Dissertations / Theses on the topic 'Electronic Spin - Semiconductor Structures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Electronic Spin - Semiconductor Structures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Liu, William K. "Electron spin dynamics in quantum dots, and the roles of charge transfer excited states in diluted magnetic semiconductors /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8588.
Full textSegarra, Ortí Carlos. "Electronic structure of quantum dots: response to the environment and externally applied fields." Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/396165.
Full textIn this PhD Thesis we theoretically investigate the optical and electronic properties of semiconductor nanostructures by using the k·p method within the effective mass and the envelope function approximations. To this end, computational models are built to properly describe the conduction and valence bands of nanoscopic systems subject to various relevant phenomena. Particularly, we focus on quantum dots of different shape, dimensions, and composition to explore their behavior under external magnetic fields and interactions with the environment such as strain and piezoelectricity. In addition, the spin-orbit-induced relaxation of the spin degree of freedom confined in quantum dots is also studied taking into account all relevant sources of spin mixing in fully three-dimensional models. Finally, we also study the emergence of edge states in nanoribbons and quantum dots of monolayer MoS2, which is a novel two-dimensional material. The obtained results reveal several interesting features which may be useful for future applications.
Liu, Guoduan. "Fabrication and Characterization of Planar-Structure Perovskite Solar Cells." UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/137.
Full textOliveira, Miguel Afonso Magano Hipolito De Jesus. "Electronic properties of layered semiconductor structures." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406392.
Full textMoehlmann, Benjamin James. "Spin transport in strained non-magnetic zinc blende semiconductors." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3353.
Full textNguyen, Cong Tu. "Spin dynamics in GaN- and InGaAs-based semiconductor structures." Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0006/document.
Full textThis thesis work is a contribution to the investigation by photoluminescence spectroscopy of the spin properties of III-V semiconductors with possible applications to the emerging semiconductor spintronics field. Two approaches have been explored in this work to achieve a long and robust spin polarization: i) Spatial confinement of the carriers in 0D nanostructured systems (quantum dots). ii) Defect engineering of paramagnetic centres in a bulk systems. Concerning the first approach, we have investigated the polarization properties of excitons in nanowire-embedded GaN/AlN quantum dots. We first evidence a low temperature sizeable linear polarization degree of the photoluminescence (~15 %) under quasi-resonant excitation with no temporal decay during the exciton lifetime. Moreover, we demonstrate that this stable exciton spin polarization is unaffected by the temperature up to 300 K. A detailed theoretical model based on the density matrix approach has also been developed to account for the observed polarization degree and its angular dependence.Regarding the second approach, we have demonstrated a proof-of-concept of conduction band spin-filtering device based on the implantation of paramagnetic centres in InGaAs epilayers. The principle relies on the creation of Ga interstitial defects as previously demonstrated in our group in dilute nitride GaAsN compounds. The driving force behind this work has been to overcome the limitations inherent to the introduction of N in the compounds: a) The dependence of the photoluminescence energy on the spin-filtering efficiency. b) The lack of spatial patterning of the active regions.In this work we show how the spin-filtering defects can be created by ion implantation creating a chosen density and spatial distribution of gallium paramagnetic centers in N-free epilayers. We demonstrate by photoluminescence spectroscopy that spin-dependent recombination (SDR) ratios as high as 240 % can be achieved in the implanted areas. The optimum implantation conditions for the most efficient SDR are also determined by the systematic analysis of different ion doses spanning four orders of magnitude. We finally show how the application of a weak external magnetic field leads to a sizable enhancement of the SDR ratio from the spin polarization of the implanted nuclei
O'Sullivan, Eoin. "Electronic states and dynamics in semiconductor structures." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325987.
Full textDe, Amritanand Pryor Craig E. "Spin dynamics and opto-electronic properties of some novel semiconductor systems." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/352.
Full textDe, Amritanand. "Spin dynamics and opto-electronic properties of some novel semiconductor systems." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/352.
Full textBirkett, M. J. "Opto-electronic studies of semiconductor tunnelling structures and quantum wells." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267179.
Full textLigorio, Giovanni. "Electronic and electrical properties of organic semiconductor/metal nanoparticles structures." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17561.
Full textThe increasing need to store digital information has triggered research into the exploration of new materials for future non-volatile memory (NVM) technologies. For instance, metal nanoparticles (MNPs) embedded into organic semiconductors are suitable for novel memory applications because they were found to display bistable resistive switching. Different switching models were hitherto developed to explain the fundamental mechanisms at work in resistive NVMs. This thesis explores specifically the role of space-charge field due to the charging of MNPs as rationale for resistive switching in two-terminal devices. A series of experiments on the electronic and electrical properties of devices were conducted in order to reveal whether this mechanism is, indeed, at play in resistance switching. Photoelectron spectroscopy provided detailed information about the interaction between gold nanoparticles (AuNPs) with prototypical organic semiconductors used in optoelectronics. The study of the electronic valence structures provided evidence of a space-charge due to the charging of AuNPs. Furthermore, it is found that charge-neutrality of AuNPs can be dynamically re-established upon illumination, through electron transfer from excitons. Devices were built with the same materials investigated by photoemission spectroscopy and electrical characterization was conducted. Despite the previously demonstrated ability to optically change the charging state of the AuNPs, the devices do not display any bistability. This finding provides evidence that the commonly proposed charging/decharging mechanism of MNPs can be excluded as cause for electrical bistability in NVM devices. In order to explore the scaling of resistive NVMs into the nanometric range, glancing angle deposition technique was employed. The nano-NVMs were electrically characterized and it is proved to manifest resistive bistability. These finding make nano-NVMs highly appealing for future high-density memory technology.
Olbrich, Peter [Verfasser]. "THz radiation induced spin polarized currents in low dimensional semiconductor structures / Peter Olbrich." Regensburg : Univ.-Verl. Regensburg, 2010. http://d-nb.info/1007748214/34.
Full textPugh, David Ian. "The design and investigation of hybrid ferromagnetic/silicon spin electronic devices." Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341850.
Full textPeleckis, Germanas. "Studies on diluted oxide magnetic semiconductors for spin electronic applications." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.145447/index.html.
Full textAlmeida, António José Sousa de. "Magnetic resonance studies of spin systems in semiconductor nanocrystals." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18636.
Full textEsta tese apresenta um estudo experimental de sistemas de spins fornecidos por dopantes electrónicos e por defeitos capturadores de carga em nanocristais (NCs) semiconductores, por meio de técnicas de ressonância magnética. Aqui, investigámos problemas que têm efeitos limitadores de performance nas propriedades de NCs semiconductores para o seu uso em aplicações tecnológicas. Nomeadamente, estudámos a dopagem electrónica de NCs semiconductores. A dopagem é crítica para controlar o comportamento de semiconductores, que de outra forma seriam isoladores. Investigámos também defeitos capturadores de carga, que podem ter um impacto negativo na conductividade de NCs semiconductores ao capturar portadores de carga em estados electrónicos deslocalizados de NCs. Para além disso, abordámos a origem da anisotropia magnética em NCs de materiais diamagnéticos. Nesta tese, reportamos investigações usando medidas de ressonância paramagnética electrónica (RPE) quantitativa, dizendo respeito à eficiência de dopagem electrónica de Si NCs com átomos de P e à sua dependência com o ambiente envolvendo os NCs. Das medidas de RPE quantitativas, estimamos eficiências de dopagem nos NCs que são consistentes com a incorporação da maioria dos dopantes P como dadores substitucionais nos NCs. Observamos também que a eficiência de dopagem dos NCs varia em várias ordens de grandeza dependendo do ambiente envolvendo os NCs, devido a uma forte compensação dos dadores por moléculas absorbidas na superfície dos NCs. Usando espectroscopia RPE dependente da temperatura, mostramos também que a energia de ionização dos dopantes P em Si NCs aumenta relativamente ao seu correspondente cristal macroscópico devido a confinamento. Usamos espectroscopia RPE dependente da temperatura para estudar a interacção entre múltiplos dopantes incorporados num único Si NC e o seu impacto na estrutura electrónica destes NCs. Monitorizámos experimentalmente a interacção de troca em pares de dadores P (dímeros de dadores) em Si NCs através de um desvio da ressonância magnética do seu estado tripleto em relação ao paramagnetismo de Curie. Mostrámos que a interacção de troca entre dadores próximos entre si pode ser bem descrita pela teoria de massa efectiva, permitindo o cálculo de muitas configurações de dopantes e permitindo a consideração de efeitos estatísticos cruciais em conjuntos de nanocristais. Descobrimos que dímeros de dadores induzem estados discretos num NC, e que a sua separação energética difere em até três ordens de grandeza para dímeros colocados aleatoriamente num conjunto de NCs devido a uma enorme dependência da energia de troca na configuração do dímero. Investigámos também sistemas de spins induzidos por defeitos capturadores de carga e como estes defeitos podem afectar a dopagem de NCs. Identificamos a presença de dois estados de carga de um defeito em NCs de CdSe usando espectroscopia RPE combinada com a afinação electrónica de NCs através de dopagem com Ag induzida quimicamente. A partir de de RPE foto-induzido, mostramos que estes defeitos têm um papel central na fixação do nível de Fermi em conjuntos de NCs. Através da análise da dependência do sinal de RPE dos defeitos com a concentração de dopantes de Ag, mostramos também que os defeitos actuam como capturadores efectivos de electrões nos NCs. Do RPE dependente da temperatura, estimamos um limite inferior para a energia de ionização dos defeitos estudados. Com base nas características do espectro RPE dos defeitos observados, propomos que está associado a lacunas de Se com o estado paramagnético sendo o estado positivo do defeito. Para além disso, mostramos que as interacções magnéticas entre spins associados a defeitos nos NCs podem induzir efeitos de anisotropia magnética em conjuntos de NCs que não são esperados acontecer no cristal macroscópico correspondente. Usando espectroscopia de ressonância ferromagnética (RFM) com dependência angular, medimos a anisotropia magnética em conjuntos de aleatórios de NCs de CdSe através da gravação do espectro de ressonância magnética para várias orientações do campo magnético externo. As dependências angulares do campo ressonante são diferente para conjuntos aparentemente similares de NCs de CdSe. Mostramos que a forma e amplitude da variação angular do RFM pode ser bem descrita po um modelo simples que toma em consideração as interacções dipolo-dipolo entre dipolos localizados na superfície dos NCs. Os dipolos na superfície podem originar de ligações pendentes em sítios da superfície que não estão passivados por ligantes. Dos nossos cálculos, descobrimos que para diferentes conjuntos aleatórios de NCs a força da anisotropia magnética induzida por interacções dipolo-dipolo pode tomar valores abrangendo quatro ordens de grandeza, dependendo do arranjo específico dos NCs no conjunto e da distribuição específica dos dipolos na superfície de cada NC. Esta enorme variabilidade pode justificar a disparidade de anisotropias magnéticas observada nas nossas experiências.
This thesis presents an experimental study of systems of spins provided by electronic dopants and by charge trapping defects in semiconductor NCs, by means of magnetic resonance spectroscopy techniques. Here, we have investigated issues that have performance-limiting effects on the properties of semiconductor NCs for their use in technological applications. Namely, we have studied the electronic doping of semiconductor NCs. Doping is critical to control the behavior of semiconductors, which would otherwise be electrically insulating. We have further investigated charge trapping defects in semiconductor NCs, which can have a negative impact on the conductivity of semiconductor NCs by capturing charge carriers from delocalized electronic states of the NCs. Moreover, we addressed the origin of magnetic anisotropy in NCs of diamagnetic materials. In this thesis, we report investigations using quantitative electron paramagnetic resonance (EPR) measurements concerning the efficiency of electronic doping of Si NCs with P atoms and its dependence on the environment surrounding the NCs. From quantitative EPR measurements, we estimate doping efficiencies in the NCs that are consistent with the incorporation of most P dopants as substitutional donors in the NCs. We further observe that the doping efficiency of the NCs varies by several orders of magnitude depending on the NCs surrounding environment due to a strong compensation of donors by molecules adsorbed to the NCs surface. Using temperature-dependent EPR spectroscopy, we further show that the ionization energy of P dopants in Si NCs increases with respect to their bulk counterpart due to confinement. We use temperature-dependent EPR spectroscopy to study the interaction between multiple P dopants incorporated in a single Si NC and its impact on the electronic structure of these NCs. We experimentally probe the exchange interaction in pairs of P donors (donor dimers) in Si NCs via a deviation of their triplet-state magnetic resonance from Curie paramagnetism. We showed that the exchange coupling of closely spaced donors can be well described by effective mass theory, enabling the calculation of many dopant configurations and allowing the consideration of statistical effects crucial in NC ensembles. We find that donor dimers induce discrete states in a NC, and that their energy splitting differs by up to three orders of magnitude for randomly placed dimers in a NC ensemble due to an enormous dependence of the exchange energy on the dimer configuration. We also investigate systems of spins induced by charge trapping defects and how these defects can affect the doping of NCs. We identify the presence of two charge states of a defect in CdSe NCs using EPR spectroscopy, combined with electronic tuning of NCs via chemically induced Ag doping. From light-induced EPR, we show that these defects have a central role on Fermi level pinning of NC ensembles. By analyzing the dependence of the EPR signal of the defects on the concentration of Ag dopants, we further demonstrate that the defects act as effective electron traps in the NCs. From temperaturedependent EPR, we estimate a lower limit for the ionization energy of the studied defects. Based on the characteristics of the EPR spectrum of the observed defect, we propose that it is associated to Se vacancies with the paramagnetic state being the positively charged state of the defect. Moreover, we show that magnetic interactions between spins associated to defects in NCs can induce magnetic anisotropy effects in NCs ensembles that are not expected to occur in their bulk counterpart. Using angulardependent ferromagnetic resonance (FMR) spectroscopy, we measure the magnetic anisotropy in different random ensembles of CdSe NCs by recording magnetic resonance spectra for various orientations of the external magnetic field. The observed angular dependencies of resonant field are different for apparently similar CdSe NC ensembles. We show that the shape and amplitude of the FMR angular variation can be well described by a simple model that considers magnetic dipole-dipole interactions between dipoles located at the NCs surface. The surface dipoles may originate from dangling bonds on surface sites that are not passivated by ligands. From our calculations, we find that for different random ensembles of NCs the strength of the magnetic anisotropy induced by dipole-dipole interactions may take values spanning four orders of magnitude, depending on the specific arrangement of the NCs in the ensemble and the specific distribution of the surface dipoles in each NC. This huge variability may justify the disparity of magnetic anisotropies observed in our experiments.
Kalbitz, René. "Stability of polarization in organic ferroelectric metal-insulator-semiconductor structures." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5727/.
Full textOrganische Transistoren sind besonders geeignet für die Herstellung verschiedener preisgünstiger, elektronischer Anwendungen, wie zum Beispiel Radio-Frequenz-Identifikations-Anhänger (RFID). Für die Erweiterung dieser Anwendung ist es notwendig die Funktion von organischen Speicherelementen weiter zu verbessern. Das ferroelektrische Polymer Poly(vinylidene-Fluoride-Trifluoroethylene) (P(VDF-TrFE)) eignet sich besonders gut als remanent polarisierbarer Isolator in Dünnschich-Speicherelementen. Um Schalt- und Polarisationsverhalten solcher Speicherelemente zu untersuchen, wurden P(VDF-TrFE)-Kondensatoren und Metall-Halbleiter-Isolator-Proben sowie ferroelektrische Feld-Effekt-Transistoren (Fe-FET) aus dem Halbleiter Poly(3-Hexylthiophene) (P3HT) und P(VDF-TrFE) hergestellt und dielektrisch untersucht. Die Charakterisierung der MIS-Strukturen mittels spannungsabhängiger Kapazitätsspektren machte deutlich, dass es nicht möglich ist, einen stabilen Verarmungzustand (Aus-Zustand) zu realisieren. Kapazität-Spannungs-Messungen (C-V) an MIS-Proben mit uni/bi-polaren Spannungszyklen zeigten eine stabile ferroelektrische Polarisation des P(VDF-TrFE)-Films. Eine Depolarisation des Isolators durch den Mangel an Minoritäts-Ladungsträgern konnte als Grund für die Instabilität des Verarmungs-Zustandes ausgeschlossen werden. Die C-V-Kurven wiesen vielmehr auf die Existenz fixierter, negativer Ladungsträger an der Grenzfläche hin. Zusammenfassend kann festgestellt werden: die Ursache der Ladungsträgerinstabilitäten in organischen ferroelektrischen Speicherelementen ist auf die Kompensation der ferroelektrischen Orientierungspolarisation durch "getrappte"(fixierte) negative Ladungsträger zurückzuführen. Dieses Ergebnis liefert nun eine Grundlage für die Optimierung der Isolator/Halbleiter-Grenzfläche mit dem Ziel, die Zahl der Fallenzustände zu minimieren. Auf diesem Wege könnte die Stabilität des Speicherzustandes in organischen Dünnschichtspeicherelementen deutlich verbessert werden.
Evaldsson, Martin. "Quantum transport and spin effects in lateral semiconductor nanostructures and graphene." Doctoral thesis, Norrköping : Department of Science and technology, Linköping University, 2008. http://www.bibl.liu.se/liupubl/disp/disp2008/tek1202s.pdf.
Full textSergentu, Dumitru-Claudiu. "Géométries, electronic structures, and physico-chemical porperties of astatine species : an application of relativistic quantum mechanics." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4024/document.
Full textTrials to destroy cancer cells with currently synthesized 211 At-based radiotherapeutic agents are not yet fully satisfactorily since they resume to in vivo deastatination. Since this issue is related to the limited knowledge of the basic chemistry of At and its species, fundamental researches combining ultra-trace experiments and computational studies have been initiated. In this thesis, a computational study of several At species is performed, by means of relativistic density functional theory and wave-function-based calculations. First, the quantum mechanical approaches that can safely be used to make adequate predictions are established. Using these approaches, we attempt to rationalize the electronic structures, geometries, and physico-chemical properties of various systems of theoretical and/or experimental interest, in particular the AtF3 and AtO+ ones. By the end, we firmly identify a new At species by combining outcomes of experiments and calculations. This new species not only completes the Pourbaix diagram of At in aqueous and non-complexing media, but also gives clues of identifying experimental conditions to make best reactive the At– precursor, which is currently involved in the synthesis of promising radiotherapeutic agents
Dikmen, Bora. "Numerical Studies Of The Electronic Properties Of Low Dimensional Semiconductor Heterostructures." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12605473/index.pdf.
Full textdinger'
s and Poisson'
s equations using a basis set of cubic B-splines is investigated. The method is applied to find both the wave functions and the corresponding eigenenergies of low-dimensional semiconductor structures. The computational efficiency of the method is explicitly shown by the multiresolution analysis, non-uniform grid construction and imposed boundary conditions by applying it to well-known single electron potentials. The method compares well with the results of analytical solutions and of the finite difference method.
Ehara, Masahiro. "Theoretical Studies on the Electronic Structures of Molecules in Excited, Ionized, and High-Spin States." Kyoto University, 1993. http://hdl.handle.net/2433/74638.
Full textChen, Yuansen [Verfasser], Gerd [Akademischer Betreuer] Bacher, and Roland [Akademischer Betreuer] Schmechel. "On-chip spin control in semiconductor micro- and nano-structures / Yuansen Chen. Gutachter: Roland Schmechel. Betreuer: Gerd Bacher." Duisburg, 2013. http://d-nb.info/1031417141/34.
Full textSladek, Kamil Przemyslaw [Verfasser]. "Realization of III-V semiconductor nano structures towards more efficient (otpo-) electronic devices / Kamil Przemyslaw Sladek." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1044570423/34.
Full textNakamura, A., T. Ito, H. Ohnishi, A. Koizumi, and Y. Takeda. "Magnetotransport and Antiferromagnetic Behavior in ErP Epitaxial Layers on GaInP(001)." American Institite of Physics, 2007. http://hdl.handle.net/2237/12036.
Full textHoy, Daniel R. "Gallium Nitride and Aluminum Gallium Nitride Heterojunctions for Electronic Spin Injection and Magnetic Gadolinium Doping." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1331855661.
Full textDagnelund, Daniel. "Magneto-optical studies of dilute nitrides and II-VI diluted magnetic semiconductor quantum structures." Doctoral thesis, Linköpings universitet, Funktionella elektroniska material, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54695.
Full textSchuwalow, Sergej [Verfasser], and Frank [Akademischer Betreuer] Lechermann. "Magnetic adatom structures on semiconductor surfaces in presence of strong electronic correlations / Sergej Schuwalow. Betreuer: Frank Lechermann." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2012. http://d-nb.info/1027573967/34.
Full textRosenthal, Paul Arthur. "Characterization of structural and electronic properties of nanoscale semiconductor device structures using cross-sectional scanning probe microscopy /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3059906.
Full textYang, Rong. "ATOMIC-SCALE AND SPIN STRUCTURE INVESTIGATIONS OF MANGANESE NITRIDE AND RELATED MAGNETIC HYBRID STRUCTURES PREPARED BY MOLECULAR BEAM EPITAXY." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1152124059.
Full textBrown, Richard Matthew. "Coherent transfer between electron and nuclear spin qubits and their decoherence properties." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.
Full textHentschel, Martina. "Mesoscopic wave phenomena in electronic and optical ring structures." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-1008319980781-38394.
Full textIn this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches. In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields. In the general non-adiabatic case, exact solutions of the Schrödinger equation are used in a transfer matrix formalism to compute the transmission probability through the ring. In the magneto-conductance we identify clear signatures of interference effects due to geometric phases, for example in rings where the non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II. We consider two-dimensional annular structures characterized by different refractive indices, and apply classical methods from geometric optics as well as wave concepts based on Maxwell's equations. For the first time, an S-matrix approach is successfully employed in the description of resonances in optical microresonators; in particular we propose the dielectric annular billiard as an attractive model system. Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order of the system size, where corrections to the ray model are necessary. The Goos-Hänchen effect as an extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel's laws due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a recent filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based lasers
Zhou, Ruiping. "Structural And Electronic Properties of Two-Dimensional Silicene, Graphene, and Related Structures." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1341867892.
Full textLiang, Tao. "Atomic-scale calculations of interfacial structures and their properties in electronic materials." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127163029.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvi, 136 p.; also includes graphics (some col.). Includes bibliographical references (p. 125-136). Available online via OhioLINK's ETD Center
Ligorio, Giovanni [Verfasser], Norbert [Gutachter] Koch, Mats [Gutachter] Fahlman, and Alessio [Gutachter] Gagliardi. "Electronic and electrical properties of organic semiconductor/metal nanoparticles structures / Giovanni Ligorio. Gutachter: Norbert Koch ; Mats Fahlman ; Alessio Gagliardi." Berlin : Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://d-nb.info/1109846525/34.
Full textAndreev, Sergueï. "La condensation de Bose-Einstein des excitons indirects dans des nano-structures semi-conductrices." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20046.
Full textThe present Thesis is devoted to theoretical interpretation of intriguing observations made recently in cold gases of indirect excitons in semiconductor quantum wells. The proposed theory provides simple intuitive explanation for the basic phenomenology of the macroscopically ordered exciton state (MOES) and the localized bright spots (LBS) in the exciton photoluminescense pattern. The Thesis is organized as follows.First, we provide an important insight into the formation process of the external ring and LBS. We show that the macroscopic charge separation induced by the photoexcitation results in appearance of an in-plane electric field in the vicinity of the boundary. The field hybridizes 1s and 2p quantum states of an indirect exciton, effectively tilting its dipole moment. Thus polarized exciton seeks for the regions with higher in-plane electric field and, hence, becomes localized at the ring-shaped boundary.As a next step, we consider a gas of spinless dipolar bosons put in such two-dimensional (2D) traps. We analyze the possibility for occurence of Bose-Einstein condensation (BEC) in the system under consideration by means of the powerful many-body theoretical methods developed for ultracold atomic gases. Starting from the Hamiltonian for a segment of the ring (2D cigar) we show, howthe coherent scattering of excitons can result in autolocalization accompanied by a buildup of the diagonal long-range order. The crucial point of the theory then consists in replacement of the periodic coherent state by a chain of harmonically trapped condensates (Chain Model). We argue, that for sufficiently strong contact interaction between the excitons the system can exhibit the true second order phase transistion at finite temperature. The critical value of the interaction parameter can be found by analyzing the behaviour of the quantum phase fluctuations at zero temperature. The number of condensates at the ring in the strongly interacting regime is defined by the balance between the kinetic energy and the entropy terms in the free energy of the system.Futhermore, the use of the Chain Model of the MOES allows one to reveal scale invariance and universality of the pnenomenon. We obtain the expression for the unique critical temperature of the second order phase transition in the exciton system and discuss the effect of disorder.Finally, we comment on the role of many-body interactions and spin degrees of freedom in excitonic BEC. We suggest that each bead (or, equivalently, LBS) has the internal structure: it consists of a solid core (Quantum Exciton Iceberg) surrounded by a coherent exciton fluid. We develop an ideal gas model for the coherent four-component exciton fluid which allows one to explain the measured linear polarization patterns
Marrujo, Mike Madrid. "FABRICATION AND CHARACTERIZATION OF TORSIONAL MICRO-HINGE STRUCTURES." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/802.
Full textHsieh, Chang-Yu. "Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20738.
Full textZhao, Hongming. "ETUDE EXPERIMENTALE DE LA PROPRIETE DE COUPLAGE SPIN-ORBITE DANS DES STRUCTURES SEMI-CONDUCTRICES DE BASSE DIMENSIONALITE." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00595906.
Full textAganoglu, Ruzin. "Non-linear Optical Properties Of Two Dimensional Quantum Well Structures." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607089/index.pdf.
Full textRoe, Austin R. "RESONANT ACOUSTIC WAVE ASSISTED SPIN-TRANSFER-TORQUE SWITCHING OF NANOMAGNETS." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6029.
Full textTrieu, Simeon S. "Enhanced Light Extraction Efficiency from GaN Light Emitting Diodes using Photonic Crystal Grating Structures." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/329.
Full textLindblad, Rebecka. "Electronic Structures and Energy Level Alignment in Mesoscopic Solar Cells : A Hard and Soft X-ray Photoelectron Spectroscopy Study." Doctoral thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-221450.
Full textBersweiler, Mathias. "From Sm1-xGdxAl2 electronic properties to magnetic tunnel junctions based on Sm1-xGdxAl2 and/or [Co/Pt] electrodes : Towards the integration of Zero Magnetization ferromagnets in spintronic devices." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0146/document.
Full textThe general context of this work is the development and integration of new magnetic materials with original properties of potential interest for spintronic applications. In this field, the Sm1-xGdxAl2 (SGA) compound drives a particular attention, as a zero-magnetization ferromagnet that can exhibit a spin polarization in its magnetic compensated state. In a first step, synchrotron-based angle and spin resolved photoemission spectroscopy experiments have permitted to perform an accurate analysis of the electronic structure along various directions of the Brillouin Zone and to get a direct estimation of the spin polarization at the Fermi level. In a second step, a special attention has been the paid to [Co/Pt] multilayers and to [Co/Pt]-based MTJs. The [Co/Pt] multilayers would constitute the second electrode in SGA-based MTJs. Their magnetic properties (especially the perpendicular anisotropy and the saturation magnetization) have been carefully investigated as a function of Pt thickness and nature of the buffer layer (Pt, MgO or Al2O3), and in close connection with structural characteristics. Their integration in [Co/Pt]-based MTJs has permitted to determine the [Co/Pt] effective tunnel polarization and to unravel the magnetic configurations of both electrodes which are perfectly explained and reproduced by micromagnetic simulations. In a third step, the results concerning the magneto-transport experiments in SGA/MgO/[Co/Pt] MTJs are presented and discussed
Torabi, Naseem M. "Materials Selection and Processing Techniques for Small Spacecraft Solar Cell Arrays." UKnowledge, 2013. http://uknowledge.uky.edu/ece_etds/22.
Full textSarvari, Hojjatollah. "FABRICATION AND CHARACTERIZATION OF ORGANIC-INORGANIC HYBRID PEROVSKITE SOLAR CELLS." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/123.
Full textMuduli, Pranaba Kishor. "Ferromagnetic thin films of Fe and Fe 3 Si on low-symmetric GaAs(113)A substrates." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. http://dx.doi.org/10.18452/15473.
Full textIn this work, the molecular-beam epitaxial growth and properties of ferromagnets, namely Fe and Fe_3Si are studied on low-symmetric GaAs(113)A substrates. Three important aspects are investigated: (i) growth and structural characterization, (ii) magnetic properties, and (iii) magnetotransport properties of Fe and Fe_3Si films on GaAs(113)A substrates. The growth of Fe and Fe_3Si films is optimized at growth temperatures of 0 and 250 degree Celsius, respectively, where the layers exhibit high crystal quality and a smooth interface/surface similar to the [001]-oriented films. The stability of Fe_(3+x)Si_(1-x) phase over a range of composition around the Fe_3Si stoichiometry is also demonstrated. The evolution of the in-plane magnetic anisotropy with film thickness exhibits two regions: a uniaxial magnetic anisotropy (UMA) for Fe film thicknesses = 70 MLs. The existence of an out-of-plane perpendicular magnetic anisotropy is also detected in ultrathin Fe films. The interfacial contribution of both the uniaxial and the perpendicular anisotropy constants, derived from the thickness-dependent study, are found to be independent of the [113] orientation and are hence an inherent property of the Fe/GaAs interface. The origin of the UMA is attributed to anisotropic bonding between Fe and As or Ga at the interface, similarly to Fe/GaAs(001). The magnetic anisotropy in Fe_3Si on GaAs(113)A exhibits a complex dependence on the growth conditions and composition. Magnetotransport measurements of both Fe(113) and Fe_3Si(113) films shows the striking appearance of an antisymmetric component (ASC) in the planar Hall effect (PHE). A phenomenological model based on the symmetry of the crystal provides a good explanation to both the ASC in the PHE as well as the symmetric anisotropic magnetoresistance. The model shows that the observed ASC component can be ascribed to a second-order Hall effect.
Amami, Paul Erhire. "Structure and spin dynamics in Cr Doped ZnO." Diss., 2016. http://hdl.handle.net/10500/22833.
Full textPhysics
M. Sc. (Physics)
張世鵬. "Spin filtering in 2D double barrier semiconductor structures." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/98000880910739409119.
Full text國立交通大學
電子工程系所
95
In this report, we propose a device made of GaAs/InAs/GaAs, and by the double gates there is a potential barrier induced on the channel. In the presence of spin orbit interaction, there is an energy difference between the opposite spin orientation electrons. That is the main reason why there is spin polarization. We could get a respectable value of spin polarization based on this structure. In advance, we can almost filter the electrons with opposite spin orientations whenever we could control the doping concentration and the distance between the double gate electrodes appropriately. Our calculation is based on the effective one-hand Halmiltonian and Rashba spin orbit interaction, and the envelope function is used to describe the electron wave function on the channel. In the numerical calculation of the tunneling transmission probability we adopt the multistep approximation to approximate the whole potential barrier. Besides, we also present the relations between spin polarization and the factors which could affect it. The I-V curve in such a device is also presented, and we will explain how the current varies at every bias point.
Slobodskyy, Anatoliy. "Diluted magnetic semiconductor Resonant Tunneling Structures for spin manipulation." Doctoral thesis, 2005. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-18263.
Full textIn dieser Arbeit werden magnetische resonante Tunneldioden (RTD) hinsichtlich ihrer Eignung zur Spin-Manipulation untersucht. [Zn, Be]Se basierende II-VI RTD-Strukturen wurden mittels Molekularstrahlepitaxie gewachsen. Man beobachtet eine starke, vom Magnetfeld induzierte Aufspaltung der Resonanz in der U-I Kennlinie derjenigen RTDs, die über einen Quantentrog aus [Zn, Mn]Se verdünnt magnetischen Halbleiter (DMS) verfügen. Diese Aufspaltung hat eine starke Temperaturabhängigkeit und erreicht bei hohen Feldern eine Sättigung. Eine Phononen-Replika der Resonanz wird ebenfalls beobachtet und hat ähnliche Eigenschaften wie die Resonanz selbst. Es wird ein Modell entwickelt, welches auf der Giant-Zeeman-Aufspaltung der Spin-Aufgespalteten Niveaus des DMS-Quantentrogs basiert, um das magnetfeldabhängige Verhalten der Resonanz zu erklären
GUO, JUN-YI, and 郭峻藝. "On local pseudopotential method to investigate the effects of the electronic Spin-orbit Splitting influence in band structure for semiconductors." Thesis, 1991. http://ndltd.ncl.edu.tw/handle/15247210081547159316.
Full textSlobodskyy, Anatoliy [Verfasser]. "Diluted magnetic semiconductor resonant tunneling structures for spin manipulation / submitted by Anatoliy Slobodskyy." 2006. http://d-nb.info/981755941/34.
Full text