Academic literature on the topic 'Electronic Transport Properties -Graphene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electronic Transport Properties -Graphene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electronic Transport Properties -Graphene"
Wakabayashi, Katsunori. "Electronic transport properties of graphene nanostructures." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C197. http://dx.doi.org/10.1107/s2053273314098027.
Full textCUONG, NGUYEN TIEN, HIROSHI MIZUTA, BACH THANH CONG, NOBUO OTSUKA, and DAM HIEU CHI. "AB-INITIO CALCULATIONS OF ELECTRONIC PROPERTIES AND QUANTUM TRANSPORT IN U-SHAPED GRAPHENE NANORIBBONS." International Journal of Computational Materials Science and Engineering 01, no. 03 (September 2012): 1250030. http://dx.doi.org/10.1142/s2047684112500303.
Full textPradeepkumar, Aiswarya, D. Kurt Gaskill, and Francesca Iacopi. "Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review." Applied Sciences 10, no. 12 (June 24, 2020): 4350. http://dx.doi.org/10.3390/app10124350.
Full textWakabayashi, Katsunori, Yositake Takane, Masayuki Yamamoto, and Manfred Sigrist. "Electronic transport properties of graphene nanoribbons." New Journal of Physics 11, no. 9 (September 30, 2009): 095016. http://dx.doi.org/10.1088/1367-2630/11/9/095016.
Full textRasmussen, Jesper Toft, Tue Gunst, Peter Bøggild, Antti-Pekka Jauho, and Mads Brandbyge. "Electronic and transport properties of kinked graphene." Beilstein Journal of Nanotechnology 4 (February 15, 2013): 103–10. http://dx.doi.org/10.3762/bjnano.4.12.
Full textKolli, Venkata Sai Pavan Choudary, Vipin Kumar, Shobha Shukla, and Sumit Saxena. "Electronic Transport in Oxidized Zigzag Graphene Nanoribbons." MRS Advances 2, no. 02 (2017): 97–101. http://dx.doi.org/10.1557/adv.2017.55.
Full textFujimoto, Yoshitaka. "Quantum transport, electronic properties and molecular adsorptions in graphene." Modern Physics Letters B 35, no. 08 (February 9, 2021): 2130001. http://dx.doi.org/10.1142/s0217984921300015.
Full textAndo, Tsuneya. "Exotic electronic and transport properties of graphene." Physica E: Low-dimensional Systems and Nanostructures 40, no. 2 (December 2007): 213–27. http://dx.doi.org/10.1016/j.physe.2007.06.003.
Full textWakabayashi, Katsunori, Yositake Takane, and Manfred Sigrist. "Electronic transport properties of disordered graphene nanoribbons." Journal of Physics: Conference Series 150, no. 2 (February 1, 2009): 022097. http://dx.doi.org/10.1088/1742-6596/150/2/022097.
Full textTreske, Uwe, Frank Ortmann, Björn Oetzel, Karsten Hannewald, and Friedhelm Bechstedt. "Electronic and transport properties of graphene nanoribbons." physica status solidi (a) 207, no. 2 (January 5, 2010): 304–8. http://dx.doi.org/10.1002/pssa.200982445.
Full textDissertations / Theses on the topic "Electronic Transport Properties -Graphene"
Poole, Christopher J. "Electronic and transport properties of graphene nanostructures." Thesis, Lancaster University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654742.
Full textBritnell, Liam Richard. "Electronic transport properties of graphene-based heterostructures." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/electronic-transport-properties-of-graphenebased-heterostructures(db9e8d20-c1a4-401c-85d9-c62ebd5c4d2c).html.
Full textBurgos, Atencia Rhonald. "Electronic transport properties of graphene sheets under strain." Niterói, 2017. https://app.uff.br/riuff/handle/1/2932.
Full textMade available in DSpace on 2017-02-15T20:34:52Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_Doutorado_Rhonald.pdf: 10940068 bytes, checksum: bd5c869e9676e80790b3c3358e2f920f (MD5)
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Nesta tese estudamos três problemas teóricos relacionados ao grafeno e um problema relacionado a um sistema bosônico interagente e desordenado em uma dimensão. Sobre o grafeno, estudamos alguns efeitos das deformações. Primeiro, calculamos o efeito de campos magnéticos aleatórios devido às deformações fora do plano em uma folha de grafeno na condutividade de Boltzmann. Encontramos que essas deformações são uma fonte importante de desordem para condutividade. Tamb em estudamos as oscilações de Weiss no grafeno devido a deformações unidimensionais. Usamos uma equação de Boltzmann quântica e teoria de perturbações até primeira ordem para resolver esse problema. Encontramos valores acessíveis experimentalmente para a condutividade. O efeito de localização fraca na conductividade é ainda um problema em andamento. Mesmo sabendo que o pseudo-campo magnético devido a deformações não quebra a simetria de inversão temporal quando considerados os dois valleys, acreditamos que a parte respons avel pelo espalhamento intra-valleys deve sentir o efeito desse pseudo-campo. O tempo de desfasagem devido a esse campo foi calculado. O problema de sistemas bosônicos tamb em está ainda em andamento. Identificamos algumas dificuldades na teoria de perturbações usada normalmente para sistemas fermiônicos e uma possivel forma de resolver esse problema.
In this thesis we address three theoretical problems related to electronic transport properties of graphene and one related to interacting Bosonic systems with disorder in one dimension. Concerning graphene, we have studied some efects of strain. First, we calculated the efect of random gauge fields due to out of plane deformation in the Boltzmann conductivity. We have found that strain plays an important role as a disorder source that limits the conductivity. We have also studied Weiss oscillation in graphene due to uniaxial strain. We have used a quantum Boltzmann approach and first order perturbution theory to this end. We found measurable values to the conductivity in this system. The efect of weak localization is still a work in progress. Although the pseudo magnetic field in graphene does not break time reversal symmetry in the two valleys, we believe that the channel responsable for intravalley scattering must be sensitive to dephasing due to strain. This dephasing time has been calculated. Concerning the Bosonic system, this is also a work in progress. We have identified some difculties in the standard procedure of perturbation theory when applied to this system and a possible way to face them.
Sonde, Sushant. "Local transport properties in graphene for electronic applications." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/91.
Full textPlachinda, Pavel. "Electronic Properties and Structure of Functionalized Graphene." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/585.
Full textMalec, Christopher Evan. "Transport in graphene tunnel junctions." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41140.
Full textMartins, Ernane de Freitas. "QM/MM simulations of electronic transport properties for DNA sensing devices based on graphene." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154328.
Full textApproved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2018-06-22T17:57:30Z (GMT) No. of bitstreams: 1 martins_ef_dr_ift.pdf: 73762259 bytes, checksum: 783c569159077630257fc1df333452da (MD5)
Made available in DSpace on 2018-06-22T17:57:30Z (GMT). No. of bitstreams: 1 martins_ef_dr_ift.pdf: 73762259 bytes, checksum: 783c569159077630257fc1df333452da (MD5) Previous issue date: 2018-06-04
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Nanotechnology is an important and very active area of research contributing to many different fields. The development of new devices applied to personalized medicine is one of its applications. When we desire to develop new devices many effort are done, including experimental and theoretical investigations. The theoretical/computational physics can enormously contribute to this area, since the simulations can reveal the working mechanism in these systems being possible to understand and propose new devices with improved performance. We present an extensive theoretical investigation of the electronic transport properties of graphene-based devices for DNA sensing. We have used a hybrid methodology which combines quantum mechanics and molecular mechanics, the so called QM/MM method, coupled to electronic transport calculations using non-equilibrium Green’s functions. First, we studied graphene in solution in order to understand the effects of polarization on the electronic and transport properties under different salt concentrations. We also stud- ied graphene with Stone-Wales defect in pure water. For these systems we tested a simple polarization model based on rigid rods. Our analysis were also done over different QM/MM partitions including explicit water molecules in the quantum part. Our results showed that the inclusion of the solvent in the electronic transport calculations for graphene decreases the total transmission, showing the important role played by the water. Our results also showed that the electronic transport properties of graphene do not suffer significant changes as we increase the salt concentration in the solution. The inclusion of polarization effects in graphene, despite changing the structuring of water molecules that make up the first solvation shell of graphene, do not significantly affect the electronic transport through graphene. We then studied DNA sequencing devices. First we focused on sequencing using a nanopore between topological line defects in graphene. Our results showed that sequencing DNA with high selectivity and sensitivity using these devices appears possible. We also address nanogap in graphene. For this we looked at the effects of water on electronic transport by using different setups for the QM/MM partition. We showed that the inclusion of water molecules in the quantum part increases the electronic transmission in several orders of magnitude, also showing the fundamental role played by water in tunneling devices. The electronic transport simulations showed that the proposed device has the potential to be used in DNA sequencing, presenting high selectivity and sensitivity. We propose an graphene-based biochip for sequence-specific detection of DNA strands. The main idea of this sort of device is to detect hybridization of single-stranded DNA, forming double-stranded DNA. We showed that the vertical DNA adsorption, either through an anchor molecule (pyrene) or using the nucleotide itself as anchor, do not present good results for detection, since the signals for the single and double strands are quite similar. For the case of horizontal DNA adsorption on graphene our results indicated that the two signals can be distinguishable, showing promising potential for sensitivity and selectivity.
Nanotecnologia é uma importante e muito ativa área de pesquisa contribuindo para muitos campos diferentes. O desenvolvimento de novos dispositivos aplicados à medicina personalizada é uma de suas aplicações. Quando desejamos desenvolver novos dispositivos muitos esforços são feitos, incluindo investigações experimentais e teóricas. A Física teórica/computacional pode contribuir enormemente com esta área, já que simulações podem revelar o mecanismo de funcionamento nesses sistemas tornando possível entender e propor novos dispositivos com desempenho melhorado. Nós apresentamos uma extensa investigação teórica das propriedades de transporte eletrônico de dispositivos baseados em grafeno para sensoriamento de DNA. Utilizamos uma metodologia híbrida que combina mecânica quântica e mecânica molecular, o chamado método QM/MM, acoplado a cálculos de transporte eletrônico utilizando funções de Green fora do equilíbrio. Primeiramente nós estudamos grafeno em solução de modo a entender os efeitos de polarização nas propriedades eletrônica e de transporte em diferentes concentrações de sal. Também estudamos grafeno com defeito Stone-Wales em água pura. Para esses sistemas, testamos um modelo de polarização simples baseado em bastões rígidos. Nossas análises também foram feitas em diferentes partições QM/MM incluindo moléculas de água explícitas na parte quântica. Nossos resultados mostraram que a inclusão do solvente nos cálculos de transporte eletrônico para o grafeno diminui a transmissão total, mostrando o papel fundamento desempenhado pelo água. Nossos resultados também mostraram que as propriedades de transporte eletrônico do grafeno não sofrem mudanças significativas na medida em que aumentamos a concentração de sal na solução. A inclusão de efeitos de polarização em grafeno, apesar de mudar a estruturação das moléculas de água que compõem a primeira camada de solvatação do grafeno, não afeta significativamente o transporte eletrônico através do grafeno. Nós, então, estudamos dispositivos para sequenciamento de DNA. Focamos primeira- mente no sequenciamento usando nanoporo entre defeitos de linha topológicos no grafeno. Nossos resultados mostraram que o sequenciamento de DNA com alta seletividade e sensitividade usando esses dispositivos se mostra possível. Nós também abordamos nanogap em grafeno. Para tal, avaliamos os efeitos da água no transporte eletrônico utilizando diferentes configurações para a partição QM/MM. Mostramos que a inclusão de moléculas de água na parte quântica aumenta a transmissão eletrônica em várias ordens de grandeza, também mostrando o papel fundamental desempenhado pela água em dispositivos de tunelamento. As simulações de transporte eletrônico mostraram que o dispositivo proposto tem o potencial de ser usado em sequenciamento de DNA, apresentando alta seletividade e sensitividade. Propusemos um biochip baseado em grafeno para detecção de sequências específicas de fitas de DNA. A ideia principal desta classe de dispositivos é detectar a hibridização da fita simples de DNA, formando a fita dupla de DNA. Mostramos que a adsorção vertical de DNA, seja utilizando uma molécula âncora (pireno) ou utilizando o próprio nucleotídio como âncora, não apresenta bons resultados para detecção, já que os sinais para as fitas simples e dupla são bem próximos. Para o caso da adsorção horizontal de DNA em grafeno nossos resultados indicaram que os dois sinais podem ser distinguíveis, mostrando potencial promissor para sensitividade e seletividade.
Verastegui, Wudmir Yudy Rojas. "Electronic and transport properties of graphene nanoribbons with adsorbed transition metal impurities : spin-orbit interaction." reponame:Repositório Institucional da UFABC, 2013.
Find full textSeifert, Christian. "Control of the Electrical Transport through Single Molecules and Graphene." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21647.
Full textThe first of this two-part work deals with the STM investigation of an interface in the surrounding natural atmosphere, which is formed by the adsorption of the conductive graphene onto the mica surface. In this interface, water molecules may intercalate by the surrounding humidity. By varying the relative humidity, the interface is rewetted, respectively, dewetted and it manifests itself in a star shape growing fractals, where the height of graphene is decreased by approximately the diameter of one water molecule. The STM investigation - which is primarily sensitive to the density of states of graphene - shows that additional significant changes in the height of graphene are formed within the fractal, unlike in the SFM investigations. This suggests that there is a water layer by which the density of graphene is differently affected by domains with significant distinguishable polarisation alignments. However, this is equivalent to the assumption that there are two or more water layers exist within the interface. The second part of this work deals with the STM investigation of a functionalized surface characterised by a functionalized dyad adsorbed onto a conductive surface (graphene and HOPG) at a solid-liquid interface. This dyad essentially comprises a zinc-tetraphenylporphyrin (ZnTPP) and is connected with a spiropyran derivative via a flexible linker. This changes its conformation through irradiation with light with a suitable wavelength, by which the dipole moment is also strongly changed. It was found that the switching behaviour of a graphene-based conductive surface is comparable with the switching behaviour of a dyad, which itself can move freely in solution. This leads to the conclusion that the switching properties of a single dyad can be transmitted to its collective because it affected no significant influence interactions by the conductive surface and the adjacent dyads.
Khademi, Ali. "Tuning graphene’s electronic and transport properties via adatom deposition." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62588.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Books on the topic "Electronic Transport Properties -Graphene"
1946-, Zabel H., Solin S. A. 1942-, and Doll G. L, eds. Graphite intercalation compounds II: Transport and electronic properties. Berlin: Springer-Verlag, 1992.
Find full textZabel, Hartmut. Graphite Intercalation Compounds II: Transport and Electronic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
Find full textWallbank, John R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07722-2.
Full textservice), SpringerLink (Online, ed. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textT, Grahn H., ed. Semiconductor superlattices: Growth and electronic properties. Singapore: World Scientific, 1995.
Find full textSabathil, Matthias. Opto-electronic and quantum transport properties of semiconductor nanostructures. Garching: Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München, 2005.
Find full textLui, Chun Hung. Investigations of the electronic, vibrational and structural properties of single and few-layer graphene. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textLinjun, Wang, Song Chenchen, and SpringerLink (Online service), eds. Theory of Charge Transport in Carbon Electronic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textMadelung, O., U. Rössler, and M. Schulz, eds. Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. Berlin/Heidelberg: Springer-Verlag, 2002. http://dx.doi.org/10.1007/b80447.
Full textGraphite Intercalation Compounds II: Transport and Electronic Properties. Springer, 2011.
Find full textBook chapters on the topic "Electronic Transport Properties -Graphene"
Ziegler, Klaus, Antonio Hill, and Andreas Sinner. "Electronic Transport and Optical Properties of Graphene." In Graphene Optoelectronics, 1–16. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527677788.ch1.
Full textZiegler, Klaus. "Electronic Transport and Optical Properties of Graphene." In Graphene Science Handbook, 533–42. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2016. | “2016: CRC Press, 2016. http://dx.doi.org/10.1201/b19642-32.
Full textVan Tuan, Dinh. "Electronic and Transport Properties of Graphene." In Charge and Spin Transport in Disordered Graphene-Based Materials, 5–34. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25571-2_2.
Full textSancho-García, J. C., and A. J. Pérez-Jiménez. "Electronic Properties and Transport in Finite-Size Two-Dimensional Carbons." In Graphene Science Handbook, 91–103. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2016. | “2016: CRC Press, 2016. http://dx.doi.org/10.1201/b19642-7.
Full textTien, Nguyen Thanh, Pham Thi Bich Thao, and Ming-Fa Lin. "Electronic and Transport Properties of the Sawtooth-Sawtooth Penta-Graphene Nanoribbons." In Diverse Quasiparticle Properties of Emerging Materials, 67–95. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003322573-4.
Full textSpain, Ian L. "Electronic Transport Properties of Graphite, Carbons, and Related Materials." In Chemistry and Physics of Carbon, 119–304. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003209065-2.
Full textMazher, Javed, Asefa A. Desta, and Shabina Khan. "PAn-Graphene-Nanoribbon Composite Materials for Organic Photovoltaics: A DFT Study of Their Electronic and Charge Transport Properties." In Solar Cell Nanotechnology, 357–407. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch14.
Full textZhu, Jun. "Electronic Transport in Graphene." In Graphene Nanoelectronics, 17–49. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-0548-1_2.
Full textKorol, A. M., N. V. Medvid, and S. I. Litvynchuk. "Transport Properties of the Dirac-Weyl Electrons Through the Graphene-Based Superlattice Modulated by the Fermi Velocity Barriers." In Springer Proceedings in Physics, 215–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18543-9_13.
Full textGirão, Eduardo Costa, Liangbo Liang, Jonathan Owens, Eduardo Cruz-Silva, Bobby G. Sumpter, and Vincent Meunier. "Electronic Transport in Graphitic Carbon Nanoribbons." In Graphene Chemistry, 319–46. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118691281.ch14.
Full textConference papers on the topic "Electronic Transport Properties -Graphene"
Zhufeng Hou and Marcus Yee. "Electronic and transport properties of graphene nanoribbons." In 7th IEEE International Conference on Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/nano.2007.4601252.
Full textWakabayashi, K. "Electronic Transport Properties in Graphene Nanoribbons and Junctions." In 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.f-1-2.
Full textDas, Poulomi, Sk Ibrahim, Koushik Chakraborty, Surajit Ghosh, and Tanusri Pal. "Opto-electronic transport properties of graphene oxide based devices." In NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918104.
Full textSeol, Jae Hun, Arden L. Moore, Insun Jo, Zhen Yao, and Li Shi. "Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23295.
Full textChauhan, Satyendra Singh, Pankaj Srivastava, and A. K. Shrivastva. "Electronic and transport properties edge functionalized graphene nanoribbons-An ab initio approach." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872648.
Full textWakabayashi, Katsunori, Yositake Takane, Manfred Sigrist, Marília Caldas, and Nelson Studart. "Electronic transport properties and perfectly conducting channel of the disordered graphene nanoribbons." In PHYSICS OF SEMICONDUCTORS: 29th International Conference on the Physics of Semiconductors. AIP, 2010. http://dx.doi.org/10.1063/1.3295545.
Full textGumbs, Godfrey, Andrii Iurov, Danhong Huang, Paula Fekete, and Liubov Zhemchuzhna. "Effects of periodic scattering potential on Landau quantization and ballistic transport of electrons in graphene." In ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870209.
Full textGarcía-Suárez, Víctor M., and Pablo Álvarez-Rodríguez. "Effect of edge passivation on the electronic and transport properties of graphene nanogaps." In LOW-DIMENSIONAL MATERIALS: THEORY, MODELING, EXPERIMENT, DUBNA 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0098903.
Full textMilowska, Karolina Z., Magdalena Birowska, and Jacek A. Majewski. "Mechanical, electronic, and transport properties of functionalized graphene monolayers from ab initio studies." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848316.
Full textVallabhaneni, Ajit K., James Loy, Dhruv Singh, Xiulin Ruan, and Jayathi Murthy. "A Study of Spatially-Resolved Non-Equilibrium in Laser-Irradiated Graphene Using Boltzmann Transport Equation." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66095.
Full textReports on the topic "Electronic Transport Properties -Graphene"
Plachinda, Pavel. Electronic Properties and Structure of Functionalized Graphene. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.585.
Full textLeRoy, Brian. Understanding and Controlling the Electronic Properties of Graphene Using Scanning Probe Microscopy. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada612223.
Full textKabir, Firoza, Xiaxin Ding, M. MOfazzel Hosen, Narayan Poudel, Gyanendra Dhakal, Arjun Pathak, Madhab Neupane, and Krzysztof Gofryk. Electronic and transport properties of topological material GdxSb2-xTe3. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1546705.
Full textLewis, Greyson R., William E. Bunting, Rajendra R. Zope, Brett I. Dunlap, and James C. Ellenbogen. Smooth Scaling of Valence Electronic Properties in Fullerenes: From One Carbon Atom, to C60, to Graphene. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada586485.
Full textAbdelsalam, A., Zagitova A. A., Bozhko S. I., Kulakov V. I., and Zverev V. N. Two-dimensional system - black phosphorus: electronic, atomic structure and transport properties of bP(100) single crystals. MTPR Journal, September 2019. http://dx.doi.org/10.19138/mtpr/(19)50-57.
Full text