Dissertations / Theses on the topic 'Electronic Structure Calculations - Computational Methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Electronic Structure Calculations - Computational Methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mak, Lora. "Computational approaches to protein structure and function : from 'Ab Initio' electronic structure calculations to 3D molecular structure description and comparison." Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443086.
Full textGorelov, Vitaly. "Quantum Monte Carlo methods for electronic structure calculations : application to hydrogen at extreme conditions." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF002.
Full textThe hydrogen metallization problem posed almost 80 years ago, was named as the third open question in physics of the XXI century. Indeed, due to its lightness and reactivity, experimental information on high pressure hydrogen is limited and extremely difficult to obtain. Therefore, the development of accurate methods to guide experiments is essential. In this thesis, we focus on studying the electronic structure, including excited state phenomena, using quantum Monte Carlo (QMC) techniques. In particular, we develop a new method of computing energy gaps accompanied by an accurate treatment of the finite simulation cell error. We formally relate finite size error to the dielectric constant of the material. Before studying hydrogen, the new method is tested on crystalline silicon and carbon diamond, systems for which experimental information on the gap is available. Although finite-size corrected gap values for carbon and silicon are larger than the experimental ones, our results demonstrate that the bias due to the finite size supercell can be corrected for, so precise values in the thermodynamic limit can be obtained for small supercells without need for numerical extrapolation. As hydrogen is a very light material, the nuclear quantum effects are important. An accurate capturing of nuclear effects can be done within the Coupled Electron Ion Monte Carlo (CEIMC) method, a QMC-based first-principles simulation method. We use the results of CEIMC to discuss the thermal renormalization of electronic properties. We introduce a formal way of treating the electronic gap and band structure at a finite temperature within the adiabatic approximation and discuss the approximations that have to be made. We propose as well a novel way of renormalizing the optical properties at low temperature, which will be an improvement upon the commonly used semiclassical approximation. Finally, we apply all the methodological development of this thesis to study the metallization of solid and liquid hydrogen. We find that for ideal crystalline molecular hydrogen the QMC gap is in agreement with previous GW calculations. Treating nuclear zero point effects cause a large reduction in the gap (2 eV). Determining the crystalline structure of solid hydrogen is still an open problem. Depending on the structure, the fundamental indirect gap closes between 380 and 530 GPa for ideal crystals and 330–380 GPa for quantum crystals, which depends less on the crystalline symmetry. Beyond this pressure, the system enters into a bad metal phase where the density of states at the Fermi level increases with pressure up to 450–500 GPa when the direct gap closes. Our work partially supports the interpretation of recent experiments in high pressure hydrogen. However, the scenario where solid hydrogen metallization is accompanied by the structural change, for example, a molecular dissociation, can not be disproved. We also explore the possibility to use a multideterminant representation of excited states to model neutral excitations and compute the conductivity via the Kubo formula. We applied this methodology to ideal crystalline hydrogen and limited to the variational Monte Carlo level of the theory. For liquid hydrogen, the main finding is that the gap closure is continuous and coincides with the molecular dissociation transition. We were able to benchmark density functional theory (DFT) functionals based on the QMC density of states. When using the QMC renormalized Kohn-Sham eigenvalues to compute optical properties within the Kubo-Greenwood theory, we found that previously calculated theoretical optical absorption has a shift towards lower energies
Richard, Ryan. "Increasing the computational efficiency of ab initio methods with generalized many-body expansions." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385570237.
Full textLaury, Marie L. "Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc500071/.
Full textRajapakshe, Senanayake Asha. "ELECTRONIC STRUCTURE AND BONDING FACTORS OF TRANSITION METAL - PENTADIENYL AND (FLUOROALKYL)PHOSPHINE COMPLEXES: PHOTOELECTRON SPECTROSCOPY AND COMPUTATIONAL METHODS." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1220%5F1%5Fm.pdf&type=application/pdf.
Full textBecker, Caroline [Verfasser], and Rainer [Akademischer Betreuer] Böckmann. "Development of computational methods for the prediction of protein structure, protein binding, and mutational effects using free energy calculations / Caroline Becker. Gutachter: Rainer Böckmann." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1054331456/34.
Full textDugan, Nazim. "Quantum Monte Carlo Methods For Fermionic Systems: Beyond The Fixed-node Approximation." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612256/index.pdf.
Full textFlores, Livas José. "Computational and experimental studies of sp3-materials at high pressure." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10127.
Full textWe present experimental and theoretical studies of sp3 materials, alkaline-earth-metal (AEM) disilicides, disilane (Si2H6) and carbon at high pressure. First, we study the AEM disilicides and in particular the case of a layered phase of BaSi2 which has an hexagonal structure with sp3 bonding of the silicon atoms. This electronic environment leads to a natural corrugated Si-sheets. Extensive ab initio calculations based on DFT guided the experimental research and permit explain how electronic and phonon properties are strongly affected by changes in the buckling of the silicon plans. We demonstrate experimentally and theoretically an enhancement of superconducting transition temperatures from 6 to 8.9 K when silicon planes flatten out in this structure. Second, we investigated the crystal phases of disilane at the megabar range of pressure. A novel metallic phase of disilane is proposed by using crystal structure prediction methods. The calculated transition temperatures yielding a superconducting Tc of around 20 K at 100 GPa and decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted Tc’s and put serious drawbacks in the possibility of high-Tc superconductivity based on silicon-hydrogen systems. Third, we studied the sp3-carbon structures at high pressure through a systematic structure search. We found a new allotrope of carbon with Cmmm symmetry which we refer to as Z-carbon. This phase is predicted to be more stable than graphite for pressures above 10 GPa and is formed by sp3-bonds. Experimental and simulated XRD, Raman spectra suggest the existence of Z-carbon in micro-domains of graphite under pressure
Cankurtaran, Burak O. "Linear-scaling techniques for first principles calculations of stationary and dynamic systems." Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/24.
Full textLópez, Ríos Pablo. "Backflow and pairing wave function for quantum Monte Carlo methods." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/288882.
Full textMonir, Md M. "A COMPUTATIONAL INVESTIGATION OF SECTORAL ZONING OF RARE EARTH ELEMENTS (REE) IN FLUORITE." Miami University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=miami1438881165.
Full textKatari, Madanakrishna. "Formation and Characterization of Reduced Metal Complexes in the Gas Phase." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX091/document.
Full textThe complete characterization of reaction intermediates in homogeneous catalytic processes is often a difficult task owing to their reactivity and low concentration. This is particularly true for radical species such as reduced organometallic complexes, which are intermediates in photocatalysis, or when these complexes included non-innocent ligands. Consequently, their electronic structure in the ground state is still poorly understood, knowing that the added electron can be located on different sites of the molecule.In this contect, we developed an analytical method to study radical organometallic complexes in the gas phase. We started with formation of suitable multi-charged zinc organometallic complexes in the gas phase from mixture of zinc metal cation and bipyridine-type bidentate or bis(imino)pyridine tridentate ligands. Multicharged ruthenium complexes with similar ligands have also been studied. Under ideal circumstances these complexes were isolated and reduced in the gas phase to form monocationic metal species. Electron activated methods such as electron capture dissociation (ECD) and electron transferred dissociation (ETD) techniques, available in FT-ICR mass spectrometers, have been used to that end. The resulting Zn and Ru radical cation complexes are then isolated in the gas phase and probed via infrared multi photon dissociation (IRMPD) action spectroscopy. In support, DFT theoretical calculations were performed to model their electronic structure and IR spectra.Two main issues were faced during the development of this new analytical tool. First, we had to be able to obtain the desired complexes in the gas phase. This has lead to monitor various parameters, such as the nature of the ligands or the internal energy provided by the reduction step. The second challenge dealt with the use of modeling methods. We have shown that standard modelling tools lack the accuracy to predict both electronic structure and spectral signatures of reduced complexes. The experimental data gathered in this work have therefore been used as benchmarks for the identification of DFT functionals that are most appropriate for the study of these radical complexes
Łącki, Mateusz. "Computational and Statistical Methods for Mass Spectrometry Data Analysis." Doctoral thesis, 2017.
Find full textNiniejsza rozprawa doktorska dotyczy szeregu tematyk z zakresu matematycznego modelowanie widm masowych. W pracy przedstawiam algorytm służący obliczeniom związanym z rozkładami izotopowymi cząsteczek. Algorytm ów wykorzystuję w problemie dekonwolucji mieszanek sygnałów ze znanych źródeł molekularnych, na dwa różne sposoby. Przedstawiam również sposób na wyznaczenie zależności pomiędzy zarejestrowanym sygnałem a liczbą jonów dla różnych detektorów jonów. Powyższe rozwiązania zostają również wykorzystane w celu dokładniejszego zrozumienia za- sad działania fragmentacji jonów za pomocą transferu elektronu, która znacząco poszerza możliwości identyfikacji substancji. Pokazuję również sposób na wyestymowanie parametrów tych reakcji, wykorzystując w tym celu matematyczny model kinetyki reakcji.
"Performance comparison of conjugate gradient density matrix search and Chebyshev expansion methods for avoiding diagonalization in large-scale electronic structure calculations." Thesis, 1998. http://hdl.handle.net/1911/20474.
Full text[Verfasser], Rungtiva Palangsuntikul. "Reducing the expense of electronic structure calculations for larger molecules : optimized auxiliary basis sets, and system-specifically reparametrized semiempirical methods / submitted by Rungtiva Palangsuntikul." 2005. http://d-nb.info/977248046/34.
Full textKim, Minjung active 21st century. "Ab initio simulation methods for the electronic and structural properties of materials applied to molecules, clusters, nanocrystals, and liquids." Thesis, 2014. http://hdl.handle.net/2152/25099.
Full texttext
Bilonda, Kabuyi Mireille. "Computational study of antimalarial pyrazole alkaloids from newbouldia laevis in vacuo and in solution." Diss., 2014. http://hdl.handle.net/11602/165.
Full text