Journal articles on the topic 'Electronic spectroscopy'

To see the other types of publications on this topic, follow the link: Electronic spectroscopy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electronic spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Seddon, Kenneth R. "Inorganic Electronic Spectroscopy." Journal of Organometallic Chemistry 290, no. 1 (July 1985): c11—c12. http://dx.doi.org/10.1016/0022-328x(85)80158-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, G. "Inorganic electronic spectroscopy." Journal of Molecular Structure 129, no. 1-2 (June 1985): 180–81. http://dx.doi.org/10.1016/0022-2860(85)80208-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hybl, John D., Allison W. Albrecht, Sarah M. Gallagher Faeder, and David M. Jonas. "Two-dimensional electronic spectroscopy." Chemical Physics Letters 297, no. 3-4 (November 1998): 307–13. http://dx.doi.org/10.1016/s0009-2614(98)01140-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramasesha, Sheela K., and Stephen A. Payne. "Electronic spectroscopy of KF:Cu+." Physica B: Condensed Matter 167, no. 1 (October 1990): 56–60. http://dx.doi.org/10.1016/0921-4526(90)90104-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pino, T., Y. Carpentier, G. Féraud, H. Friha, D. L. Kokkin, T. P. Troy, N. Chalyavi, Ph Bréchignac, and T. W. Schmidt. "Electronic Spectroscopy of PAHs." EAS Publications Series 46 (2011): 355–71. http://dx.doi.org/10.1051/eas/1146037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaledin, Leonid A., and Michael C. Heaven. "Electronic Spectroscopy of UO." Journal of Molecular Spectroscopy 185, no. 1 (September 1997): 1–7. http://dx.doi.org/10.1006/jmsp.1997.7383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kharlamova, Marianna V., and Christian Kramberger. "Spectroscopy of Filled Single-Walled Carbon Nanotubes." Nanomaterials 12, no. 1 (December 23, 2021): 42. http://dx.doi.org/10.3390/nano12010042.

Full text
Abstract:
Many envisaged applications, such as nanoelectronics, photovoltaics, thermoelectric power generation, light-emission devices, energy storage and biomedicine, necessitate single-walled carbon nanotube (SWCNT) samples with specific uniform electronic properties. The precise investigation of the electronic properties of filled SWCNTs on a qualitative and quantitative level is conducted by optical absorption spectroscopy, Raman spectroscopy, photoemission spectroscopy and X-ray absorption spectroscopy. This review is dedicated to the description of the spectroscopic methods for the analysis of the electronic properties of filled SWCNTs. The basic principle and main features of SWCNTs as well as signatures of doping-induced modifications of the spectra of filled SWCNTs are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Nedilko, S. "Luminescence spectroscopy and electronic structure of Eu3+-doped Bi-containing oxide compoundsLuminescence spectroscopy and electronic structure of Eu3+-doped Bi-containing oxide compounds." Functional Materials 20, no. 1 (March 25, 2013): 29–36. http://dx.doi.org/10.15407/fm20.01.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Joung, Joonyoung F., Junwoo Baek, Youngseo Kim, Songyi Lee, Myung Hwa Kim, Juyoung Yoon, and Sungnam Park. "Electronic relaxation dynamics of PCDA-PDA studied by transient absorption spectroscopy." Physical Chemistry Chemical Physics 18, no. 33 (2016): 23096–104. http://dx.doi.org/10.1039/c6cp03858a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Krechkivska, Olha, Michael D. Morse, Apostolos Kalemos, and Aristides Mavridis. "Electronic spectroscopy and electronic structure of diatomic TiFe." Journal of Chemical Physics 137, no. 5 (August 7, 2012): 054302. http://dx.doi.org/10.1063/1.4738958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Garcia, Maria A., Carolin Vietz, Fernando Ruipérez, Michael D. Morse, and Ivan Infante. "Electronic spectroscopy and electronic structure of diatomic IrSi." Journal of Chemical Physics 138, no. 15 (April 21, 2013): 154306. http://dx.doi.org/10.1063/1.4801328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brugh, Dale J., Michael D. Morse, Apostolos Kalemos, and Aristides Mavridis. "Electronic spectroscopy and electronic structure of diatomic CrC." Journal of Chemical Physics 133, no. 3 (July 21, 2010): 034303. http://dx.doi.org/10.1063/1.3456178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kharlamova, Marianna V. "Kinetics, Electronic Properties of Filled Carbon Nanotubes Investigated with Spectroscopy for Applications." Nanomaterials 13, no. 1 (December 30, 2022): 176. http://dx.doi.org/10.3390/nano13010176.

Full text
Abstract:
The paper is dedicated to the discussion of kinetics of growth, and electronic properties of filled carbon nanotubes investigated by spectroscopy for applications. The paper starts with discussion of growth of carbon nanotubes inside metallocene-filled carbon nanotubes. Nickelocene, cobaltocene are considered for growth of carbon nanotubes. Then, the investigations of filled carbon nanotubes by four spectroscopic techniques are discussed. Among them are Raman spectroscopy, near edge X-ray absorption fine-structure spectroscopy, photoemission spectroscopy, optical absorption spectroscopy. It is discussed that metal halogenides, metal chalcogenides, metals lead to changes in electronic structure of nanotubes with n- or p-doping. The filling of carbon nanotubes with different organic and inorganic substances results in many promising applications. This review adds significant contribution to understanding of the kinetics and electronic properties of filled SWCNTs with considering new results of recent investigations. Challenges in various fields are analyzed and summarized, which shows the author’s viewpoint of progress in the spectroscopy of filled SWCNTs. This is a valuable step toward applications of filled SWCNTs and transfer of existing ideas from lab to industrial scale.
APA, Harvard, Vancouver, ISO, and other styles
14

Фейер, В. М. "Electronic spectroscopy of Mg films." Scientific Herald of Uzhhorod University.Series Physics 10 (December 31, 2001): 26–30. http://dx.doi.org/10.24144/2415-8038.2001.10.26-30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Thakur, Pramod Kumar. "Electronic Spectroscopy And Its Interpretation." Himalayan Physics 5 (July 5, 2015): 112–15. http://dx.doi.org/10.3126/hj.v5i0.12888.

Full text
Abstract:
Electronic Spectroscopy relies on the quantized nature of energy states. At given enough energy, an electron can be excited from its initial ground state or initial excited state (hot band) and briefly exist in a higher energy excited state. Electronic transitions involve exciting an electron from one principle quantum state to another. Without incentive, an electron will not transition to a higher level.. The Himalayan Physics Vol. 5, No. 5, Nov. 2014 Page: 112-115
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Zhengyang, Adriana Huerta-Viga, and Howe-Siang Tan. "Two-dimensional electronic-Raman spectroscopy." Optics Letters 43, no. 4 (February 15, 2018): 939. http://dx.doi.org/10.1364/ol.43.000939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jochnowitz, E. B., and J. P. Maier. "Electronic spectroscopy of carbon chains." Molecular Physics 106, no. 16-18 (August 20, 2008): 2093–106. http://dx.doi.org/10.1080/00268970802208588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Courtney, Trevor L., Zachary W. Fox, Karla M. Slenkamp, and Munira Khalil. "Two-dimensional vibrational-electronic spectroscopy." Journal of Chemical Physics 143, no. 15 (October 21, 2015): 154201. http://dx.doi.org/10.1063/1.4932983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Stienkemeier, Frank, and Andrey F. Vilesov. "Electronic spectroscopy in He droplets." Journal of Chemical Physics 115, no. 22 (2001): 10119. http://dx.doi.org/10.1063/1.1415433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bacis, R., A. J. Bouvier, and J. M. Flaud. "The ozone molecule: electronic spectroscopy." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 54, no. 1 (January 1998): 17–34. http://dx.doi.org/10.1016/s1386-1425(97)00259-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Loukianov, Anton, Andrew Niedringhaus, Brandon Berg, Jie Pan, S. Seckin Senlik, and Jennifer P. Ogilvie. "Two-Dimensional Electronic Stark Spectroscopy." Journal of Physical Chemistry Letters 8, no. 3 (January 24, 2017): 679–83. http://dx.doi.org/10.1021/acs.jpclett.6b02695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dorohoi, Dana. "Electronic spectroscopy of N-ylids." Journal of Molecular Structure 704, no. 1-3 (October 2004): 31–43. http://dx.doi.org/10.1016/j.molstruc.2004.01.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Brümmer, O., and W. Heichler. "Auger Spectroscopy and Electronic Structure." Zeitschrift für Kristallographie 195, no. 1-2 (January 1991): 156. http://dx.doi.org/10.1524/zkri.1991.195.1-2.156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sherman, Bradford Charles, and William B. Euler. "Electronic spectroscopy of poly(propylmethylazine)." Chemistry of Materials 6, no. 7 (July 1994): 899–906. http://dx.doi.org/10.1021/cm00043a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Eden, S., B. Barc, N. J. Mason, S. V. Hoffmann, Y. Nunes, and P. Limão-Vieira. "Electronic state spectroscopy of C2Cl4." Chemical Physics 365, no. 3 (November 2009): 150–57. http://dx.doi.org/10.1016/j.chemphys.2009.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Swanson, J. G., and V. Montgomery. "Opto-electronic modulation spectroscopy (OEMS)." Journal of Electronic Materials 19, no. 1 (January 1990): 13–18. http://dx.doi.org/10.1007/bf02655546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yeh, C. S., D. L. Robbins, J. S. Pilgrim, and M. A. Duncan. "Photoionizaton electronic spectroscopy of AgK." Chemical Physics Letters 206, no. 5-6 (May 1993): 509–14. http://dx.doi.org/10.1016/0009-2614(93)80176-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pilgrim, J. S., D. L. Robbins, and M. A. Duncan. "Photoionization electronic spectroscopy of AlOH." Chemical Physics Letters 202, no. 3-4 (January 1993): 203–8. http://dx.doi.org/10.1016/0009-2614(93)85266-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

López Arbeloa, F., T. López Arbeloa, and I. López Arbeloa. "Electronic spectroscopy of pyrromethene 546." Journal of Photochemistry and Photobiology A: Chemistry 121, no. 3 (March 1999): 177–82. http://dx.doi.org/10.1016/s1010-6030(98)00453-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Maier, John P. "Electronic spectroscopy of carbon chains." Chemical Society Reviews 26, no. 1 (1997): 21. http://dx.doi.org/10.1039/cs9972600021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Maier, John P. "Electronic Spectroscopy of Carbon Chains." Journal of Physical Chemistry A 102, no. 20 (May 1998): 3462–69. http://dx.doi.org/10.1021/jp9807219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jochnowitz, Evan B., and John P. Maier. "Electronic Spectroscopy of Carbon Chains." Annual Review of Physical Chemistry 59, no. 1 (May 2008): 519–44. http://dx.doi.org/10.1146/annurev.physchem.59.032607.093558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

MASON, S. F. "The Electronic Spectroscopy of Dyes." Journal of the Society of Dyers and Colourists 84, no. 12 (October 22, 2008): 604–12. http://dx.doi.org/10.1111/j.1478-4408.1968.tb02796.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Krechkivska, Olha, and Michael D. Morse. "Electronic Spectroscopy of Diatomic VC." Journal of Physical Chemistry A 117, no. 50 (July 12, 2013): 13284–91. http://dx.doi.org/10.1021/jp404710s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Robbins, D. L., C. S. Yeh, J. S. Pilgrim, G. L. Lang, and M. A. Duncan. "Photoionization electronic spectroscopy of AlAg." Journal of Chemical Physics 100, no. 7 (April 1994): 4775–83. http://dx.doi.org/10.1063/1.466268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Nakajima, Atsushi, Kuniyoshi Hoshino, Katsura Watanabe, Yuji Konishi, Tsuyoshi Kurikawa, Suehiro Iwata, and Koji Kaya. "Photoionization electronic spectroscopy of AlNa." Chemical Physics Letters 222, no. 4 (May 1994): 353–57. http://dx.doi.org/10.1016/0009-2614(94)87074-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Turowski, Michał, Urszula Szczepaniak, Thomas Custer, Marcin Gronowski, and Robert Kołos. "Electronic Spectroscopy of Methylcyanodiacetylene (CH3C5N)." ChemPhysChem 17, no. 24 (December 5, 2016): 4068–78. http://dx.doi.org/10.1002/cphc.201600949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fougère, Scott G., Walter J. Balfour, Jianying Cao, and Charles X. W. Qian. "Electronic Spectroscopy of Rhodium Mononitride." Journal of Molecular Spectroscopy 199, no. 1 (January 2000): 18–25. http://dx.doi.org/10.1006/jmsp.1999.7972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rohringer, Nina. "X-ray Raman scattering: a building block for nonlinear spectroscopy." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2145 (April 2019): 20170471. http://dx.doi.org/10.1098/rsta.2017.0471.

Full text
Abstract:
Ultraintense X-ray free-electron laser pulses of attosecond duration can enable new nonlinear X-ray spectroscopic techniques to observe coherent electronic motion. The simplest nonlinear X-ray spectroscopic concept is based on stimulated electronic X-ray Raman scattering. We present a snapshot of recent experimental achievements, paving the way towards the goal of realizing nonlinear X-ray spectroscopy. In particular, we review the first proof-of-principle experiments, demonstrating stimulated X-ray emission and scattering in atomic gases in the soft X-ray regime and first results of stimulated hard X-ray emission spectroscopy on transition metal complexes. We critically asses the challenges that have to be overcome for future successful implementation of nonlinear coherent X-ray Raman spectroscopy. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.
APA, Harvard, Vancouver, ISO, and other styles
40

Xiao Changtao, 肖常涛, 宋寅 Song Yin, and 赵维谦 Zhao Weiqian. "超快二维电子光谱(特邀)." Laser & Optoelectronics Progress 61, no. 1 (2024): 0130002. http://dx.doi.org/10.3788/lop232753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Garcia, Maria A., and Michael D. Morse. "Electronic Spectroscopy and Electronic Structure of Copper Acetylide, CuCCH." Journal of Physical Chemistry A 117, no. 39 (March 12, 2013): 9860–70. http://dx.doi.org/10.1021/jp312841q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Solomon, Edward I., Lipika Basumallick, Peng Chen, and Pierre Kennepohl. "Variable energy photoelectron spectroscopy: electronic structure and electronic relaxation." Coordination Chemistry Reviews 249, no. 1-2 (January 2005): 229–53. http://dx.doi.org/10.1016/j.ccr.2004.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Dong, Chung-Li. "(Invited) Probing the Atomic and Electronic Structure of Working Energy Materials with x-Ray Spectroscopy." ECS Meeting Abstracts MA2022-01, no. 36 (July 7, 2022): 1578. http://dx.doi.org/10.1149/ma2022-01361578mtgabs.

Full text
Abstract:
Improving energy conversion/generation/storage efficiency of energy materials has always been a great challenge. Monitoring the atomic/electronic structures close to interface in many important energy materials, such as nanostructured catalysts, artificially photosynthesizing materials, smart materials, and energy storage devices, is of great importance. Designing such a material with improved performance without understanding its atomic/electronic structures, and their changes under operating conditions, is difficult. Understanding and controlling the interfacial electronic structures of energy materials require in-situ characterizations, of which synchrotron x-ray spectroscopy is the one with many unique features. The last decade has witnessed a golden age of in situ synchrotron x-ray spectroscopy for energy materials. X-ray absorption spectroscopy can be used to determine unoccupied electronic structures while X-ray emission spectroscopy can be utilized to examine occupied electronic structure. The additional use of resonant inelastic X-ray scattering further reveals inter-band d-d excitation or intra-band charge transfer excitation that can reflect the fundamental chemical and physical properties. An emerging technique, scanning transmission x-ray microscopy is a spectro-microscopic approach, providing regional x-ray absorption spectroscopy, is also gearing up for energy science. This presentation will report recent studies and perspectives of the application of in situ/operando synchrotron x-ray spectroscopy to energy materials. Tamkang University (TKU) end-stations constructed at the Taiwan Photon Source (TPS) 45A & 27A beamlines for the x-ray spectroscopic investigation of energy materials will also be introduced.
APA, Harvard, Vancouver, ISO, and other styles
44

Kim, Yujeong, Jin Kim, Linh K. Nguyen, Yong-Min Lee, Wonwoo Nam, and Sun Hee Kim. "EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes." Inorganic Chemistry Frontiers 8, no. 15 (2021): 3775–83. http://dx.doi.org/10.1039/d1qi00522g.

Full text
Abstract:
The complete hyperfine tensor of 17O of the FeV-oxo moeity was probed by ENDOR spectroscopy. The EPR spectroscopic results reported here provide a conclusive experimental basis for elucidating the electronic structure of the FeV-oxo complex.
APA, Harvard, Vancouver, ISO, and other styles
45

Kositzki, Ramona, Stefan Mebs, Nils Schuth, Nils Leidel, Lennart Schwartz, Michael Karnahl, Florian Wittkamp, et al. "Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry." Dalton Transactions 46, no. 37 (2017): 12544–57. http://dx.doi.org/10.1039/c7dt02720f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Koleva, Bojidarka, Rositsa Nikolova, Atanas Tchapkanov, Tsonko Kolev, Heike Mayer-Figge, Michael Spiteller, and William Sheldrick. "Crystal structure and spectroscopic properties of 4-acetaminopyridine and its protonated form." Polish Journal of Chemical Technology 11, no. 3 (January 1, 2009): 35–40. http://dx.doi.org/10.2478/v10026-009-0033-y.

Full text
Abstract:
Crystal structure and spectroscopic properties of 4-acetaminopyridine and its protonated form 4-Acetaminopyridine dihydrate and its protonated form, stabilized as the hydrochloride salt have been synthesized and spectroscopic elucidated in solution and in the solid-state by means of the inear-polarized solid state IR-spectroscopy (IR-LD), UV-spectroscopy, TGA, DSC, and the positive and negative ESI MS. Quantum chemical calculations were used to obtain the electronic structure, vibrational data and the electronic spectra. The spectroscopic and theoretical data are compared with the structure of the first compound obtained by single crystal X-ray diffraction. The effect of Npy protonation on the optical and magnetic properties of a 4-acetaminopyridine is discussed.
APA, Harvard, Vancouver, ISO, and other styles
47

Kim, Youngsang, and Hyunwook Song. "Noise spectroscopy of molecular electronic junctions." Applied Physics Reviews 8, no. 1 (March 2021): 011303. http://dx.doi.org/10.1063/5.0027602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Persinger, Thomas D., Jiande Han, and Michael C. Heaven. "Electronic Spectroscopy and Photoionization of LiMg." Journal of Physical Chemistry A 125, no. 17 (April 21, 2021): 3653–63. http://dx.doi.org/10.1021/acs.jpca.1c01656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

SHABLAEV, S. I., and R. V. PISAREV. "TWO-PHOTON ABSORPTION SPECTROSCOPY OF ELECTRONIC." Journal of the Magnetics Society of Japan 11, S_1_ISMO (1987): S1_19–22. http://dx.doi.org/10.3379/jmsjmag.11.s1_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zalecki, R., A. Kołodziejczyk, N. T. H. Kim-Ngan, A. Adamska, A. Kowalczyk, T. Toliński, and M. Mihalik. "Electronic States of UNi2from Photoemission Spectroscopy." Acta Physica Polonica A 113, no. 1 (January 2008): 407–12. http://dx.doi.org/10.12693/aphyspola.113.407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography