Books on the topic 'Electronic Transport Properties -Graphene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Electronic Transport Properties -Graphene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
1946-, Zabel H., Solin S. A. 1942-, and Doll G. L, eds. Graphite intercalation compounds II: Transport and electronic properties. Berlin: Springer-Verlag, 1992.
Find full textZabel, Hartmut. Graphite Intercalation Compounds II: Transport and Electronic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
Find full textWallbank, John R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07722-2.
Full textservice), SpringerLink (Online, ed. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textT, Grahn H., ed. Semiconductor superlattices: Growth and electronic properties. Singapore: World Scientific, 1995.
Find full textSabathil, Matthias. Opto-electronic and quantum transport properties of semiconductor nanostructures. Garching: Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München, 2005.
Find full textLui, Chun Hung. Investigations of the electronic, vibrational and structural properties of single and few-layer graphene. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textLinjun, Wang, Song Chenchen, and SpringerLink (Online service), eds. Theory of Charge Transport in Carbon Electronic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textMadelung, O., U. Rössler, and M. Schulz, eds. Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. Berlin/Heidelberg: Springer-Verlag, 2002. http://dx.doi.org/10.1007/b80447.
Full textGraphite Intercalation Compounds II: Transport and Electronic Properties. Springer, 2011.
Find full textZabel, H. Graphite Intercalation Compounds II: Transport and Electronic Properties (Springer Series in Materials Science). Springer, 1992.
Find full textNarlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.
Full textEnoki, Toshiaki, Morinobu Endo, and Masatsugu Suzuki. Graphite Intercalation Compounds and Applications. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195128277.001.0001.
Full textElectronic and Thermal Properties of Graphene. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03936-401-5.
Full textZhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.
Find full textZhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.
Find full textZhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Taylor & Francis Group, 2020.
Find full textZhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.
Find full textZhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.
Find full textNgoc Thanh Thuy, Tran, Shih-Yang Lin, Chiun-Yan Lin, and Ming-Fa Lin. Geometric and Electronic Properties of Graphene-Related Systems. CRC Press, 2017. http://dx.doi.org/10.1201/b22450.
Full textElectronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer, 2014.
Find full textWallbank, John. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer International Publishing AG, 2016.
Find full textWallbank, John R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer, 2014.
Find full textRaza, Hassan. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Springer, 2012.
Find full textRaza, Hassan. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Springer Berlin / Heidelberg, 2016.
Find full textLin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran, and Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.
Find full textLin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran, and Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.
Find full textGeometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.
Find full textLin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran, and Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.
Find full textLin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran, and Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.
Find full textTorres, Luis E. F. Foa, Stephan Roche, and Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. University of Cambridge ESOL Examinations, 2020.
Find full textWilliams, James Ryan. Electronic transport in graphene: P-n junctions, shot noise, and nanoribbons. 2009.
Find full textLuis E. F. Foa Torres, Stephan Roche, and Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2014.
Find full textLuis E. F. Foa Torres, Stephan Roche, and Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2014.
Find full text(Contributor), S. Adachi, R. Blachnik (Contributor), R. P. Devaty (Contributor), F. Fuchs (Contributor), A. Hangleiter (Contributor), W. Kulisch (Contributor), Y. Kumashiro (Contributor), B. K. Meyer (Contributor), R. Sauer (Contributor), and U. Rössler (Editor), eds. Electronic, Transport, Optical and Other Properties (Landolt-Bornstein). Springer, 2002.
Find full textFernandez-Serra, M. V., and X. Blase. Electronic and transport properties of doped silicon nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.2.
Full textLi, Jianzhong. Electronic Optical and Transport Properties of Widegap II-VI Semiconductors. Dissertation Discovery Company, 2019.
Find full textLi, Jianzhong. Electronic Optical and Transport Properties of Widegap II-VI Semiconductors. Dissertation Discovery Company, 2019.
Find full textAndriotis, A. N., R. M. Sheetz, E. Richter, and M. Menon. Structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.21.
Full textKim, Ju H. Electronic and transport properties of the copper oxides: Fermi liquid description. 1990.
Find full textFirst-Principles Calculations In Real-Space Formalism: Electronic Configurations And Transport Properties Of Nanostructures. Imperial College Press, 2005.
Find full textShuai, Zhigang, Linjun Wang, and Chenchen Song. Theory of Charge Transport in Carbon Electronic Materials. Springer, 2012.
Find full textShuai, Zhigang, Linjun Wang, and Chenchen Song. Theory of Charge Transport in Carbon Electronic Materials. Springer, 2012.
Find full textOshiyama, Atsushi, and Susumu Okada. Roles of shape and space in electronic properties of carbon nanomaterials. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.3.
Full textTransport in Semiconductor Mesoscopic. IOP Publishing Ltd, 2016.
Find full textSaito, R., A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus, and M. S. Dresselhaus. Optical properties of carbon nanotubes and nanographene. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.1.
Full textSucci, Sauro. Relativistic Lattice Boltzmann (RLB). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0034.
Full textKamarás, Katalin, and Àron Pekker. Identification and separation of metallic and semiconducting carbon nanotubes. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.4.
Full textBi, J. F., and K. L. Teo. Nanoscale Ge1−xMnxTe ferromagnetic semiconductors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.17.
Full textNarlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.
Full text