Dissertations / Theses on the topic 'Electronic quantum coherence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Electronic quantum coherence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Acton, J. M. "Quantum coherence effects in electronic, photonic and atomic structures." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595334.
Full textCabart, Clément. "Measurement and control of electronic coherences." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN031/document.
Full textOver the last few years, extensive experimental efforts have been devoted to thedevelopment of quantum nanoelectronics tools aiming at controlling electronic trans-port down to the single electron level. These advances led to a paradigm shift inthe domain of coherent electronic transport, giving birth to electron quantum optics,which is the domain of this work.This manuscript is devoted to two problems. The first of these is the one ofCoulomb interactions between electrons, which lead to a decoherence phenomenonthat must be characterized and predicted in order to be controlled. Using an analyt-ical and numerical approach, it became possible to predict the effect of interactionson an experimentally relevant system, a prediction that was then confirmed in the ex-periment. After this result, this manuscript displays some ideas aiming at controllinginteractions and proposes some ways to test them experimentally.In this work, I also took on the problem of characterizing complex quantum states.In particular, following the experimental demonstration of a tomography protocol forfirst order coherences, I tried to extend this protocol to more complex states thatcould exhibit two-electron coherences, or more. These states being also sensitive to Coulomb interactions, an extension of the tools used to treat interactions to thismulti-electronic state is also presented in this work
Rebentrost, Frank. "Exciton Transfer in Photosynthesis and Engineered Systems: Role of Electronic Coherence and the Environment." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10474.
Full textChemistry and Chemical Biology
Peeks, Martin. "Electronic delocalisation in linear and cyclic porphyrin oligomers." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:58a35932-320c-47dc-828e-0d121d693fd8.
Full textRoussely, Grégoire. "Mesures résolues en temps dans un conducteur mésoscopique." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY013/document.
Full textOver the past decade, an important effort has been made in the field of low dimensional electronic conductors towards single electron electronics with the goal to gain full control of the phase of a single electron in a solid-state system. A particular appealing idea is to use a single flying electron itself to carry and manipulate the quantum information, the so-called solid state flying qubit. On demand single electron injection into such a ballistic two-dimensional electron system can be realized by employing the recently developed single electron source based on sub-nanosecond lorentzian voltage pulses. Such a source could also be used to reveal interesting new physics. When a short voltage pulse is injected in an electronic interferometer, novel interference effects are expected due to the interference of the pulse with the surrounding Fermi sea. For the realization of such experiments it is important to know with high accuracy the propagation velocity of the electron wave packet created by the pulse.In this thesis, we present time resolved measurements of a short voltage pulse (<100 ps) injected into a 1D quantum wire formed in a two-dimensional electron gas and determine its propagation speed. We show that the voltage pulse propagates much faster than the Fermi velocity of a non-interacting system. The propagation speed is enhanced due to electron interactions within the quantum wire. For a quantum wire containing a large number of modes, the measured propagation velocity agrees very well with the 2D plasmon velocity for a gated two-dimensional electron gas. Increasing the confinement potential allows to control the strength of the electron interactions and hence the propagation speed. We then have studied an electronic two-path interferometer based on two tunnel-coupled wires. Our preliminary measurements show a signature that can be attributed to the coherent tunneling of the electrons injected into this system. In the near future, this system could be used to reveal these new striking effects due to the interaction of the voltage pulse with the Fermi sea
PEROSA, GIOVANNI. "Impact of the Electrons Dynamics on the Free-electron Lasers Radiation Coherence." Doctoral thesis, Università degli Studi di Trieste, 2023. https://hdl.handle.net/11368/3041022.
Full textModern science advancements rely on the possibility of producing short laser-like coherent pulses in the XUV and in the X-rays wavelength ranges to probe electronic structure in atoms, molecules and solid-state matter. For this reason, light-sources including synchrotrons, inverse Compton scattering, high harmonic generation in gas (HHG) and free electron lasers (FELs) are invaluable tools for research in these fields. In particular, they all have in common the exploitation of the radiating process resulting from electrons’ acceleration under the influence of an electromagnetic field. The aim of this thesis is to explore the impact of electrons’ dynamics on the coherence of FELs seeded by an external laser. In this thesis I demonstrate that electrons’ dynamics plays a major role in the conversion and transformation of light’s features, such as coherence, which can be transmitted to electrons and "inherited" from the re-emitted light. To fulfill this purpose, both the theoretical and the experimental approaches have been used. Most of the models presented, derived or extended in this work are, in fact, supported by experimental evidence. The interplay between electrons and light’s properties is investigated using both classical and quantum dynamics. While the former is routinely adopted to describe the FEL dynamics and collective phenomena in an electron bunch, the latter becomes mandatory to fully achieve a faithful description of the varieties of phenomena that involve the emission of photons. From the classical point of view, a comprehensive analytical model for electron beam longitudinal dynamics is derived by including a new phenomenon, known as intrabeam scattering, and by investigating its effect on the electrons’ distribution. The predictions of this model can be directly compared with both beam and FEL measurements, showing a good agreement with both. From the quantum-dynamical point of view, we start to explore the possibility to answer the following question: "is it possible to introduce quantum features, such as coherence, in any process of harmonic generation from a coherent light pulse?" In order to do so, we focus our attention on the characterization of quantum coherence via photon number distribution and the quantum electrodynamics of an electron in a laser field. The practical aspect of my investigation is threefold: the prediction and characterization of electron beam quality; the optimization of seeded and unseeded FELs performances, that is possible through the mitigation of instabilities originated in the electron bunch; the investigation of unexplored FELs features and configurations that could be exploited for novel experiments. Finally, although the results and discussions are directly applied to the FEL case, some of the theoretical results regarding the coherence can be applied, without loss of generality, to any process of electrons-light interaction.
Mallet, François. "Cohérence quantique, diffusion magnétique et effets topologiques." Grenoble 1, 2006. https://theses.hal.science/tel-00546850.
Full textIn this thesis are reported experimental results centered on the thematic of the electronic quantum coherence at very low temperatures, obtained by very precise measurements of the quantum correction to the classical electronic transport in metallic nanostructures. We have first studied the coherence effects in network of metallic one-dimensional wires. We have shown the influence on the coherence itself of the diffusion dimensionality. By going from a macroscopic conductor to a purely mesoscopic one, we measured a crossover in the scaling of the quantum corrections amplitudes when the phase coherence length exceed the typical size of the system. This has allowed us to really precise what the ensemble averaging is in Mesoscopic Physics. In the second part of this work, we have shown the temperature dependence of the phase coherence length in metallic wire with magnetic impurities. These samples were fabricated in a very new and controlled way, by using a new technics with a focus ion beam. We have measured a universal behavior over 2 decades in temperature for the dephasing due to one magnetic impurity. This was the direct prove that this added decoherence belongs to the physics of the generic many body problem named « Kondo Physics ». We have finally shown that the measured dephasing rate was in excellent agreement with recent theoretical calculations based one the numerical renormalization group technics. More precisely we have shown that the magnetic impurities screening induces a linear desaturation of the phase coherence time above 0,1 TK
Flentje, Hanno. "Coherent transfer of electron spins in tunnel-coupled quantum dots." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY039/document.
Full textRecent technological advances hint at the future possibility to use single electron spins as carriers and storage of information. Due to their quantum nature, individually controlled electron spins can not only be used to store classical information, but could also find implementation as quantum bits in a quantum computer. In this envisioned device, the superposition of different spin states could be used to perform novel calculation procedures more efficiently than their classical counterparts.A promising implementation of a controllable single electron spin system is an electron trapped in a lateral quantum dot. This nanoscale solid state device allows to isolate and coherently manipulate the spin of individual electrons with electrostatic potentials. In this thesis we study electrons in quantum dot structures using a manipulation technique which we call the "isolated regime". In this regime the manipulation of individual electron charges in several connected quantum dots is shown to be simplified. This allows to implement a novel spin manipulation scheme to induce coherent exchange of a quantum of spin between two electrons via a variation of the tunnel-coupling between adjacent quantum dots. This manipulation scheme is observed to lead to a reduced sensibility to charge noise at a "sweet spot" and thereby allows to obtain high quality spin oscillations.The improved charge control in the isolated regime is then used to achieve circular coupling in a triple quantum dot device with high tunnel-rates. This allows to directly probe the coherence of a superposition of two electron spins which are displaced on a closed loop in the three quantum dots. Our measurements demonstrate coherent electron transport over distances of up to 5 μm. During the transfer the coherence time is found to be significantly increased. We identify the underlying mechanism for the enhancement with a motional narrowing of the nuclear field gradients originating from the crystal environment. The limiting decoherence source is found to be single electron spin-flips induced by a real space motion of the electrons. Our results on the coherent transport of electrons can be used to asses the scaling possibilities of spin qubit implementations on two-dimensional lattices
Kabir, Amin. "Phase coherent photorefractive effect in II-VI semiconductor quantum wells and its application for optical coherence imaging." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282315981.
Full textSchneider, Adam. "Coherent electron transport in triple quantum dots." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32541.
Full textNous utilisons une approche d´equation quantique maîtresse pour étudier les propriétés de transport des points quantiques triples en forme d'anneau. Contrairement aux points quantiques doubles et triples en forme de chaînes, cette géométrie offre deux chemins pour le transport avec une phase quantique relative qui est sensible au flux magnétique en raison de l'effet Aharonov-Bohm. Ceci méne à un effet de piégeage de population cohérent et cela est connu sous le nom d'un "état sombre". Contrairement à d'autres techniques d'équation maîtresse qui sont seulement valides dans la limite d'un potentiel électrique élevé, notre méthode reproduit les résultats de ces derniers en plus de donner une expression analytique pour la conductance différentielle de zéro potentiel électrique. En plus de donner une optique plus robuste de la physique "d´etats sombres", notre modèle prédit une résistance différentielle négative qui est reliée au phénomène déjà prédit de rectification à potentiel élevé.
Fornieri, Antonio. "Coherent manipulation of electronic heat currents in superconducting quantum circuits." Doctoral thesis, Scuola Normale Superiore, 2017. http://hdl.handle.net/11384/85898.
Full textShen, Yumin. "Coherent nonlinear optics of electron spins in semiconductors /." view abstract or download file of text, 2007. http://proquest.umi.com/pqdweb?did=1417814931&sid=1&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 157-164). Also available for download via the World Wide Web; free to University of Oregon users.
Shen, Jianqi. "Quantum Coherence and Quantum-Vacuum Effects in Some Artificial Electromagnetic Media." Doctoral thesis, KTH, Elektroteknisk teori och konstruktion, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10074.
Full textQC 20100810
Khastehdel, Fumani Ahmad. "QUANTUM CONFINED STATES AND ROOM TEMPERATURE SPIN COHERENCE IN SEMICONDUCTOR NANOCRYSTAL QUANTUM DOTS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1449151739.
Full textVolpato, Andrea. "Innovative Strategies in Coherent Multidimensional Electronic Spectroscopy." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425369.
Full textLa recente osservazione di coerenze quantistiche elettroniche con lunga durata in sistemi fotosintetici ha stimolato l’interesse sul possibile ruolo dei fenomeni quantistici nel migliorare alcune funzioni di rilevanza biologica e nell'aumentare le prestazioni di dispositivi artificiali. Tale interesse è stato supportato da numerose evidenze sperimentali fornite dalla spettroscopia bidimensionale elettronica (2DES) ma la ricerca in questo ambito è ancora lontana dal raggiungere conclusioni definitive. La tecnica 2DES è nata da poco più di un decennio ed è ancora molto attiva la ricerca per lo sviluppo di un apparato strumentale ottimale e di efficienti metodi di elaborazione dati. Nell'ambito del progetto di dottorato, è stato costruito un setup sperimentale ad alte prestazioni accoppiato con avanzate procedure di calibrazione e di acquisizione dati, affrontando le sfide principali delle attuali implementazioni strumentali. Attingendo dal campo ingegneristico dell’elaborazione dei segnali, le tecniche di decomposizione tempo-frequenza sono state applicate allo studio di segnali oscillanti 2DES. Inoltre, un metodo di analisi globale basato sul variable projection algorithm è stato sviluppato, allo scopo di avere uno strumento robusto e quantitativo per lo studio dei responsi coerenti. La definizione della dinamica delle componenti oscillanti si è dimostrata un valido strumento per l’interpretazione del dato sperimentale. I metodi sviluppati sono stati utilizzati per l'analisi dei dati sperimentali ottenuti con un sistema modello costituito da un oligomero con catene laterali porfiriniche. Sono state analizzate coerenze vibrazionali con caratteristiche differenti evidenziando l’influenza del disordine nel modulare la risposta coerente.
Fleming, Stephen. "Coherent behaviour of trapped electrons in a Coulomb glass." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708604.
Full textSweeney, Timothy Michael 1978. "Coherent Control of Electron Spins in Semiconductor Quantum Wells." Thesis, University of Oregon, 2011. http://hdl.handle.net/1794/11975.
Full textElectron spin states in semiconductors feature long coherence lifetimes, which have stimulated intense interest in the use of these spins for applications in spin based electronics and quantum information processing (QIP). A principal requirement for these spins to be viable candidates in QIP is the ability to coherently control the spins on timescales much faster than the decoherence times. The ability to optically control the spin state can meet this requirement. The spin states of electrons exhibit strong radiative coupling to negatively charged exciton (trion) states, and this radiative coupling makes coherent optical control of spin states possible. This dissertation presents experimental demonstration of coherent control of an electron spin ensemble in a two-dimensional electron gas in a CdTe quantum well. We present two complimentary techniques to optically manipulate these electron spins using a Raman transition. The first demonstration is with a single off-resonant ultrafast optical pulse. This ultrafast pulse acts like an effective magnetic field in the propagation direction of the optical pulse. The second experiment utilizes phase-locked Raman resonant pulse pairs to coherently rotate the quantum state, where the relative phase of the pulse pair sets the axis of rotation. The Raman pulse pair acts like a microwave field driving the spin states. This research demonstrates two significant contributions to the field of coherent optical interactions with semiconductors. First, we have advanced the potential use of electron spin ensembles in semiconductors for optics based quantum information processing hardware through our demonstration of coherent spin flips and complete coherent control. Second, we have experimentally realized full coherent control through the use of phase-locked Raman pulse pairs that overcomes inherent limitations of the single-pulse optical rotation technique, which is the current standard technique used in coherent control. This dissertation includes previously published and unpublished co-authored material.
Committee in charge: Dr. Miriam Deutsch, Chairperson; Dr. Hailin Wang, Advisor; Dr. Steven van Enk, Member; Dr. Raghuveer Parthasarathy, Member; Dr. Catherine Page, Outside Member
Meneghin, Elena. "Coherent multidimensional electronic spectroscopy: from bioinspired to biological systems." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425861.
Full textFenomeni di tipo quantistico possono contribuire in modo fondamentale in processi di tipo biologico? Questa domanda ha da sempre entusiasmato gli scienziati ma, solo a partire dall’ultima decade, stiamo assistendo ai passi da giganti fatti nella messa a punto di strumenti sperimentali sempre più efficienti nel rilevare dinamiche di tipo quantistico. La spettroscopia elettronica coerente bidimensionale, grazie alla sua peculiarità di dare accesso all’osservazione simultanea di fenomeni di diversa tipologia nel regime ultraveloce, si presenta come la tecnica principe nel nuovo campo della biologia quantistica. Le antenne artificiali, grazie al loro minor grado di complessità, sono sistemi modello ideali per delucidare quali siano i principi strutturali che permettono a fenomeni di tipo quantistico di sopravvivere nei loro analoghi naturali. Abbiamo studiato diversi sistemi multi-cromoforici, modello dei complessi antenna naturali, grazie all’auto-assemblaggio di sistemi coniugati pigmento-peptide. Sono state confrontate diverse tipologie di cromoforo e di componente proteica per determinare quale delle due parti costituenti avesse un ruolo cruciale nel preservare i fenomeni quantistici. Nello studio dei sistemi antenna naturali, un fattore che può complicare ulteriormente l’interpretazione dei segnali coerenti, è l’accoppiamento vibronico, il quale dà origine a componenti oscillanti che potrebbero sovrapporsi a quelle elettroniche. Per tale ragione abbiamo provveduto a condurre un’indagine dettagliata dei contributi peculiari di pigmenti isolati come la clorofilla a e la batterioclorofilla a. L’esperienza e la conoscenza maturate nello studio di sistemi antenna artificiali e di cromofori isolati hanno permesso l’interpretazione della dinamica ultraveloce di un complesso antenna naturale, la peridinin-chlorophyll-protein. Effetti di tipo quantistico possono influenzare non solo processi di tipo fotofisico, ma anche reazioni fotochimiche come, ad esempio, il trasferimento di protoni. Il tunnelling protonico, infatti, è un fenomeno di natura squisitamente quantistica e che risulta molto sensibile alle fluttuazioni della distanza tra donatore e accettore. In questo lavoro abbiamo utilizzato spettroscopia elettronica coerente bidimensionale per esplorare come il tunnelling protonico possa essere influenzato dai moti dell’intorno e, di conseguenza, come la cinetica globale della reazione possa essere velocizzata dall’accoppiamento con moti nucleari.
Cooper-Roy, Alexandre. "Coherent control of electron spins in diamond for quantum information science and quantum sensing." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/111688.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-122).
This thesis introduces and experimentally demonstrates coherent control techniques to exploit electron spins in diamond for applications in quantum information processing and quantum sensing. Specifically, optically-detected magnetic resonance measurements are performed on quantum states of single and multiple electronic spins associated with nitrogen-vacancy centers and other paramagnetic centers in synthetic diamond crystals. We first introduce and experimentally demonstrate the Walsh reconstruction method as a general framework to estimate the parameters of deterministic and stochastic fields with a quantum probe. Our method generalizes sampling techniques based on dynamical decoupling sequences and enables measuring the temporal profile of time-varying magnetic fields in the presence of dephasing noise. We then introduce and experimentally demonstrate coherent control techniques to identify, integrate, and exploit unknown quantum systems located in the environment of a quantum probe. We first locate and identify two hybrid electron-nuclear spins systems associated with unknown paramagnetic centers in the environment of a single nitrogen-vacancy center in diamond. We then prepare, manipulate, and measure their quantum states using cross-polarization sequences, coherent feedback techniques, and quantum measurements. We finally create and detect entangled states of up to three electron spins to perform environment-assisted quantum metrology of time-varying magnetic fields. These results demonstrate a scalable approach to create entangled states of many particles with quantum resources extracted from the environment of a quantum probe. Applications of these techniques range from real-time functional imaging of neural activity at the level of single neurons to magnetic resonance spectroscopy and imaging of biological complexes in living cells and characterization of the structure and dynamics of magnetic materials.
by Alexandre Cooper-Roy.
Ph. D.
Rohr, Sven. "Hybrid spin-nanomechanical systems in parametric interaction." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY046/document.
Full textProbing the quantum world with macroscopic objects has been a core challenge for research in physics during the past decades. Proposed systems to reach this goal include hybrid devices that couple a nanomechanical resonator to a single spin qubit. In particular, the coherent actuation of a macroscopic mechanical oscillator by a single electronic spin would open perspectives in the creation of arbitrary quantum states of motion.In this manuscript, we investigate a hybrid system coupling a nanomechanical oscillator and a single electronic spin of a NV defect in magnetic interaction. We focus on the parametric interaction case, when the mechanical motion modulates the qubit energy, and in particular when the driven qubit and mechanical oscillators evolves on similar timescales. In that situation a synchronization of the qubit dynamics onto the mechanical motion is observed. The phenomenon is first explored on a test experiment where mechanical motion is replaced by a parametrically coupled RF field. It allows to establish the main properties of the phenomenon, which is subsequently investigated on the core experiment. It consists of a NV defect attached at the vibrating extremity of a silicon carbide nanowire, immersed in a strong magnetic field gradient. The bidimensional character of the nanowire deformations is responsible for novel vectorial signatures in the synchronization, which can also be viewed as a phononic Mollow triplet as observed in early quantum electrodynamics experiments. We finally explore the robustness of the synchronization against the Brownian motion of the resonator and demonstrate the possibility to protect the qubit against this additional decoherence source by applying a small coherent mechanical drive
Bode, Niels [Verfasser]. "Coherent electrons and collective modes in quantum-transport through nanostructures / Niels Bode." Berlin : Freie Universität Berlin, 2012. http://d-nb.info/1027815944/34.
Full textDongol, Amit. "Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396453493.
Full textYang, Jamie Chiaming. "Coherent control of hyperfine-coupled electron and nuclear spins for quantum information processing." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44789.
Full textIncludes bibliographical references (p. 81-87).
Coupled electron-nuclear spins are promising physical systems for quantum information processing: By combining the long coherence times of the nuclear spins with the ability to initialize, control, and measure the electron spin state, the favorable properties of each spin species are utilized. This thesis discusses a procedure to initialize these nuclear spin qubits, and presents a vision of how these systems could be used as the fundamental processing unit of a quantum computer. The focus of this thesis is on control of a system in which a single electron spin is coupled to N nuclear spins via resolvable anisotropic hyperfine (AHF) interactions. High-fidelity universal control of this le-Nn system is possible using only excitations on a single electron spin transition. This electron spin actuator control is implemented by using optimal control theory to find the modulation sequences that generate the desired unitary operations. Decoherence and the challenge of making useful qubits from these systems are also discussed. Experimental evidence of control using an electron spin actuator was acquired with a custom-built pulsed electron spin resonance spectrometer. Complex modulation sequences found by the GRadient Ascent Pulse Engineering (GRAPE) algorithm were used to perform electron spin echo envelope modulation (ESEEM) experiments and simple preparation-quantum operation-readout experiments on an ensemble of 1e-1n systems. The data provided evidence that we can generate any unitary operation on an AHF-coupled 1e-1n system while sitting on a single transmitter frequency. The data also guided design of the next iteration of these experiments, which will include an improved spectrometer, bandwidth-constrained GRAPE, and samples with larger Hilbert spaces.
by Jamie Chiaming Yang.
Ph.D.
Oleary, Shannon 1977. "Coherent optical manipulation of electron spins in semiconductor nanostructures." Thesis, University of Oregon, 2008. http://hdl.handle.net/1794/8449.
Full textElectron spin coherence can arise through a coherent superposition of two spin states in the conduction band of a semiconductor and can persist over remarkably long time and length scales. The robust nature of electron spin coherence makes it an excellent model system for exploring coherent quantum phenomena in semiconductors. This dissertation presents both spectral- and time-domain nonlinear optical studies of electron spin coherence through Λ-type three-level systems in two- and zero-dimensional semiconductor systems. The spectral domain study focuses on the experimental realization of electromagnetically induced transparency (EIT), a phenomenon that exploits destructive interference induced by the spin coherence. Coherent Zeeman Resonance (CZR), a precursor to EIT, is demonstrated in two 2D systems, a GaAs mixed-type quantum well (MTQW) and a modulation doped CdTe quantum well (QW). For these studies, Λ-type three-level systems are formed via dipole coupling of a trion to two electron spin states. The CZR response can be described qualitatively by effective density matrix equations. In addition, effects of manybody Coulomb interactions on CZR are investigated by varying the electron density in the MTQW via optical carrier injection. Time-domain studies based on transient differential transmission (DT) are carried out to explore the excitation, manipulation, and detection of electron spin coherence and to better understand how manybody interactions affect coherent nonlinear optical processes in semiconductors. While electron spin coherence can be formed and detected via resonant excitation of excitons or trions, a surprising observation is that injecting excitons into the 2D electron gas in a modulation doped CdTe QW can significantly alter the oscillatory nonlinear response of the electron spin coherence, while the response remains qualitatively unchanged when trions are injected. These behaviors are attributed to an interplay between manybody effects and carrier heating generated by trion formation from excitons. Finally, donor-bound electrons in GaAs are used as a model of localized electron spins. Spin decoherence of order 10 ns, limited by nuclear hyperfine interactions, is observed. Electron spin rotation induced by a nearly resonant laser pulse is also observed, opening the door for further work on mitigating electron spin decoherence time through optical spin echoes.
Adviser: Hailin Wang
Phelps, Carey E. 1982. "Ultrafast Coherent Electron Spin Control and Correlated Tunneling Dynamics of Two-Dimensional Electron Gases." Thesis, University of Oregon, 2011. http://hdl.handle.net/1794/11936.
Full textElectron spins form a two-level quantum system in which the remarkable properties of quantum mechanics can be probed and utilized for many applications. By learning to manipulate these spins, it may be possible to construct a completely new form of technology based on the electron spin degree of freedom, known as spintronics. The most ambitious goal of spintronics is the development of quantum computing, in which electron spins are utilized as quantum bits, or qubits, with properties that are not possible with classical bits. Before these ideas can become reality, a system must be found in which spin lifetimes are long enough and in which spins can be completely controlled. Semiconductors are an excellent candidate for electron spin control since they can be integrated into on-chip devices and produced on a scalable level. The focus of this dissertation is on electron spin control in two different semiconductor systems, namely a two-dimensional electron gas in a modulation-doped quantum well and donor-bound electrons in bulk semiconductors. Both systems have been studied extensively for a variety of purposes. However, the ability to manipulate spins has been elusive. In this dissertation, the first experimentally successful demonstration of electron spin control in a two-dimensional electron gas is presented, in which ultrafast optical pulses induce spin rotations via the optical Stark effect. Donor-bound electron spin manipulation in bulk semiconductors is also investigated in this dissertation. Important information was obtained on the limiting factors that serve to prohibit spin control in this system. By taking these new factors into account, it is our hope that full electron spin control can eventually be accomplished in this system. Finally, through the course of investigating electron spin dynamics, a strange nonlinear optical behavior was observed in a bilayer system, which was determined to result from a coupling of optical interactions with tunneling rates between layers. The data suggest that there is a strong interplay between interlayer and intralayer correlations in this system. Investigations into the nature of this interaction were undertaken and are presented in the last part of this dissertation. This dissertation includes previously published and unpublished co-authored material.
Committee in charge: Dr. Daniel Steck, Chair; Dr. Hailin Wang, Advisor; Dr. Jens Nockel, Inside; Dr. John Toner, Inside; Dr. Andrew Marcus, Outside
Paul, Jagannath. "Coherent Response of Two Dimensional Electron Gas probed by Two Dimensional Fourier Transform Spectroscopy." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6738.
Full textBrown, Richard Matthew. "Coherent transfer between electron and nuclear spin qubits and their decoherence properties." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.
Full textZeltzer, Gabriel. "Accessing electronic and vibronic quanta and their coherent interactions in atomically precise nanostructures /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textThibierge, Étienne. "Cohérence à un et deux électrons en optique quantique électronique." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0998/document.
Full textThis thesis deals with coherent quantum transport and aims at developing a formalism well suited to model experiments conducted in edge channels of integer quantum Hall effect. This formalism relies on analogies between these experiments and photon quantum optics ones.The manuscript begins with an introduction to the context of the thesis and an overview of issues, tools and successes of electron quantum optics.The first part of the work addresses the question of single electron coherence properties and introduces the key notion of excess of single electron coherence. Several representations are proposed and analyzed, giving access to physical informations encoded in the coherence function. The quantum states emitted by experimentally demonstrated electron sources are then analyzed under this perspective.Two electron effects are at the heart of the second part. The excess of two-electron coherence is defined taking into account both classical correction and quantum exchange effects. A detailed analysis of consequences of fermionic anti-symmetry is provided and shows that information encoded into two-electron coherence is redundant. Last, a normalized degree of coherence is introduced in view of a more direct study of indistinguishability and anti-bunching.The issue of measuring and manipulating electronic coherence by interferometry is addressed in the third part. First the relation between electronic coherence functions and directly measurable quantities in experiments is established, justifying the need for more involved measurement protocols. The measure of the excess of single electron coherence is envisioned through single electron Mach-Zehnder interferometry and two-electron Hong-Ou-Mandel interferometry, suggesting a simpler interpretation of a tomography protocol established in 2011. A protocol for measuring the excess of two-electron coherence is then proposed by Franson-like interferometry, which generalizes the ideas used for measuring single electron coherence with a Mach-Zehnder interferometer. Last, a complementary point of view on Franson interferometer is given, by using it to generate a non-local two-electron coherence
Eickemeyer, Felix. "Ultrafast dynamics of coherent intersubband polarizations in quantum wells and quantum cascade laser structures." Doctoral thesis, [S.l.] : [s.n.], 2002. http://dochost.rz.hu-berlin.de/dissertationen/eickemeyer-felix-2002-07-03.
Full textRoussel, Benjamin. "Autopsy of a quantum electrical current." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1285/document.
Full textQuantum physics experiments have reached a level of precision and control that allows quantum state engineering for many systems. This has led to the birth of electron quantum optics, an emerging field which aims at generating, manipulating and characterizing quantum electrical currents built from few-electron excitations propagating within ballistic quantum conductors. This is challenging since it is generically impossible in practice to fully characterize the many-body state of a beam containing indistinguishable electrons. The thesis presents new quantum signal processing approaches for accessing, at least partially, to the quantum many-body state of quantum electrical currents.A first approach is to access such a state at few-particle levels through electronic coherences. We will thus present a new representation of single-electron coherence in terms of electronic "atoms of signal". Combining this signal processing algorithm to HOM tomography enables us to present the first autopsy, wavefunction by wavefunction, of an experimental electrical quantum current. Another method is to look for indicators giving information directly at the many-body level. We will investigate the radiation emitted by a quantum conductor and address the problem of decoherence of a general single-electron excitation. Finally, we will look at the heat deposited by a mesoscopic quantum system, leading to a quantum version of Joule heating and discuss how it gives an insight on the many-body state of the electron fluid
Gamble, Stephanie Nicole. "Conical Intersections and Avoided Crossings of Electronic Energy Levels." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101899.
Full textDoctor of Philosophy
We study energies of molecular systems in which special circumstances occur. In particular, when these energies intersect, or come close to intersecting. These phenomena give rise to unique physics which allows special reactions to occur and are thus of interest to study. We study one example of a more specific type of energy level crossing and avoided crossing, and then consider another type of crossing in a more general setting. We find solutions for these systems to draw our results from.
LI, XIAOXU. "WAVELENGTH-DIVISION-MULTIPLEXED TRANSMISSION USING SEMICONDUCTOR OPTICAL AMPLIFIERS AND ELECTRONIC IMPAIRMENT COMPENSATION." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4025.
Full textPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Botzem, Tim [Verfasser], Jörg Hendrik [Akademischer Betreuer] Bluhm, and Ferdinand [Akademischer Betreuer] Kuemmeth. "Coherence and high fidelity control of two-electron spin qubits in GaAs quantum dots / Tim Botzem ; Jörg Hendrik Bluhm, Ferdinand Kuemmeth." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162498404/34.
Full textUllah, Saeed. "Optical control and detection of spin coherence in multilayer systems." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-10052017-163058/.
Full textHá uma década, a spintrônica e outras áreas relacionadas vêm atraindo considerável atenção, devido a enorme quantidade de pesquisa conduzidas por elas. A principal razão para o crescente interesse neste campo é a expectativa da aplicação do controle do spin do elétron no lugar ou em adição à carga, em dispositivos eletrônicos e informação e computação quânticas. A possibilidade destes spins carregarem informação depende, primeiramente, da habilidade de controlá-los coerentemente, em uma escala de tempo muito mais rápida do que o tempo de decoerência. Esta tese trata da dinâmica de spins em gases de elétrons bidimensionais, em poços quânticos de semicondutores III-V, crescidos artificialmente. Nós apresentamos uma série de experimentos, utilizando técnicas para o controle ótico da polarização de spin, desencadeadas por métodos óticos ou eletrônicos, ou seja, técnicas conhecidas de bombeio e prova e polarização de spin induzida por corrente. Nós investigamos a coerência de spin em gases bidimensionais, confinados em poços quânticos duplos e triplos de GaAs/AlGaAs e a dependência da defasagem com parâmetros experimentais, como campo magnético externo, potência ótica, tempo entre os pulsos de bombeio e prova e comprimento de onda da excitação. Também estudamos a grande anisotropia de relaxação de spin como função da temperatura da amostra, potência de excitação e defasagem entre bombeio e prova, medidos para uma vasta gama de temperatura, entre 5K e 250K, usando Rotação de Kerr com Resolução Temporal (TRKR) e Amplificação Ressonante de Spin (RSA). Além disso estudamos a influência da concentração de Al na dinâmica dos poços de AlGaAs/AlAs, para o qual a engenharia da composição da estrutura permite sintonizar o tempo de defasagem de spin e o fator $ g $ do elétron. Por fim, estudamos a deriva transversal macroscópica da longa coerência de spin induzida por corrente, através de medidas de Rotação de Kerr não-locais, baseadas na amplificação ressonante ótica da polarização eletricamente induzida. Observamos uma variação espacial significante do fator $ g $ e do tempo de vida da coerência, na escala de nanosegundos, deslocada distâncias de meio milímetro na direção transversa ao campo magnético aplicado.
Dai, Zhenting. "Coherent and Dissipative Transport in Metallic Atomic-Size Contacts." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19880.
Full textPriebe, Katharina Elisabeth [Verfasser], Claus [Akademischer Betreuer] Ropers, Stefan [Gutachter] Mathias, and Thomas [Gutachter] Baumert. "Coherent Control and Reconstruction of Free-Electron Quantum States in Ultrafast Electron Microscopy / Katharina Elisabeth Priebe ; Gutachter: Stefan Mathias, Thomas Baumert ; Betreuer: Claus Ropers." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/114995471X/34.
Full textVarwig, Steffen [Verfasser], Manfred [Akademischer Betreuer] Bayer, and Metin [Gutachter] Tolan. "Optical electron spin tomography and hole spin coherence studies in (In,Ga)As/GaAs quantum dots / Steffen Varwig. Betreuer: Manfred Bayer. Gutachter: Metin Tolan." Dortmund : Universitätsbibliothek Dortmund, 2014. http://d-nb.info/1100692487/34.
Full textVarwig, Steffen [Verfasser], Manfred Akademischer Betreuer] Bayer, and Metin [Gutachter] [Tolan. "Optical electron spin tomography and hole spin coherence studies in (In,Ga)As/GaAs quantum dots / Steffen Varwig. Betreuer: Manfred Bayer. Gutachter: Metin Tolan." Dortmund : Universitätsbibliothek Dortmund, 2014. http://nbn-resolving.de/urn:nbn:de:101:1-201605191564.
Full textBiggs, Jason Daniel 1978. "Theoretical studies of the external vibrational control of electronic excitation transfer and its observation using polarization- and optical phase-sensitive ultrafast spectroscopy." Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/11074.
Full textOur theoretical studies involve the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation. Our control strategy is based upon the fact that, following impulsive electronic excitation, nuclear motion acts to change the instantaneous energy difference between site-excited electronic states and thereby influences short-time electronic excitation transfer (EET). By inducing coherent intramolecular vibration in one of the chromophores prior to short-pulse electronic excitation, we exert external control over electronic dynamics. As a means to monitor this coherent control over EET, we propose using multidimensional wave-packet interferometry (md-WPI). Two pairs of polarized phase-related femtosecond pulses following the control pulse would generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signal due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We test both the control strategy and its spectroscopic investigation by calculating pump-probe difference signals for various combinations of pulse polarizations. That signal is the limiting case of the control-influenced md-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference signals for a variety of systems including a simplified model of the covalent dimer dithia-anthracenophane (DTA) in which we treat only the weakly Franck-Condon active ν 12 anthracene vibration at 385 cm -1 . We further present calculated nl-WPI difference signals for an oriented DTA complex, which reveal amplitude-level dynamical information about the interaction of nuclear motion and electronic energy transfer. We also present pump-probe difference signals from a model system in which a CF 3 group, whose torsional angle is strongly Franck-Condon active, has been added to the anthracene monomers which make up DTA. We make use of electronic structure calculations to find the torsional potential of the monomer, from which we calculate the spectroscopic signals of the dimer. We show that a significant measure of control over short-time EET is achievable in this system. This dissertation includes previously published coauthored material.
Commitee in charge: Dr. Michael E. Kellman, Chair; Dr. Jeffrey A. Cina, Advisor; Dr. David R. Herrick; Dr. Andrew H. Marcus; Dr. Daniel A. Steck
Thiele, Stefan. "Read-out and coherent manipulation of an isolated nuclear spin using a single-molecule magnet spin-transistor." Phd thesis, Université de Grenoble, 2014. http://tel.archives-ouvertes.fr/tel-00984973.
Full textLiang, Dong. "Semiconductor Nanowires: Synthesis and Quantum Transport." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1327641946.
Full textPramanik, Sandipan. "Spin Polarized Transport in Nanoscale Devices." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/1092.
Full textGarcía, Arellano Guadalupe. "Influence of the concentration and temperature on the spin relaxation time of donor-bound electrons immersed in a CdTe quantum well." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS109.
Full textThis work presents a study of the influence of doping concentration, temperature and longitudinal magnetic field on the spin relaxation time of donor-bound electrons immersed in the middle of a CdTe quantum well (QW). By inserting the donors in a QW, the optical selection rules for circularly polarized light are purified, allowing a higher degree of optical orientation of the electron spins than in 3D crystals. By using a photo-induced Faraday rotation technique, we first measure the spin relaxation time of donor-bound electrons for different doping concentrations at low temperature in the insulating regime. Then, in order to evaluate the spin relaxation mechanisms in our system, we calculate the exchange energy of a pair of donor-bound electrons immersed in the middle of an infinite QW, for any inter-donor distance and for different thicknesses. By using this calculation, we explain the experimental behavior as an interplay of two mechanisms: hyperfine and anisotropic exchange interactions. Moreover we determine the CdTe spin-orbit constant: αso = 0.079. Afterwards we present the development of an extended pump-probe experiment allowing to measure spin relaxation times at the microsecond scale. We briefly discuss the first experimental results for the longitudinal spin relaxation time of donor-bound electrons immersed in a CdTe QW with different doping concentrations. Finally, we investigate the temperature evolution of the spin relaxation in the range 10-80 K. The experimental behavior is explained by invoking spin exchange between electron spins localized on donors and the spin of electrons promoted to conduction states. The spin of localized electrons undergoes the effect of hyperfine and anisotropic exchange interactions, the D’yakonov-Perel’ mechanism governs the spin relaxation of the conduction electrons
Bertrand, Benoit. "Long-range transfer of spin information using individual electrons." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY020/document.
Full textRecently a growing interest emerged towards the use of electron spins for information processing. The current developments range from the generation of spin polarized currents to the coherent manipulation of single electron spins in quantum dots, with applications in spintronics and quantum information processing respectively. The main objective of this thesis was to develop the equivalent of spintronics at the single electron level. For that purpose, we try to achieve the coherent transport of a single electron spin between distant quantum dots. This could be a promising means of interconnecting different nodes of a quantum nanoprocessor. The electron transfer is ensured by a surface acoustic wave (SAW) that induces dynamical quantum dots thanks to the material piezoelectricity. First, the injection of a single electron from a static to a dynamical quantum dot has been studied. It enables the control of single electron transfer with unity probability down to the nanosecond timescale, thanks to a fast engineering of the static confining potential. Next, we demonstrate the possibility to prepare a coherent spin superposition, using an isolated double quantum dot in a metastable position that is compatible with SAW-assisted electron transfer. This type of isolated dot systems offers more liberty in terms of control. Taking advantage of this feature, a new scheme for coherent spin manipulations has been implemented and proved to have reduced noise sensitivity. Finally, transfer of spin information encoded in one or two electrons has been achieved, with fidelities reaching 30%
Brasseur, Paul. "Mach Zehnder interferometry and coherent manipulation of the valley in a graphene PN junction." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP012.
Full textElectron quantum optics, i.e. the realization of the electronic analogue of quantum optics experiments, represents a developing and recent research field, offering interesting perspectives for quantum computing. In this context, one of the main stakes is the achievement of quantum bits using electronic states, as well as the creation of entangled electronic states, which are the building blocks to achieve complex quantum computations. Up to now, the experiments carried out in semi-conducting GaAs/AlGaAs heterostructures exhibited the possibility to encode information in the charge or the spin of an electron, but strong decoherence in these systems implies a great weakness of these quantum states, which survives only below temperatures of 100mK and electrical biases of 40μV. This fragility makes it difficult to achieve entangled states and limits the development of complex quantum computations. In 2005, the discovery of a novel material, graphene, opened new prospects with on one hand the prediction of a larger phase coherence, and on the other hand the existence, in addition to the spin, of a new degree of freedom, named the valley, giving access to new possibilities to encode information. In a first part, this PhD work deals with the coherent manipulation of the valley, which is necessary to achieve a valley quantum bit in graphene. For this aim, we used, in the quantum Hall regime, a graphene pn junction, formed thanks to gates deposited on top of a stack composed of a graphene sheet encapsulated in Boron nitride crystals. In order to obtain an electrostatic control of the valley polarization of incoming electrons, we deposited local gates at the intersections between the pn junction and the graphene physical edge. Associating this electrostatic control to a tuning of the Aharanov-Bohm phase, we can coherently manipulate the valley of an electron over the whole states described by a valley Bloch sphere. In what follows, the coherence of the quantum states is investigated thanks to Mach Zehnder interferometry, by measuring the interferences dependence on the chemical potential of incoming electrons and on the temperature of the system. The quantum states formed are exceptionally steady, they persist up to 1.5K and 1mV, in other words at energies 20 times higher than what was observed in GaAs/AlGaAs.Then, the manuscript describes the study of the coherence length, i.e. the distance on which an electron can propagate while keeping its phase coherence, which has never been measured in the quantum Hall regime in graphene. To that end, the interferences dependence on the temperature was measured in three pn junctions of different lengths. By doing so, two coherence lengths, corresponding to two different regimes of decoherence, were extracted; in the regime occurring at low temperature, a record value of 374μm at 20mK was obtained.Finally, we investigated one of the mechanisms of decoherence in our system: spin waves, propagating in the graphene bulk when it is magnetized. During this project, we have shown the possibility to encode information in the valley and to manipulate coherently this degree of freedom, paving the way towards a new domain: the valleytronics. Furthermore, the coherence of the system is exceptional, enabling to envision the achievement of entangled electronic states by using a double Mach Zehnder interferometer geometry. This opens promising prospects for quantum computing, but also for fundamental purposes, with the possibility to demonstrate, for the first time with fermions, the validity of the Copenhagen interpretation of quantum physics within the EPR paradox framework
Kruglyak, Yu A. "Non-Equilibrium Green’s Function Method in Matrix Representation and Model Transport Problems of Nanoelectronics." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35352.
Full textRuess, Frank Joachim Physics Faculty of Science UNSW. "Atomically controlled device fabrication using STM." Awarded by:University of New South Wales. Physics, 2006. http://handle.unsw.edu.au/1959.4/24855.
Full textXu, Qing. "Détection Optique Homodyne: application à la cryptographie quantique." Phd thesis, Télécom ParisTech, 2009. http://pastel.archives-ouvertes.fr/pastel-00005580.
Full textXu, Qing. "Détection optique homodyne : application à la cryptographie quantique." Phd thesis, Paris, ENST, 2009. https://pastel.hal.science/pastel-00005580.
Full textNowadays the information security and privacy of the telecommunications Networks are based on the classical cryptography, which relies on the fragile mathematical assumptions. The quantum key distribution (QKD) is presently the only known way to distribute keys with unconditional security. This thesis aims to apply a multidisciplinary versatile approach to fill the gap between the fundamental physical limits and the experimental system implementations, in terms of speed, reliability and robustness. First of all, we proposed a BB84 protocol implementation using coherent phase states. The homodyne receiver was designed to compensate the phase and polarization fluctuations in the interferometers, as well as in the rest of the propagation channel. Then we established an experimental one-way QKD system operating at 1550 nm Telecom wavelength in a single mode fiber link, with QPSK modulation. Both the photon counting detection (PC) and the balanced homodyne detection (BHD) schemes have been implemented. Finally, we conducted theoretical and experimental comparisons of these two receivers. The BHD receiver has been improved with a dual-threshold post-decision. The implementation of such a process accepts non-conclusive measurements, and reduced key generation efficiency, but its permanence remains still better than the PC receiver at 1550 nm. We also proved that this system is robust under most common potential attacks