Dissertations / Theses on the topic 'Electronic Transport Properties -Graphene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Electronic Transport Properties -Graphene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Poole, Christopher J. "Electronic and transport properties of graphene nanostructures." Thesis, Lancaster University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654742.
Full textBritnell, Liam Richard. "Electronic transport properties of graphene-based heterostructures." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/electronic-transport-properties-of-graphenebased-heterostructures(db9e8d20-c1a4-401c-85d9-c62ebd5c4d2c).html.
Full textBurgos, Atencia Rhonald. "Electronic transport properties of graphene sheets under strain." Niterói, 2017. https://app.uff.br/riuff/handle/1/2932.
Full textMade available in DSpace on 2017-02-15T20:34:52Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_Doutorado_Rhonald.pdf: 10940068 bytes, checksum: bd5c869e9676e80790b3c3358e2f920f (MD5)
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Nesta tese estudamos três problemas teóricos relacionados ao grafeno e um problema relacionado a um sistema bosônico interagente e desordenado em uma dimensão. Sobre o grafeno, estudamos alguns efeitos das deformações. Primeiro, calculamos o efeito de campos magnéticos aleatórios devido às deformações fora do plano em uma folha de grafeno na condutividade de Boltzmann. Encontramos que essas deformações são uma fonte importante de desordem para condutividade. Tamb em estudamos as oscilações de Weiss no grafeno devido a deformações unidimensionais. Usamos uma equação de Boltzmann quântica e teoria de perturbações até primeira ordem para resolver esse problema. Encontramos valores acessíveis experimentalmente para a condutividade. O efeito de localização fraca na conductividade é ainda um problema em andamento. Mesmo sabendo que o pseudo-campo magnético devido a deformações não quebra a simetria de inversão temporal quando considerados os dois valleys, acreditamos que a parte respons avel pelo espalhamento intra-valleys deve sentir o efeito desse pseudo-campo. O tempo de desfasagem devido a esse campo foi calculado. O problema de sistemas bosônicos tamb em está ainda em andamento. Identificamos algumas dificuldades na teoria de perturbações usada normalmente para sistemas fermiônicos e uma possivel forma de resolver esse problema.
In this thesis we address three theoretical problems related to electronic transport properties of graphene and one related to interacting Bosonic systems with disorder in one dimension. Concerning graphene, we have studied some efects of strain. First, we calculated the efect of random gauge fields due to out of plane deformation in the Boltzmann conductivity. We have found that strain plays an important role as a disorder source that limits the conductivity. We have also studied Weiss oscillation in graphene due to uniaxial strain. We have used a quantum Boltzmann approach and first order perturbution theory to this end. We found measurable values to the conductivity in this system. The efect of weak localization is still a work in progress. Although the pseudo magnetic field in graphene does not break time reversal symmetry in the two valleys, we believe that the channel responsable for intravalley scattering must be sensitive to dephasing due to strain. This dephasing time has been calculated. Concerning the Bosonic system, this is also a work in progress. We have identified some difculties in the standard procedure of perturbation theory when applied to this system and a possible way to face them.
Sonde, Sushant. "Local transport properties in graphene for electronic applications." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/91.
Full textPlachinda, Pavel. "Electronic Properties and Structure of Functionalized Graphene." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/585.
Full textMalec, Christopher Evan. "Transport in graphene tunnel junctions." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41140.
Full textMartins, Ernane de Freitas. "QM/MM simulations of electronic transport properties for DNA sensing devices based on graphene." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154328.
Full textApproved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2018-06-22T17:57:30Z (GMT) No. of bitstreams: 1 martins_ef_dr_ift.pdf: 73762259 bytes, checksum: 783c569159077630257fc1df333452da (MD5)
Made available in DSpace on 2018-06-22T17:57:30Z (GMT). No. of bitstreams: 1 martins_ef_dr_ift.pdf: 73762259 bytes, checksum: 783c569159077630257fc1df333452da (MD5) Previous issue date: 2018-06-04
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Nanotechnology is an important and very active area of research contributing to many different fields. The development of new devices applied to personalized medicine is one of its applications. When we desire to develop new devices many effort are done, including experimental and theoretical investigations. The theoretical/computational physics can enormously contribute to this area, since the simulations can reveal the working mechanism in these systems being possible to understand and propose new devices with improved performance. We present an extensive theoretical investigation of the electronic transport properties of graphene-based devices for DNA sensing. We have used a hybrid methodology which combines quantum mechanics and molecular mechanics, the so called QM/MM method, coupled to electronic transport calculations using non-equilibrium Green’s functions. First, we studied graphene in solution in order to understand the effects of polarization on the electronic and transport properties under different salt concentrations. We also stud- ied graphene with Stone-Wales defect in pure water. For these systems we tested a simple polarization model based on rigid rods. Our analysis were also done over different QM/MM partitions including explicit water molecules in the quantum part. Our results showed that the inclusion of the solvent in the electronic transport calculations for graphene decreases the total transmission, showing the important role played by the water. Our results also showed that the electronic transport properties of graphene do not suffer significant changes as we increase the salt concentration in the solution. The inclusion of polarization effects in graphene, despite changing the structuring of water molecules that make up the first solvation shell of graphene, do not significantly affect the electronic transport through graphene. We then studied DNA sequencing devices. First we focused on sequencing using a nanopore between topological line defects in graphene. Our results showed that sequencing DNA with high selectivity and sensitivity using these devices appears possible. We also address nanogap in graphene. For this we looked at the effects of water on electronic transport by using different setups for the QM/MM partition. We showed that the inclusion of water molecules in the quantum part increases the electronic transmission in several orders of magnitude, also showing the fundamental role played by water in tunneling devices. The electronic transport simulations showed that the proposed device has the potential to be used in DNA sequencing, presenting high selectivity and sensitivity. We propose an graphene-based biochip for sequence-specific detection of DNA strands. The main idea of this sort of device is to detect hybridization of single-stranded DNA, forming double-stranded DNA. We showed that the vertical DNA adsorption, either through an anchor molecule (pyrene) or using the nucleotide itself as anchor, do not present good results for detection, since the signals for the single and double strands are quite similar. For the case of horizontal DNA adsorption on graphene our results indicated that the two signals can be distinguishable, showing promising potential for sensitivity and selectivity.
Nanotecnologia é uma importante e muito ativa área de pesquisa contribuindo para muitos campos diferentes. O desenvolvimento de novos dispositivos aplicados à medicina personalizada é uma de suas aplicações. Quando desejamos desenvolver novos dispositivos muitos esforços são feitos, incluindo investigações experimentais e teóricas. A Física teórica/computacional pode contribuir enormemente com esta área, já que simulações podem revelar o mecanismo de funcionamento nesses sistemas tornando possível entender e propor novos dispositivos com desempenho melhorado. Nós apresentamos uma extensa investigação teórica das propriedades de transporte eletrônico de dispositivos baseados em grafeno para sensoriamento de DNA. Utilizamos uma metodologia híbrida que combina mecânica quântica e mecânica molecular, o chamado método QM/MM, acoplado a cálculos de transporte eletrônico utilizando funções de Green fora do equilíbrio. Primeiramente nós estudamos grafeno em solução de modo a entender os efeitos de polarização nas propriedades eletrônica e de transporte em diferentes concentrações de sal. Também estudamos grafeno com defeito Stone-Wales em água pura. Para esses sistemas, testamos um modelo de polarização simples baseado em bastões rígidos. Nossas análises também foram feitas em diferentes partições QM/MM incluindo moléculas de água explícitas na parte quântica. Nossos resultados mostraram que a inclusão do solvente nos cálculos de transporte eletrônico para o grafeno diminui a transmissão total, mostrando o papel fundamento desempenhado pelo água. Nossos resultados também mostraram que as propriedades de transporte eletrônico do grafeno não sofrem mudanças significativas na medida em que aumentamos a concentração de sal na solução. A inclusão de efeitos de polarização em grafeno, apesar de mudar a estruturação das moléculas de água que compõem a primeira camada de solvatação do grafeno, não afeta significativamente o transporte eletrônico através do grafeno. Nós, então, estudamos dispositivos para sequenciamento de DNA. Focamos primeira- mente no sequenciamento usando nanoporo entre defeitos de linha topológicos no grafeno. Nossos resultados mostraram que o sequenciamento de DNA com alta seletividade e sensitividade usando esses dispositivos se mostra possível. Nós também abordamos nanogap em grafeno. Para tal, avaliamos os efeitos da água no transporte eletrônico utilizando diferentes configurações para a partição QM/MM. Mostramos que a inclusão de moléculas de água na parte quântica aumenta a transmissão eletrônica em várias ordens de grandeza, também mostrando o papel fundamental desempenhado pela água em dispositivos de tunelamento. As simulações de transporte eletrônico mostraram que o dispositivo proposto tem o potencial de ser usado em sequenciamento de DNA, apresentando alta seletividade e sensitividade. Propusemos um biochip baseado em grafeno para detecção de sequências específicas de fitas de DNA. A ideia principal desta classe de dispositivos é detectar a hibridização da fita simples de DNA, formando a fita dupla de DNA. Mostramos que a adsorção vertical de DNA, seja utilizando uma molécula âncora (pireno) ou utilizando o próprio nucleotídio como âncora, não apresenta bons resultados para detecção, já que os sinais para as fitas simples e dupla são bem próximos. Para o caso da adsorção horizontal de DNA em grafeno nossos resultados indicaram que os dois sinais podem ser distinguíveis, mostrando potencial promissor para sensitividade e seletividade.
Verastegui, Wudmir Yudy Rojas. "Electronic and transport properties of graphene nanoribbons with adsorbed transition metal impurities : spin-orbit interaction." reponame:Repositório Institucional da UFABC, 2013.
Find full textSeifert, Christian. "Control of the Electrical Transport through Single Molecules and Graphene." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21647.
Full textThe first of this two-part work deals with the STM investigation of an interface in the surrounding natural atmosphere, which is formed by the adsorption of the conductive graphene onto the mica surface. In this interface, water molecules may intercalate by the surrounding humidity. By varying the relative humidity, the interface is rewetted, respectively, dewetted and it manifests itself in a star shape growing fractals, where the height of graphene is decreased by approximately the diameter of one water molecule. The STM investigation - which is primarily sensitive to the density of states of graphene - shows that additional significant changes in the height of graphene are formed within the fractal, unlike in the SFM investigations. This suggests that there is a water layer by which the density of graphene is differently affected by domains with significant distinguishable polarisation alignments. However, this is equivalent to the assumption that there are two or more water layers exist within the interface. The second part of this work deals with the STM investigation of a functionalized surface characterised by a functionalized dyad adsorbed onto a conductive surface (graphene and HOPG) at a solid-liquid interface. This dyad essentially comprises a zinc-tetraphenylporphyrin (ZnTPP) and is connected with a spiropyran derivative via a flexible linker. This changes its conformation through irradiation with light with a suitable wavelength, by which the dipole moment is also strongly changed. It was found that the switching behaviour of a graphene-based conductive surface is comparable with the switching behaviour of a dyad, which itself can move freely in solution. This leads to the conclusion that the switching properties of a single dyad can be transmitted to its collective because it affected no significant influence interactions by the conductive surface and the adjacent dyads.
Khademi, Ali. "Tuning graphene’s electronic and transport properties via adatom deposition." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62588.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Woollacott, Claire. "Electronic and plasmonic properties of real and artificial Dirac materials." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18227.
Full textHartmann, Richard Rudolph. "Optoelectronic properties of carbon-based nanostructures : steering electrons in graphene by electromagnetic fields." Thesis, University of Exeter, 2010. http://hdl.handle.net/10036/113452.
Full textNOVELLI, Pietro. "Electron-electron interaction effects in the optical and transport properties of 2D materials beyond graphene." Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/105435.
Full textKurfürstová, Markéta. "Vodíkem modifikované grafenové struktury pro polem řízené tranzistory." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254358.
Full textSousa, Duarte José Pereira de. "Transporte eletrônico em anéis quânticos de grafeno." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/14677.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2016-01-05T19:55:02Z No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2016-01-05T19:55:40Z (GMT) No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5)
Made available in DSpace on 2016-01-05T19:55:40Z (GMT). No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5) Previous issue date: 2015
In this work, we propose a current switch device that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene in the ballistic regime without the need of the presence of a gap in the spectrum. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning the height of a potential barrier in the ring arms. By varying the parameters of the potential barriers the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate.
Neste trabalho, é proposto um dispositivo de controle de corrente que explora a fase adquirida por um portador de carga quando este tunela através de uma barreira de potencial no grafeno no regime balístico sem a necessidade da presença de um gap no espectro de energias. O sistema atua como um interferômetro baseado em um anel quântico de grafeno com bordas armchair, onde a diferença de fase entre as funções de onda para elétrons que tomam diferentes caminhos pode ser controlada através da intensidade das barreiras de potencial nos braços do anel. Variando os parâmetros das barreiras a interferência pode tornar-se completamente destrutiva. É demonstrado como esse efeito de interferência pode ser utilizado para o desenvolvimento de portas lógicas simples baseadas em grafeno.
Nasseri, Mohsen. "NANOSCALE DEVICES CONSISTING OF HETEROSTRUCTURES OF CARBON NANOTUBES AND TWO-DIMENSIONAL LAYERED MATERIALS." UKnowledge, 2018. https://uknowledge.uky.edu/physastron_etds/59.
Full textSousa, Duarte Josà Pereira de. "Transporte eletrÃnico em anÃis quÃnticos de grafeno." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15743.
Full textNeste trabalho, Ã proposto um dispositivo de controle de corrente que explora a fase adquirida por um portador de carga quando este tunela atravÃs de uma barreira de potencial no grafeno no regime balÃstico sem a necessidade da presenÃa de um gap no espectro de energias. O sistema atua como um interferÃmetro baseado em um anel quÃntico de grafeno com bordas armchair, onde a diferenÃa de fase entre as funÃÃes de onda para elÃtrons que tomam diferentes caminhos pode ser controlada atravÃs da intensidade das barreiras de potencial nos braÃos do anel. Variando os parÃmetros das barreiras a interferÃncia pode tornar-se completamente destrutiva. Ã demonstrado como esse efeito de interferÃncia pode ser utilizado para o desenvolvimento de portas lÃgicas simples baseadas em grafeno.
In this work, we propose a current switch device that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene in the ballistic regime without the need of the presence of a gap in the spectrum. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning the height of a potential barrier in the ring arms. By varying the parameters of the potential barriers the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate.
Vysocký, Filip. "Interakce pomalých elektronů s grafenovými polem řízenými tranzistory." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402578.
Full textHerrmann, Oliver [Verfasser], Laurens W. [Gutachter] Molenkamp, and Matthias [Gutachter] Bode. "Graphene-based single-electron and hybrid devices, their lithography, and their transport properties / Oliver Herrmann ; Gutachter: Laurens W. Molenkamp, Matthias Bode." Würzburg : Universität Würzburg, 2017. http://d-nb.info/1130587924/34.
Full textCosta, Diego Rabelo da. "Transportes e confinamento em monocamada e bicamada de nanoestruturas de grafeno com diferentes bordas, interfaces e potenciais." reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/12555.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2015-06-01T22:18:12Z No. of bitstreams: 1 2014_tese_drcosta.pdf: 54910487 bytes, checksum: 82b386bac8259edaa10f6d5ff314bd42 (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-06-01T22:19:16Z (GMT) No. of bitstreams: 1 2014_tese_drcosta.pdf: 54910487 bytes, checksum: 82b386bac8259edaa10f6d5ff314bd42 (MD5)
Made available in DSpace on 2015-06-01T22:19:16Z (GMT). No. of bitstreams: 1 2014_tese_drcosta.pdf: 54910487 bytes, checksum: 82b386bac8259edaa10f6d5ff314bd42 (MD5) Previous issue date: 2014
Graphene, a two-dimensional lattice of carbon atoms, has been widely studied during the past few years. The interest in this material is not only due to its possible future technological applications, but also because it provides the possibility to probe interesting phenomena predicted by quantum field theories, ranging from Klein tunneling and other quasi-relativistic effects to the existence of new types of electron degrees of freedom, namely, the pseudo-spin, and the existence of two inequivalent electronic valleys in the vicinity of the gapless points of its energy spectrum. Several of the exotic properties observed in graphene originate from the fact that within the low energy approximation for the tight-binding Hamiltonian of graphene, electrons behave as massless Dirac fermions, with a linear energy dispersion. Just like in single layer graphene, the low-energy eletronic spectrum in bilayer graphene is gapless, but in this case it is dominated by the parabolic dispersion. Nevertheless, one interesting feature is shared by both monolayer and bilayer graphene: the valley degree of freedom. In this thesis, we theoretically investigate: (i) the dynamic properties in mono and bilayer graphene, performing a systematic study of wave packet scattering in different interface shapes, edges and potentials; and furthermore (ii) the energy levels of confined systems in graphene in the presence or absence of external magnetic and electric fields. In the first part of the work, we use the tight-binding approach to study the scattering of a Gaussian wave packet on monolayer graphene edges (armchair and zigzag) in the presence of real and pseudo (strain induced) magnetic fields and also calculate the transmission probabilities of a Gaussian wave packet through a quantum point contact defined by electrostatic gates in bilayer graphene. These numerical calculations are based on the solution of the time-dependent Schrödinger equation for the tight-binding model Hamiltonian, using the Split-operator technique. Our theory allows us to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well known skipping orbits are observed. However, our results demonstrate that in the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an armchair edge results in a non-propagating edge state. We propose also a very efficient valley filtering through a quantum point contact system defined by electrostatic gates in bilayer graphene. For the suggested bilayer system, we investigate how to improve the efficiency of the system as a valley filter by varying parameters, such as length, width and amplitude of the applied potential. In the second part of the thesis, we present a systematic study of the energy spectra of graphene quantum rings having different geometries and edge types, in the presence of a perpendicular magnetic field. We discuss which features obtained through a simplified Dirac model can be recovered when the eigenstates of graphene quantum rings are compared with the tight-binding results. Furthermore, we also investigate the confined states in two different hybrid monolayer - bilayer systems, identifying dot-localized states and edge states for the suggested bilayer confinement structures, as well as we will study the behavior of the energy levels as a function of dot size and under an applied external magnetic field. Finally, using the four-band continuum Dirac model, we also derive a general expression for the infinite-mass boundary condition in bilayer graphene in order to apply this boundary condition to calculate analytically the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our analytic results exhibit good agreement when compared with the tight-binding ones.
Grafeno, uma rede bidimensional de átomos de carbono, tem sido amplamente estudado durante os últimos anos. O interesse por este material não é apenas devido às suas possíveis aplicações tecnológicas futuras, mas também porque oferece a possibilidade de investigar fenômenos interessantes previstos pelas teorias quânticas de campo, que vão desde o tunelamento de Klein e outros efeitos quasi-relativísticos à existência de novos tipos de graus de liberdade do elétron, ou seja, o pseudo-spin, e a existência de dois vales eletrônicos não-equivalentes na vizinhança dos pontos sem gap do seu espectro de energia. Várias das propriedades exóticas observadas no grafeno originam-se do facto de que dentro da aproximação de baixas energias para o Hamiltoniano tight-binding do grafeno, elétrons se comportam como férmions de Dirac sem massa, com uma dispersão de energia linear. Assim como no caso de uma monocamada de grafeno, o espectro eletrônico de baixas energias para uma bicamada de grafeno é sem gap, mas, neste caso, é dominado pela dispersão parabólica. No entanto, uma característica interessante é compartilhada por ambas monocamada e bicamada de grafeno: o grau de liberdade de vale. Nesta tese, nós investigamos teoricamente: (i) as propriedades dinâmicas em mono e bicamadas de grafeno, realizando um estudo sistemático do espalhamento de pacotes de onda em diferentes formas de interfaces, bordas e potenciais; e, além disso, (ii) os níveis de energia de sistemas confinados no grafeno na presença ou ausência de campos magnéticos e elétricos externos. Na primeira parte do trabalho, nós utilizamos a abordagem tight-binding para estudar o espalhamento de um pacote de onda Gaussiano nas bordas de uma monocamada de grafeno (armchair e zigzag) na presença de campos magnéticos reais e pseudo-magnéticos (induzidos por tensão) e também calculamos as probabilidades de transmissão de um pacote de onda Gaussiano através de um contato de ponto quântico definido por potenciais eletrostáticos em bicamadas de grafeno. Estes cálculos numéricos são baseados na solução da equação de Schrödinger dependente do tempo para o Hamiltoniano do modelo tight-binding, usando a técnica Split-operator. Nossa teoria permite investigar espalhamento no espaço recíproco, e dependendo do tipo de borda do grafeno, nós observamos espalhamento dentro do mesmo vale, ou entre diferentes vales. Na presença de um campo magnético externo, as bem conhecidas órbitas skipping orbits são observadas. No entanto, nossos resultados demonstram que, no caso de um campo pseudo-magnético induzido por uma tensão não-uniforme, o espalhamento por uma borba armchair resulta em um estado de borda não-propagante. Nós também propomos um sistema de filtragem de vales muito eficiente através de um sistema de contato de ponto quântico definido por portas eletrostáticas em uma bicamada de grafeno. Para o sistema de bicamadas sugerido, nós investigamos a forma de melhorar a eficiência do sistema como um filtro de vales por diferentes parâmetros, como comprimento, largura e amplitude do potencial aplicado. Na segunda parte da tese, nós apresentamos um estudo sistemático dos espectros de energia de anéis quânticos de grafeno com diferentes geometrias e tipos de borda, na presença de um campo magnético perpendicular. Nós discutimos quais características obtidas por meio de um modelo simplificado de Dirac podem ser recuperadas quando os auto-estados de anéis quânticos de grafeno são comparados com os resultados do modelo tight-binding. Além disso, nós também investigamos os estados confinados em dois sistemas híbridos diferentes de monocamada - bicamada, identificando estados localizados dentro do ponto e estados de borda para as estruturas de confinamento em bicamadas sugeridas, assim como vamos estudar o comportamento dos níveis de energia em função do tamanho do ponto e sob um campo magnético externo aplicado. Finalmente, usando o modelo contínuo de Dirac de quatro bandas, nós também derivamos uma expressão geral para a condição de contorno de massa infinita em bicamada de grafeno, a fim de aplicar essa condição de contorno para calcular analiticamente os estados confinados e as correspondentes funções de onda em um ponto quântico em uma bicamada de grafeno na ausência e na presença de um campo magnético perpendicular. Nossos resultados analíticos apresentam boa concordância quando comparados com os resultados tight-binding.
Kormoš, Lukáš. "Aplikace grafénové membrány v nanoelektronických zařízeních." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231954.
Full textCarrega, Matteo. "Coulomb drag and Dirac plasmons in novel 2D electron systems." Doctoral thesis, Scuola Normale Superiore, 2014. http://hdl.handle.net/11384/85870.
Full textMareček, David. "Vliv elektronového svazku na grafenové polem řízené tranzistory." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-320004.
Full textGuillemette, Jonathan. "Electronic transport in hydrogenated graphene." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123041.
Full textLe but sous-jacent de cette thèse est d'utiliser des adatomes sur un crystal atomique bi-dimensionnel afin d'en ajuster les propriétés électriques. Plus précisément, un lien covalent s'établira entre les atomes d'hydrogène et la feuille de graphène en créant CH_x afin d'ouvrir un interstice entre les bandes de valence et de conduction. En attachant les atomes d'hydrogène sur la feuille de graphène, son spectre Raman, son transport en fonction de la température et sa magnétorésistance ont tous étés modifiés. L'investigation de ces modifications est le thème central de cette thèse.Cette thèse contient: la méthode par laquelle le graphène est hydrogéné, l'analyse de l'hydrogénation en obtenant une cartographie Raman de l'ampleur des défauts et de leur emplacement sur l'échantillon. Également présent est l'analyse de l'hydrogénation du point de vue du transport électrique en fonction de la température. La durée de l'hydrogénation ne démontre pas une bonne corrélation avec le ratio D/G moyen sur une surface de 200 par 200 um^2 obtenu par spectroscopie Raman. De plus, il est démontré que les échantillons s'hydrogènent à des rythmes différents. Également présentés sont deux applications technologiques qui pourraient être potentiellement bonifiées en utilisant le graphène hydrogéné: les thermomètres et les bolomètres. Les thermomètres démontrent une sensibilité allant jusqu'à 10^7 Omega/K à 10 K et les bolomètres démontrent une responsivité allant jusqu'à 10^5 V/W à 10 K et une résistance thermique allant jusqu'à R_th = 3 K/nW, à 10 K. La magnétorésistance colossale négative mesurée dans la configuration perpendiculaire a mené à la mesure de l'effet Hall quantique dans le système le plus désordonné à ce jour en termes du paramètre Ioffe-Regel qui est de 250. La magnétorésistance colossale négative démontre la transition d'un état isolant à l'état de l'effet Hall quantique nu = -2.
Bonifacio, Agathe. "Electronic Properties of Graphene." Thesis, Uppsala universitet, Energimaterialens fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447514.
Full textRainis, Diego. "Electronic Transport in Graphene Hybrid Structures." Doctoral thesis, Scuola Normale Superiore, 2013. http://hdl.handle.net/11384/85932.
Full textYang, Rui. "A study of electronic transport in graphene." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506236.
Full textAllen, Monica Theresa. "Quantum Electronic Transport in Mesoscopic Graphene Devices." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493258.
Full textPhysics
CASTILLO, E. DEL. "ELECTRONIC TRANSPORT IN GRAPHENE-BASED NANO JUNCTIONS." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/372370.
Full textNeumann, Ingmar. "Electronic spin transport and thermoelectric effects in graphene." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/145396.
Full textSpintronics and spin caloritronics in graphene are recently very active fields of research, and this thesis is a contribution to both. The main topic is the study of spin currents in graphene non local spin valves via means of electrical spin injection and detection. In a preliminary work, we analytically investigate the tunneling process of conduction electrons between ferro- and non magnetic materials. On the experimental side, we report on spin precession in freely suspended graphene spin valves. In this context, we have developed a novel method for the fabrication of freely suspended graphene devices, which additionally is beneficial for the spin injection/detection efficiency of the devices. In order to investigate these enhanced spin signals, we have performed bias dependent measurements, which lead to the experimental demonstration of a spin thermocouple in graphene. In order to investigate tunneling of conduction electrons between ferro- and non magnetic electrodes, we have developed a theoretical model based on the analytical solution of the one-dimensional, time-independent Schrˆdinger equation. The model shows that a complex behavior of the polarization is intrinsic to the tunneling process of electrons between ferro- and non magnetic materials. Spin relaxations times of several tens of micrometers in graphene have been predicted. A promising approach to studying the intrinsic properties of graphene is to suspend the flakes, thus eliminating the influence of the substrate and enabling cleaning methods. In order to achieve this, we have developed a method to fabricate freely suspended graphene non local spin valves that involves a minimal number of steps and chemicals. Since the method is acid free, the yield of high quality, as-processed devices is notably improved when comparing to the standard fabrication process. Therefore, our as-processed devices exhibit excellent mobility, as high as 20000 cm^2/(Vs) at room temperature. We demonstrate electrical detection of spin precession, allowing us to extract the spin relaxation length in these devices, finding values of a few micrometers. We expect that by applying cleaning methods to freely suspended spin valves, it will be possible to investigate the origins of spin relaxation in intrinsic graphene. We have further observed enhanced spin injection/detection efficiency in our devices. We attribute the enhancement to the formation of an amorphous carbon layer at the interface between graphene and ferromagnet due to electron beam induced deposition. The interfaces are stable even for large applied bias current densities. We obtain a 10000x enhancement of the spin signal as compared to Ohmic contacts, but expect further increase after optimizing the deposition method. The increased contact resistance and spin accumulation suggests that the interface has a combination of Ohmic and tunneling properties. The simplicity and transferability of the fabrication process is in contrast to those of the conventional insulators used in spintronics. Therefore, we expect that amorphous carbon barriers are a viable alternative, which might improve the spin injection/detection efficiency in other materials as well. Finally, we have performed bias dependent measurements in our samples, observing a novel phenomenon which is due to the particular properties of graphene such as its energy dependent mobility. We demonstrate an anomalous enhancement of the spin accumulation at the Dirac point, which is caused by heating in the injector contacts. Because of this higher order contribution to the spin accumulation, the electrochemical potentials of the spin sub bands exhibit supralinear behavior as a function of the bias current. The spin splitting becomes so large that at the Dirac point we observe a huge quantity of carriers of opposite spin and charge. We show that this constitutes a spin thermocouple, where the thermoelectric voltage between spin up and spin down enhances the total spin accumulation.
Wang, Zi. "Electronic structure and quantum transport in disordered graphene." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104783.
Full textLe graphène, une seule feuille de graphite, a de nombreuse propriétés électroniques et mécaniques intéressantes, et ce qui en fait une solution viable pour l'électronique de demain. Il reste le matériau le plus largement étudié en physique de la matière condensée en 2011. En raison des effets du désordre, de nombreux propriétés utiles du graphène prédite par la théorie n'apparaissent pas dans les systèmes du monde réel, et les effets exacts du désordre dans le graphène n'ont pas été étudiées à toute satisfaction. L'objectif de cette thèse est de fournir une étude premiers principes de l'effet du désordre introduit dans des nanostructures de graphène. Nous allons passer brièvement en revue les concepts de base de la théorie électronique de la matière condensée, suivie par une discussion plus détaillée sur la théorie de la fonctionnelle de la densité (DFT) qui est la théorie atomique la plus couramment appliquée pour la physique matériaux. Nous allons ensuite présenter la méthode LMTO, des de la DFT, qui est spécialisée dans le calcul des cristaux solides. LMTO est mathématiquement très efficace et est en mesure de traiter plus de quelques milliers d'atomes, tout en restant raisonnablement précise. Ces qualités font que la méthode LMTO est très utile pour l'analyse du transport quantique. Nous discuterons ensuite l'application du DFT est dans le formalisme de la fonction non-équilibre de Green de Keldysh (NEGF) pour traiter les systèmes non-équilibre, tels que le courant de charge. Enfin, dans NEGF-DFT, nous allons utiliser l'approximation du potentiel cohérent (CPA) et la correction non-équilibre de vertex (NVC) afin d'appliquer la théorie de la moyenne du désordre de configuration. Ce cadre théorique est ensuite appliquée à l'étude du transport quantique dans le graphène avec du désordre atomique. Nous allons étudier les effets de la substitution du bore (B) et de l'azote (N) dans le graphène connecté aux électrodes de graphène pure. Nous avons calculé le transport quantique des dispositifs de graphène en fonction de la concentration du désordre x, longueur du dispositif L, l'énergie E, et nos résultats suggèrent que le dopage affecte grandement les propriétés de transport quantique en induisant diffusion de maniere significante. En particulier, ceci est la première fois que la conductance en fonction de la concentration du dopage x est obtenue à partir de théorie premiers principes atomiques. Il est important de noter que la théorie de la NVC nous permet de déterminer directement la contribution de la diffusion à la conductance totale. étant donné que les atomes B et N les atomes sont situés de chaque côté du carbone dans le tableau périodique, il est intéressant de constater que la diffusion du désordre due à ces impuretés apparait presque parfaitement de chaque côté du niveau de Fermi dans le graphène. Un tel comportement peut être compris du point de vue de la charge des dopants.
Kaverzin, Alexey. "Electronic transport and flicker noise in graphene structures." Thesis, University of Exeter, 2011. http://hdl.handle.net/10036/3373.
Full textCao, Yuan Ph D. Massachusetts Institute of Technology. "Electronic transport in low-angle twisted bilayer graphene." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105685.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 47-48).
Graphene is a two-dimensional material with exotic electronic, optical and mechanical properties. By stacking two layers of graphene together with a small rotation angle between them, a superlattice of arbitrarily large size can be formed. The hybridization of the electronic states in the two layers can result in reduced Fermi velocity, van Hove singularities and a gapped band structure. In this work, a novel tear-and-stack technique is developed to reliably produce twisted bilayer graphene with controlled angle, and electronic transport measurements of the resulting high-quality samples are performed and discussed. We discover novel insulating states that purely results from the moiŕe superlattice band structure. The magnetotransport properties of these insulating states are studied and indicate that these states have different structure with those in either graphene or AB-stacked bilayer graphene; it shows a non-monotonous change of Fermi surface area which agrees with theoretical calculations. The results point toward a new pathway for graphene-related physics and material research.
by Yuan Cao.
S.M.
Samarakoom, Duminda K. "Structural and electronic properties of Hydrogenated Graphene." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2011. http://digitalcommons.auctr.edu/dissertations/202.
Full textXu, Shu [Verfasser]. "Graphene Electronics : Device Fabrication and Electronic Transport / Shu Xu." Kiel : Universitätsbibliothek Kiel, 2012. http://d-nb.info/1020496436/34.
Full textGorbachev, Roman. "Fabrication and transport properties of graphene-based nanostructures." Thesis, University of Exeter, 2009. http://hdl.handle.net/10036/89275.
Full textHuang, Shengqiang, and Shengqiang Huang. "Electronic and Optical Properties of Twisted Bilayer Graphene." Diss., The University of Arizona, 2018. http://hdl.handle.net/10150/626686.
Full textNewman, Matthew. "Optimisation of the electronic properties of graphene devices." Thesis, University of Leeds, 2012. http://etheses.whiterose.ac.uk/3411/.
Full textRAVIKUMAR, ABHILASH. "Electronic, spin dependent conductive properties of modified graphene." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/170813.
Full textThe first part of research we present is the adsorption of core-excited organic molecules on graphene. We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. We consider three organic molecules: Pyridine - whose interaction with graphene is mainly facilitated by van der Waals forces, Picoline radical - an intermediate case where there is a strong van der Waals interaction of the pyridine π ring with graphene but a covalent bonding of the molecule and pyri-dine radical - where the interaction is mainly by covalent bonding, and study the ground state and N 1s core excited state electronic properties for these systems. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numeri- cal simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent midgap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. Next we discuss the interplay between the charge transfer lifetime of core excited organic molecules adsorbed on graphene and the modification of its electronic structure by a variable coupling with a metal substrate. Nitrogen 1s core electron of 1,10- bipyridine (C5H4N)2 is photoexcited and adsorbed on bilayer graphene/nickel(111) (BP/BLG/Ni) and epitaxially grown graphene/Ni(111) (BP/EG/ Ni). We predict from first principle calculations that the charge transfer time of core excited molecules depend strongly on the coupling of graphene to the underlying Ni substrate. In the ground state, the LUMO of the molecule is quite strongly coupled with the substrate in both the cases (BP/BLG/Ni and BP/EG/Ni). In the case of BP/BLG/Ni, the layer of graphene in contact with nickel substrate strongly hybridizes but the upper layer of graphene remains fairly decoupled. The excited molecular LUMO* finds very few states of graphene close to the Dirac point at the Fermi level to hybridize with. This leads to a decoupled molecular LUMO* and the lifetime increases significantly (∼ 116 fs). But in the case of BP/EG/Ni, the strong hybridization of graphene with the underlying nickel substrate significantly distorts the electronic structure of graphene generating states close to the Fermi level. The LUMO* of the molecule strongly couples with these states resulting in a substantially smaller lifetime (∼ 33 fs). We also find experimental evidence to confirm this trend by performing core-hole-clock spectroscopy. The resonant charge transfer lifetime we find is ∼ 30 fs±5 fs for the BP/BLG/Ni and ∼ 4 fs±1 fs for the BP/EG/Ni, thus clearly demonstrating the effect of substrate on the charge transfer dynamics of organic molecules on graphene.
Benjamin, Daniel. "Thermal transport and photo-induced charge transport in graphene." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42746.
Full textKhodkov, Tymofiy. "Probing the electrical properties of multilayer graphene." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/4352.
Full textAncum, Gerard Klaas van. "Electronic transport properties of PrBa2Cu3O7-d." Enschede : University of Twente [Host], 1996. http://doc.utwente.nl/58674.
Full textTaychatanapat, Thiti. "From Hopping to Ballistic Transport in Graphene-Based Electronic Devices." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10815.
Full textPhysics
Joung, Daeha. "Electronic Transport Investigation of Chemically Derived Reduced Graphene Oxide Sheets." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5332.
Full textPh.D.
Doctorate
Physics
Sciences
Physics
Yu, Geliang. "Transport properties of graphene based van der Waals heterostructures." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/transport-properties-of-graphene-based-van-der-waals-heterostructures(5cbb782f-4d49-42da-a05e-15b26606e263).html.
Full textFarrokhi, M. Javad. "ELECTRONIC PROPERTIES OF ATOMICALLY THIN MATERIAL HETEROSTRUCTURES." UKnowledge, 2019. https://uknowledge.uky.edu/physastron_etds/67.
Full textHaberer-Gehrmann, Danny. "Electronic Properties of Functionalized Graphene Studied With Photoemission Spectroscopy." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-97417.
Full textSamarakoon, Duminda K. "Structural, electronic, and magnetic properties of graphene-based nanomaterials." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2013. http://digitalcommons.auctr.edu/dissertations/708.
Full textNanayakkara, Tharanga Ranjan. "Electronic properties of nitrophenyl functionalized graphene and boron nanotubes." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2015. http://digitalcommons.auctr.edu/dissertations/3105.
Full textPanapitiya, Gihan Uthpala. "Electronic Properties of Graphene and Boron Nitride Nanoribbon Junctions." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1382986572.
Full text