friedhelm Bechstedt. "Electronic and transport properties of graphene nanoribbons." physica status solidi (a) 207, no. 2 (January 5, 2010): 304–8. http://dx.doi.org/10.1002/pssa.200982445.
Full textLiu, Wen, Fan-Hua Meng, Jian-Hua Zhao, and Xiao-Hui Jiang. "A first-principles study on the electronic transport properties of zigzag graphane/graphene nanoribbons." Journal of Theoretical and Computational Chemistry 16, no. 04 (April 25, 2017): 1750032. http://dx.doi.org/10.1142/s0219633617500328.
Full textSubedi, Kashi N., Kishor Nepal, Chinonso Ugwumadu, Keerti Kappagantula, and D. A. Drabold. "Electronic transport in copper–graphene composites." Applied Physics Letters 122, no. 3 (January 16, 2023): 031903. http://dx.doi.org/10.1063/5.0137086.
Full textDa-Li, SUN, PENG Sheng-Lin, OUYANG Jun, and OUYANG Fang-Ping. "Electronic Transport Properties of Graphene Nanoribbons with Nanoholes." Acta Physico-Chimica Sinica 27, no. 05 (2011): 1103–7. http://dx.doi.org/10.3866/pku.whxb20110521.
Full textCai, Chao-Yi, and Jian-Hao Chen. "Electronic transport properties of Co cluster-decorated graphene." Chinese Physics B 27, no. 6 (June 2018): 067304. http://dx.doi.org/10.1088/1674-1056/27/6/067304.
Full textQiu, Wanzhi, Phuong Nguyen, and Efstratios Skafidas. "Graphene nanopores: electronic transport properties and design methodology." Phys. Chem. Chem. Phys. 16, no. 4 (2014): 1451–59. http://dx.doi.org/10.1039/c3cp53777c.
Full textJafari, A., M. Ghoranneviss, M. R. Hantehzadeh, and Z. Ghorannevis. "Electronic Transport Properties of a Multiterminal Graphene Nanodevice." Quantum Matter 4, no. 6 (December 1, 2015): 631–35. http://dx.doi.org/10.1166/qm.2015.1243.
Full textGusmão, M. S., Angsula Ghosh, and H. O. Frota. "Electronic transport properties of graphene/Al2O3 (0001) interface." Current Applied Physics 18, no. 1 (January 2018): 90–95. http://dx.doi.org/10.1016/j.cap.2017.10.008.
Full textMach, J., P. Procházka, M. Bartošík, D. Nezval, J. Piastek, J. Hulva, V. Švarc, M. Konečný, L. Kormoš, and T. Šikola. "Electronic transport properties of graphene doped by gallium." Nanotechnology 28, no. 41 (September 14, 2017): 415203. http://dx.doi.org/10.1088/1361-6528/aa86a4.
Full textChoe, D. H., Junhyeok Bang, and K. J. Chang. "Electronic structure and transport properties of hydrogenated graphene and graphene nanoribbons." New Journal of Physics 12, no. 12 (December 13, 2010): 125005. http://dx.doi.org/10.1088/1367-2630/12/12/125005.
Full textSun, Jie, Na Lin, Zhenyu Li, Hao Ren, Cheng Tang, and Xian Zhao. "Electronic and transport properties of graphene with grain boundaries." RSC Advances 6, no. 2 (2016): 1090–97. http://dx.doi.org/10.1039/c5ra16323d.
Full textWoellner, Cristiano Francisco, Pedro Alves da Silva Autreto, and Douglas S. Galvao. "One Side-Graphene Hydrogenation (Graphone): Substrate Effects." MRS Advances 1, no. 20 (2016): 1429–34. http://dx.doi.org/10.1557/adv.2016.196.
Full textGungor, Arif Can, Stefan M. Koepfli, Michael Baumann, Hande Ibili, Jasmin Smajic, and Juerg Leuthold. "Modeling Hydrodynamic Charge Transport in Graphene." Materials 15, no. 12 (June 10, 2022): 4141. http://dx.doi.org/10.3390/ma15124141.
Full textGruschwitz, Markus, Chitran Ghosal, Ting-Hsuan Shen, Susanne Wolff, Thomas Seyller, and Christoph Tegenkamp. "Surface Transport Properties of Pb-Intercalated Graphene." Materials 14, no. 24 (December 13, 2021): 7706. http://dx.doi.org/10.3390/ma14247706.
Full textLin, Guida. "Carbon-Based Micro/Nano Devices for Transistors, Sensors, and Memories." Journal of Physics: Conference Series 2152, no. 1 (January 1, 2022): 012033. http://dx.doi.org/10.1088/1742-6596/2152/1/012033.
Full textHuang, Jing, and Jun Kang. "Two-dimensional graphyne–graphene heterostructure for all-carbon transistors." Journal of Physics: Condensed Matter 34, no. 16 (February 22, 2022): 165301. http://dx.doi.org/10.1088/1361-648x/ac513b.
Full textFang-Ping, OUYANG, XU Hui, LI Ming-Jun, and XIAO Jin. "Electronic Structure and Transport Properties of Armchair Graphene Nanoribbons." Acta Physico-Chimica Sinica 24, no. 02 (2008): 328–32. http://dx.doi.org/10.3866/pku.whxb20080225.
Full textJun-Jun, ZHANG, ZHANG Zhen-Hua, GUO Chao, LI Jie, and DENG Xiao-Qing. "Electronic Transport Properties for a Zigzag-Edged Triangular Graphene." Acta Physico-Chimica Sinica 28, no. 07 (2012): 1701–6. http://dx.doi.org/10.3866/pku.whxb201204172.
Full textJippo, Hideyuki, Mari Ohfuchi, and Susumu Okada. "Electronic Transport Properties of Graphene Channel between Au Electrodes." e-Journal of Surface Science and Nanotechnology 13 (2015): 54–58. http://dx.doi.org/10.1380/ejssnt.2015.54.
Full textTyagi, Arvind, Vikash Sharma, and Anurag Srivastava. "Electronic and Transport Properties of Graphene Based Ammonia Sensor." Quantum Matter 5, no. 3 (June 1, 2016): 419–22. http://dx.doi.org/10.1166/qm.2016.1331.
Full textDubois, S. M. M., Z. Zanolli, X. Declerck, and J. C. Charlier. "Electronic properties and quantum transport in Graphene-based nanostructures." European Physical Journal B 72, no. 1 (October 7, 2009): 1–24. http://dx.doi.org/10.1140/epjb/e2009-00327-8.
Full textZeng, H., J. Zhao, and J. W. Wei. "Electronic transport properties of graphene nanoribbons with anomalous edges." European Physical Journal Applied Physics 53, no. 2 (January 28, 2011): 20602. http://dx.doi.org/10.1051/epjap/2010100403.
Full textSimchi, Hamidreza, Mahdi Esmaeilzadeh, and Hossein Mazidabadi. "The electronic transport properties of porous zigzag graphene clusters." Physica E: Low-dimensional Systems and Nanostructures 54 (December 2013): 220–25. http://dx.doi.org/10.1016/j.physe.2013.06.021.
Full textRacolta, D., and C. Micu. "The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures." Annals of West University of Timisoara - Physics 57, no. 1 (December 1, 2013): 52–60. http://dx.doi.org/10.1515/awutp-2015-0106.
Full textTao, Zhi Kuo, Jiang Wei Chen, Wei Wang, and Li Chen. "Electron Transport Properties of Rippled Zigzag Graphene Nanoribbon." Advanced Materials Research 496 (March 2012): 251–54. http://dx.doi.org/10.4028/www.scientific.net/amr.496.251.
Full textKUMAR, AMIT, J. M. POUMIROL, W. ESCOFFIER, M. GOIRAN, B. RAQUET, and J. M. BROTO. "ELECTRONIC PROPERTIES OF GRAPHENE, FEW-LAYER GRAPHENE, AND BULK GRAPHITE UNDER VERY HIGH MAGNETIC FIELD." International Journal of Nanoscience 10, no. 01n02 (February 2011): 43–47. http://dx.doi.org/10.1142/s0219581x11007703.
Full textÁlvarez-Rodríguez, Pablo, and Víctor Manuel García-Suárez. "Effect of Impurity Adsorption on the Electronic and Transport Properties of Graphene Nanogaps." Materials 15, no. 2 (January 10, 2022): 500. http://dx.doi.org/10.3390/ma15020500.
Full textDU, XU, IVAN SKACHKO, and EVA Y. ANDREI. "TOWARDS BALLISTIC TRANSPORT IN GRAPHENE." International Journal of Modern Physics B 22, no. 25n26 (October 20, 2008): 4579–88. http://dx.doi.org/10.1142/s0217979208050334.
Full textKhatir, Nadia Mahmoudi, Aidin Ahmadi, Narges Taghizade, Samane Motevali khameneh, and Mahdi Faghihnasiri. "Electronic transport properties of nanoribbons of graphene and ψ-graphene -based lactate nanobiosensor." Superlattices and Microstructures 145 (September 2020): 106603. http://dx.doi.org/10.1016/j.spmi.2020.106603.
Full textBraatz, Marie-Luise, Nils-Eike Weber, Barthi Singh, Klaus Müllen, Xinliang Feng, Mathias Kläui, and Martin Gradhand. "Doped graphene characterized via Raman spectroscopy and magneto-transport measurements." Journal of Applied Physics 133, no. 2 (January 14, 2023): 025304. http://dx.doi.org/10.1063/5.0117677.
Full textShao, Jingjing, and Beate Paulus. "Edge Effect in Electronic and Transport Properties of 1D Fluorinated Graphene Materials." Nanomaterials 12, no. 1 (December 30, 2021): 125. http://dx.doi.org/10.3390/nano12010125.
Full textJohari, Zaharah, Zuriana Auzar, and N. Ezaila Alias. "The Electronic and Transport Properties of Defective Bilayer Graphene Nanoribbon." Journal of Nanoelectronics and Optoelectronics 12, no. 2 (February 1, 2017): 177–83. http://dx.doi.org/10.1166/jno.2017.1981.
Full textZhang, Yu, Wenjing Xu, Guangjie Liu, and Jinlong Zhu. "Electronic and transport properties of armchair graphene nanoribbons with defects." Journal of Physics: Conference Series 1676 (November 2020): 012123. http://dx.doi.org/10.1088/1742-6596/1676/1/012123.
Full textHibino, H., S. Tanabe, S. Mizuno, and H. Kageshima. "Growth and electronic transport properties of epitaxial graphene on SiC." Journal of Physics D: Applied Physics 45, no. 15 (March 29, 2012): 154008. http://dx.doi.org/10.1088/0022-3727/45/15/154008.
Full textHamid, Mohamad Amin Bin, Chan Kar Tim, Yazid Bin Yaakob, and Mohammad Adib Bin Hazan. "Structural, electronic and transport properties of silicene on graphene substrate." Materials Research Express 6, no. 5 (February 6, 2019): 055803. http://dx.doi.org/10.1088/2053-1591/ab01ea.
Full textKou, Liangzhi, Chun Tang, Changfeng Chen, and Wanlin Guo. "Hybrid W-shaped graphene nanoribbons: Distinct electronic and transport properties." Journal of Applied Physics 110, no. 12 (December 15, 2011): 124312. http://dx.doi.org/10.1063/1.3669496.
Full textGómez-Navarro, Cristina, R. Thomas Weitz, Alexander M. Bittner, Matteo Scolari, Alf Mews, Marko Burghard, and Klaus Kern. "Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets." Nano Letters 7, no. 11 (November 2007): 3499–503. http://dx.doi.org/10.1021/nl072090c.
Full textGómez-Navarro, Cristina, R. Thomas Weitz, Alexander M. Bittner, Matteo Scolari, Alf Mews, Marko Burghard, and Klaus Kern. "Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets." Nano Letters 9, no. 5 (May 13, 2009): 2206. http://dx.doi.org/10.1021/nl901209z.
Full textDeng, Xiaoqing, Guiping Tang, and Chao Guo. "Tuning the electronic transport properties for a trigonal graphene flake." Physics Letters A 376, no. 23 (May 2012): 1839–44. http://dx.doi.org/10.1016/j.physleta.2012.04.021.
Full textMa, K. L., X. H. Yan, Y. Xiao, and Y. P. Chen. "Electronic transport properties of metallic graphene nanoribbons with two vacancies." Solid State Communications 150, no. 29-30 (August 2010): 1308–12. http://dx.doi.org/10.1016/j.ssc.2010.05.011.
Full textHe, Y. H., L. Wang, X. L. Chen, Z. F. Wu, W. Li, Y. Cai, and N. Wang. "Modifying electronic transport properties of graphene by electron beam irradiation." Applied Physics Letters 99, no. 3 (July 18, 2011): 033109. http://dx.doi.org/10.1063/1.3615294.
Full text