Academic literature on the topic 'Electronic quantum coherence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electronic quantum coherence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electronic quantum coherence"

1

Fassioli, Francesca, Rayomond Dinshaw, Paul C. Arpin, and Gregory D. Scholes. "Photosynthetic light harvesting: excitons and coherence." Journal of The Royal Society Interface 11, no. 92 (March 6, 2014): 20130901. http://dx.doi.org/10.1098/rsif.2013.0901.

Full text
Abstract:
Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.
APA, Harvard, Vancouver, ISO, and other styles
2

Palato, Samuel, Hélène Seiler, Parmeet Nijjar, Oleg Prezhdo, and Patanjali Kambhampati. "Atomic fluctuations in electronic materials revealed by dephasing." Proceedings of the National Academy of Sciences 117, no. 22 (May 14, 2020): 11940–46. http://dx.doi.org/10.1073/pnas.1916792117.

Full text
Abstract:
The microscopic origin and timescale of the fluctuations of the energies of electronic states has a significant impact on the properties of interest of electronic materials, with implication in fields ranging from photovoltaic devices to quantum information processing. Spectroscopic investigations of coherent dynamics provide a direct measurement of electronic fluctuations. Modern multidimensional spectroscopy techniques allow the mapping of coherent processes along multiple time or frequency axes and thus allow unprecedented discrimination between different sources of electronic dephasing. Exploiting modern abilities in coherence mapping in both amplitude and phase, we unravel dissipative processes of electronic coherences in the model system of CdSe quantum dots (QDs). The method allows the assignment of the nature of the observed coherence as vibrational or electronic. The expected coherence maps are obtained for the coherent longitudinal optical (LO) phonon, which serves as an internal standard and confirms the sensitivity of the technique. Fast dephasing is observed between the first two exciton states, despite their shared electron state and common environment. This result is contrary to predictions of the standard effective mass model for these materials, in which the exciton levels are strongly correlated through a common size dependence. In contrast, the experiment is in agreement with ab initio molecular dynamics of a single QD. Electronic dephasing in these materials is thus dominated by the realistic electronic structure arising from fluctuations at the atomic level rather than static size distribution. The analysis of electronic dephasing thereby uniquely enables the study of electronic fluctuations in complex materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Ruidan, Meixia Ruan, Hao Li, Xuan Leng, Jiading Zou, Jiayu Wang, Hailong Chen, Zhuan Wang, and Yuxiang Weng. "Vibrational and vibronic coherences in the energy transfer process of light-harvesting complex II revealed by two-dimensional electronic spectroscopy." Journal of Chemical Physics 156, no. 12 (March 28, 2022): 125101. http://dx.doi.org/10.1063/5.0082280.

Full text
Abstract:
The presence of quantum coherence in light-harvesting complex II (LHCII) as a mechanism to understand the efficiency of the light-harvesting function in natural photosynthetic systems is still debated due to its structural complexity and weak-amplitude coherent oscillations. Here, we revisit the coherent dynamics and clarify different types of coherences in the energy transfer processes of LHCII using a joint method of the high-S/N transient grating and two-dimensional electronic spectroscopy. We find that the electronic coherence decays completely within 50 fs at room temperature. The vibrational coherences of chlorophyll a dominate over oscillations within 1 ps, whereas a low-frequency mode of 340 cm−1 with a vibronic mixing character may participate in vibrationally assisted energy transfer between chlorophylls a. Our results may suggest that vibronic mixing is relevant for rapid energy transfer processes among chlorophylls in LHCII.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Yanling, Qiong Wu, Fei Sun, Cai Cheng, Sheng Meng, and Jimin Zhao. "Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation." Proceedings of the National Academy of Sciences 112, no. 38 (September 8, 2015): 11800–11805. http://dx.doi.org/10.1073/pnas.1504920112.

Full text
Abstract:
Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Schwickert, David, Marco Ruberti, Přemysl Kolorenč, Andreas Przystawik, Slawomir Skruszewicz, Malte Sumfleth, Markus Braune, et al. "Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy." Structural Dynamics 9, no. 6 (November 2022): 064301. http://dx.doi.org/10.1063/4.0000165.

Full text
Abstract:
In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of [Formula: see text] and [Formula: see text] fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.
APA, Harvard, Vancouver, ISO, and other styles
6

Lombardi, Federico, Alessandro Lodi, Ji Ma, Junzhi Liu, Michael Slota, Akimitsu Narita, William K. Myers, Klaus Müllen, Xinliang Feng, and Lapo Bogani. "Quantum units from the topological engineering of molecular graphenoids." Science 366, no. 6469 (November 28, 2019): 1107–10. http://dx.doi.org/10.1126/science.aay7203.

Full text
Abstract:
Robustly coherent spin centers that can be integrated into devices are a key ingredient of quantum technologies. Vacancies in semiconductors are excellent candidates, and theory predicts that defects in conjugated carbon materials should also display long coherence times. However, the quantum performance of carbon nanostructures has remained stunted by an inability to alter the sp2-carbon lattice with atomic precision. Here, we demonstrate that topological tailoring leads to superior quantum performance in molecular graphene nanostructures. We unravel the decoherence mechanisms, quantify nuclear and environmental effects, and observe spin-coherence times that outclass most nanomaterials. These results validate long-standing assumptions on the coherent behavior of topological defects in graphene and open up the possibility of introducing controlled quantum-coherent centers in the upcoming generation of carbon-based optoelectronic, electronic, and bioactive systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Novelli, Fabio, Jonathan O. Tollerud, Dharmalingam Prabhakaran, and Jeffrey A. Davis. "Persistent coherence of quantum superpositions in an optimally doped cuprate revealed by 2D spectroscopy." Science Advances 6, no. 9 (February 2020): eaaw9932. http://dx.doi.org/10.1126/sciadv.aaw9932.

Full text
Abstract:
Quantum materials displaying intriguing magnetic and electronic properties could be key to the development of future technologies. However, it is poorly understood how the macroscopic behavior emerges in complex materials with strong electronic correlations. While measurements of the dynamics of excited electronic populations have been able to give some insight, they have largely neglected the intricate dynamics of quantum coherence. Here, we apply multidimensional coherent spectroscopy to a prototypical cuprate and report unprecedented coherent dynamics persisting for ~500 fs, originating directly from the quantum superposition of optically excited states separated by 20 to 60 meV. These results reveal that the states in this energy range are correlated with the optically excited states at ~1.5 eV and point to nontrivial interactions between quantum many-body states on the different energy scales. In revealing these dynamics and correlations, we demonstrate that multidimensional coherent spectroscopy can interrogate complex quantum materials in unprecedented ways.
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Jeongho, Shaul Mukamel, and Gregory D. Scholes. "Two-Dimensional Electronic Double-Quantum Coherence Spectroscopy." Accounts of Chemical Research 42, no. 9 (September 15, 2009): 1375–84. http://dx.doi.org/10.1021/ar9000795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hamilton, James R., Edoardo Amarotti, Carlo N. Dibenedetto, Marinella Striccoli, Raphael D. Levine, Elisabetta Collini, and Francoise Remacle. "Time–Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy." Nanomaterials 13, no. 14 (July 18, 2023): 2096. http://dx.doi.org/10.3390/nano13142096.

Full text
Abstract:
Electronic coherence signatures can be directly identified in the time–frequency maps measured in two-dimensional electronic spectroscopy (2DES). Here, we demonstrate the theory and discuss the advantages of this approach via the detailed application to the fast-femtosecond beatings of a wide variety of electronic coherences in ensemble dimers of quantum dots (QDs), assembled from QDs of 3 nm in diameter, with 8% size dispersion in diameter. The observed and computed results can be consistently characterized directly in the time–frequency domain by probing the polarization in the 2DES setup. The experimental and computed time–frequency maps are found in very good agreement, and several electronic coherences are characterized at room temperature in solution, before the extensive dephasing due to the size dispersion begins. As compared to the frequency–frequency maps that are commonly used in 2DES, the time–frequency maps allow exploiting electronic coherences without additional post-processing and with fewer 2DES measurements. Towards quantum technology applications, we also report on the modeling of the time–frequency photocurrent response of these electronic coherences, which paves the way to integrating QD devices with classical architectures, thereby enhancing the quantum advantage of such technologies for parallel information processing at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
10

Kobayashi, Yuki, and Stephen R. Leone. "Characterizing coherences in chemical dynamics with attosecond time-resolved x-ray absorption spectroscopy." Journal of Chemical Physics 157, no. 18 (November 14, 2022): 180901. http://dx.doi.org/10.1063/5.0119942.

Full text
Abstract:
Coherence can drive wave-like motion of electrons and nuclei in photoexcited systems, which can yield fast and efficient ways to exert materials’ functionalities beyond the thermodynamic limit. The search for coherent phenomena has been a central topic in chemical physics although their direct characterization is often elusive. Here, we highlight recent advances in time-resolved x-ray absorption spectroscopy (tr-XAS) to investigate coherent phenomena, especially those that utilize the eminent light source of isolated attosecond pulses. The unparalleled time and state sensitivities of tr-XAS in tandem with the unique element specificity render the method suitable to study valence electronic dynamics in a wide variety of materials. The latest studies have demonstrated the capabilities of tr-XAS to characterize coupled electronic–structural coherence in small molecules and coherent light–matter interactions of core-excited excitons in solids. We address current opportunities and challenges in the exploration of coherent phenomena, with potential applications for energy- and bio-related systems, potential crossings, strongly driven solids, and quantum materials. With the ongoing developments in both theory and light sources, tr-XAS holds great promise for revealing the role of coherences in chemical dynamics.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electronic quantum coherence"

1

Acton, J. M. "Quantum coherence effects in electronic, photonic and atomic structures." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595334.

Full text
Abstract:
Light propagating through a disordered dielectric exhibits mesoscopic phenomena, such as coherent back scattering. In electronic systems, equivalent phenomena have been successfully described by the non-linear s-model. Starting from Maxwell’s equation in its full vector form, it is shown that disordered photonic systems, in two and three dimensions, can also be described by a non-linear s-model. The quasi classical approximation on which this theory is based is found to be valid in a window of frequencies. Numerical simulations of these systems are consistent with the s-model predictions. The mathematical equivalence between disordered photonic and electronic systems shows that the mechanisms for localization in the electronic and photonic band gaps are the same; numerical simulations to demonstrate this are presented. An investigation into the interplay of s-wave superconductivity and itinerant antiferromagnetism in disordered metals is presented. First, a s-model to describe this interplay is derived. It is used to obtain the phase diagram for the mean field phase transition between superconductivity and antiferromagnetism. The suppression of antiferromagnetism by disorder (which is analogous to the effect of magnetic disorder on superconductivity) culminates in a quantum critical point. The bilayer proximity effect is also investigated and the density of states inside an antiferromagnet coupled to a superconductor is obtained. Feshback resonance phenomena in ultracold Fermi gases are normally described by a Fermi-Bose model in which the Feshback molecule is treated as a point-like boson. We consider an alternative model of the 6Li system, in which a spin state is shared between the open and closed channels. In contrast to the Fermi-Bose model, a critical coupling in the open channel is required to induce a Feshback resonance, even at small detuning.
APA, Harvard, Vancouver, ISO, and other styles
2

Cabart, Clément. "Measurement and control of electronic coherences." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN031/document.

Full text
Abstract:
Ces dernières années, de considérables efforts expérimentaux ont été dévoués au développement d’outils de nanoélectronique quantique, dans le but d’atteindre un niveau de contrôle sur le transport électronique quantique à l’échelle de l’électron unique. Ces avancées ont poussé à un changement de paradigme dans le domaine du transport électronique cohérent et donné naissance à l’optique quantique électronique, domaine dans lequel cette thèse s’inscrit. Cette thèse est consacrée à deux problématiques. Tout d’abord, elle s’intéresse au problème des interactions Coulombiennes entre électrons, qui donnent lieu à un phénomène de décohérence qu’il est nécessaire de caractériser et de prédire au mieux afin de le contrôler. En utilisant une approche analytique et numérique, il a été possible de prédire l’effet de ces interactions sur un système expérimentalement accessible, prédiction qui a ensuite été confirmée par l’expérience. Dans la foulée de ce résultat, cette thèse présente des possibilités de contrôle de ces interactions, et propose un moyen de les mettre en œuvre qui devrait pouvoir être testé dans une expérience. Je me suis également confronté à la problématique de la caractérisation d’états quantiques complexes. En particulier, suite à la démonstration expérimentale d’un protocole de tomographie pour des états mono-électroniques, je me suis tourné vers l’extension de ce protocole à des états plus complexes, pouvant exhiber des propriétés de cohérence à deux électrons, voire plus. Ces états étant également sensibles aux interactions de Coulomb, une extension au cas multi-électronique des outils utilisés pour traiter ces interactions est proposée dans cette thèse
Over the last few years, extensive experimental efforts have been devoted to thedevelopment of quantum nanoelectronics tools aiming at controlling electronic trans-port down to the single electron level. These advances led to a paradigm shift inthe domain of coherent electronic transport, giving birth to electron quantum optics,which is the domain of this work.This manuscript is devoted to two problems. The first of these is the one ofCoulomb interactions between electrons, which lead to a decoherence phenomenonthat must be characterized and predicted in order to be controlled. Using an analyt-ical and numerical approach, it became possible to predict the effect of interactionson an experimentally relevant system, a prediction that was then confirmed in the ex-periment. After this result, this manuscript displays some ideas aiming at controllinginteractions and proposes some ways to test them experimentally.In this work, I also took on the problem of characterizing complex quantum states.In particular, following the experimental demonstration of a tomography protocol forfirst order coherences, I tried to extend this protocol to more complex states thatcould exhibit two-electron coherences, or more. These states being also sensitive to Coulomb interactions, an extension of the tools used to treat interactions to thismulti-electronic state is also presented in this work
APA, Harvard, Vancouver, ISO, and other styles
3

Rebentrost, Frank. "Exciton Transfer in Photosynthesis and Engineered Systems: Role of Electronic Coherence and the Environment." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10474.

Full text
Abstract:
Recent experiments show evidence for long-lived electronic coherence in several photosynthetic complexes, for example in the Fenna-Matthews-Olson complex of green sulfur bacteria. The experiments raise questions about the microscopic reasons for this quantum coherence and its role to the functioning of these highly evolved biological systems. The present thesis addresses both questions. We find that an interplay of electronic coherence and the fluctuating phonon environment is responsible for the high exciton transport efficiency in these complexes and generalize this idea to the concept of environment-assisted quantum transport (ENAQT). In addition, we quantify the contribution of coherent dynamics to the efficiency and thus to the biological functioning. We determine the effect of temporal (non-Markovian) and spatial correlations and develop an ab initio propagation method based on atomistic detail which predicts the long-lived coherence. The research in photosynthetic energy transfer can inspire new designs for the control of excitons in engineered systems. We develop a method for computing the Forster coupling between semiconductor nanoparticle quantum dots. The focus is on the size and shape dependence and the presence of a spatially varying dielectric environment and metallic gates. A separation of the wavefunction into slowly and fast varying part provides the basis for an efficient computation on a real-space grid. Finally, the simulation of structured models of photosynthetic energy transfer is a challenging task using conventional computing resources. To this end, we propose a special-purpose superconducting device based on flux quantum bits and quantum LC resonators and show that parameters can be engineered such that this simulation becomes possible.
Chemistry and Chemical Biology
APA, Harvard, Vancouver, ISO, and other styles
4

Peeks, Martin. "Electronic delocalisation in linear and cyclic porphyrin oligomers." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:58a35932-320c-47dc-828e-0d121d693fd8.

Full text
Abstract:
This thesis presents a combined experimental and computational evaluation of the physical-organic properties of butadiyne-linked porphyrin oligomers. The principal result from the thesis is the synthesis and characterisation of the largest aromatic and antiaromatic systems to date, in the form of an oxidised [6]-porphyrin nanoring, with diameter 2.4 nm. This large electronically coherent system provides insight into the connection between aromatic ring currents and persistent currents in metal and semiconductor mesoscopic rings. Chapter 1 briefly reviews the concepts used in the remainder of the thesis, with a particular focus on aromaticity. In Chapter 2, the barrier to inter-porphyrin torsional rotation in a butadiyne-linked porphyrin dimer is determined computationally and experimentally to be 3 kJ mol-1. The barrier height is closely related to the resonance delocalisation energy between the porphyrin subunits. In Chapter 3 we show that by oxidising a butadiyne-linked [6]-porphyrin nanoring to its 4+ and 6+ oxidation states, the nanoring becomes antiaromatic and aromatic respectively. In contrast, the neutral oxidation state exhibits only local aromaticity for the six porphyrin units. The 12+ cation can also be generated, and exhibits local antiaromaticity for each porphyrin unit. The characterisation of (anti)aromaticity employs NMR and computational techniques. In Chapter 4, the properties of cation radicals of linear and cyclic porphyrin oligomers are explored. Cations generated by spectroelectrochemistry are measured by optical spectroscopies, and chemically generated radical monocations are examined by cw/pulsed EPR spectroscopies. EPR and optical spectroscopies agree that the dimer monocation radical is fully delocalised, in Robin-Day Class III, whereas the monocations of longer oligomers are localised over 2-3 porphyrin units (Class II). In Chapter 5, photophysical and computational investigations into excited state aromaticity in porphyrin nanorings are presented. The computational results suggest the presence of aromaticity in the triplet excited states, but experiment fails to convincingly demonstrate the effect. Computational results in Chapter 6 show that a butadiyne linked [6]-porphyrin nanoring in which one butadiyne (C≡C-C≡C) is truncated to an alkyne (C≡C) exhibits a reversal of aromaticity and antiaromaticity in its oxidised states, compared to the all-butadiyne linked nanoring, consistent with Hückel's law.
APA, Harvard, Vancouver, ISO, and other styles
5

Roussely, Grégoire. "Mesures résolues en temps dans un conducteur mésoscopique." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY013/document.

Full text
Abstract:
Au cours de la dernière décennie, un important effort a été fait dans le domaine des conducteurs électroniques de basse dimensionnalité afin de réaliser une électronique à électrons uniques. Une idée particulièrement attractive étant de pouvoir contrôler complétement la phase d’un électron unique volant pour transporter et manipuler de l’information quantique dans le but de construire un qubit volant. L’injection contrôlée d’électrons uniques dans un système électronique bidimensionnel balistique peut être fait grâce à une source d’électrons uniques basée sur des pulses de tensions lorentziens sub-nanosecondes. Une telle source peut aussi être utilisée pour mettre en évidence de nouveaux phénomènes d’interférences électroniques. Lorsqu’un pulse de tension court est injecté dans un interféromètre électronique, de nouveaux effets d’interférences sont attendus du fait de l’interaction du pulse avec les électrons de la mer de Fermi. Pour la réalisation de cette expérience, il est important de connaître avec précision la vitesse de propagation du paquet d’onde électronique créé par le pulse.Dans cette thèse, nous présentons des mesures résolues en temps d’un pulse de tension court (<100 ps) injecté dans un fil quantique 1D formé dans gaz d’électron bidimensionnel qui nous ont permis de déterminer sa vitesse de propagation. Nous montrons que le pulse se propage bien plus vite que la vitesse de Fermi d’un système sans interaction. La vitesse de propagation est augmentée par les interactions électron-électron. Pour un fil quantique contenant un grand nombre de modes, la vitesse mesurée est en excellent accord avec la vitesse d’un plasmon dans un système 2D en présence de grilles métalliques. En modifiant le potentiel de confinement électrostatique et donc l’intensité des interactions, nous montrons qu’il est possible de contrôler la vitesse de propagation. Nous avons ensuite étudié un interféromètre électronique à deux chemins basé sur deux fils couplés par une barrière tunnel. Nos mesures préliminaires font ressortir une signature qui peut être attribuée à des oscillations tunnel cohérentes des électrons injectés dans ce système. Dans un future proche, cet interféromètre pourrait être utilisé pour mettre en évidence ces nouveaux effets spectaculaires dus à l’interaction du pulse avec les électrons de la mer de Fermi
Over the past decade, an important effort has been made in the field of low dimensional electronic conductors towards single electron electronics with the goal to gain full control of the phase of a single electron in a solid-state system. A particular appealing idea is to use a single flying electron itself to carry and manipulate the quantum information, the so-called solid state flying qubit. On demand single electron injection into such a ballistic two-dimensional electron system can be realized by employing the recently developed single electron source based on sub-nanosecond lorentzian voltage pulses. Such a source could also be used to reveal interesting new physics. When a short voltage pulse is injected in an electronic interferometer, novel interference effects are expected due to the interference of the pulse with the surrounding Fermi sea. For the realization of such experiments it is important to know with high accuracy the propagation velocity of the electron wave packet created by the pulse.In this thesis, we present time resolved measurements of a short voltage pulse (<100 ps) injected into a 1D quantum wire formed in a two-dimensional electron gas and determine its propagation speed. We show that the voltage pulse propagates much faster than the Fermi velocity of a non-interacting system. The propagation speed is enhanced due to electron interactions within the quantum wire. For a quantum wire containing a large number of modes, the measured propagation velocity agrees very well with the 2D plasmon velocity for a gated two-dimensional electron gas. Increasing the confinement potential allows to control the strength of the electron interactions and hence the propagation speed. We then have studied an electronic two-path interferometer based on two tunnel-coupled wires. Our preliminary measurements show a signature that can be attributed to the coherent tunneling of the electrons injected into this system. In the near future, this system could be used to reveal these new striking effects due to the interaction of the voltage pulse with the Fermi sea
APA, Harvard, Vancouver, ISO, and other styles
6

PEROSA, GIOVANNI. "Impact of the Electrons Dynamics on the Free-electron Lasers Radiation Coherence." Doctoral thesis, Università degli Studi di Trieste, 2023. https://hdl.handle.net/11368/3041022.

Full text
Abstract:
Modern science advancements rely on the possibility of producing short laser-like coherent pulses in the XUV and in the X-rays wavelength ranges to probe electronic structure in atoms, molecules and solid-state matter. For this reason, light-sources including synchrotrons, inverse Compton scattering, high harmonic generation in gas (HHG) and free electron lasers (FELs) are invaluable tools for research in these fields. In particular, they all have in common the exploitation of the radiating process resulting from electrons’ acceleration under the influence of an electromagnetic field. The aim of this thesis is to explore the impact of electrons’ dynamics on the coherence of FELs seeded by an external laser. In this thesis I demonstrate that electrons’ dynamics plays a major role in the conversion and transformation of light’s features, such as coherence, which can be transmitted to electrons and "inherited" from the re-emitted light. To fulfill this purpose, both the theoretical and the experimental approaches have been used. Most of the models presented, derived or extended in this work are, in fact, supported by experimental evidence. The interplay between electrons and light’s properties is investigated using both classical and quantum dynamics. While the former is routinely adopted to describe the FEL dynamics and collective phenomena in an electron bunch, the latter becomes mandatory to fully achieve a faithful description of the varieties of phenomena that involve the emission of photons. From the classical point of view, a comprehensive analytical model for electron beam longitudinal dynamics is derived by including a new phenomenon, known as intrabeam scattering, and by investigating its effect on the electrons’ distribution. The predictions of this model can be directly compared with both beam and FEL measurements, showing a good agreement with both. From the quantum-dynamical point of view, we start to explore the possibility to answer the following question: "is it possible to introduce quantum features, such as coherence, in any process of harmonic generation from a coherent light pulse?" In order to do so, we focus our attention on the characterization of quantum coherence via photon number distribution and the quantum electrodynamics of an electron in a laser field. The practical aspect of my investigation is threefold: the prediction and characterization of electron beam quality; the optimization of seeded and unseeded FELs performances, that is possible through the mitigation of instabilities originated in the electron bunch; the investigation of unexplored FELs features and configurations that could be exploited for novel experiments. Finally, although the results and discussions are directly applied to the FEL case, some of the theoretical results regarding the coherence can be applied, without loss of generality, to any process of electrons-light interaction.
Modern science advancements rely on the possibility of producing short laser-like coherent pulses in the XUV and in the X-rays wavelength ranges to probe electronic structure in atoms, molecules and solid-state matter. For this reason, light-sources including synchrotrons, inverse Compton scattering, high harmonic generation in gas (HHG) and free electron lasers (FELs) are invaluable tools for research in these fields. In particular, they all have in common the exploitation of the radiating process resulting from electrons’ acceleration under the influence of an electromagnetic field. The aim of this thesis is to explore the impact of electrons’ dynamics on the coherence of FELs seeded by an external laser. In this thesis I demonstrate that electrons’ dynamics plays a major role in the conversion and transformation of light’s features, such as coherence, which can be transmitted to electrons and "inherited" from the re-emitted light. To fulfill this purpose, both the theoretical and the experimental approaches have been used. Most of the models presented, derived or extended in this work are, in fact, supported by experimental evidence. The interplay between electrons and light’s properties is investigated using both classical and quantum dynamics. While the former is routinely adopted to describe the FEL dynamics and collective phenomena in an electron bunch, the latter becomes mandatory to fully achieve a faithful description of the varieties of phenomena that involve the emission of photons. From the classical point of view, a comprehensive analytical model for electron beam longitudinal dynamics is derived by including a new phenomenon, known as intrabeam scattering, and by investigating its effect on the electrons’ distribution. The predictions of this model can be directly compared with both beam and FEL measurements, showing a good agreement with both. From the quantum-dynamical point of view, we start to explore the possibility to answer the following question: "is it possible to introduce quantum features, such as coherence, in any process of harmonic generation from a coherent light pulse?" In order to do so, we focus our attention on the characterization of quantum coherence via photon number distribution and the quantum electrodynamics of an electron in a laser field. The practical aspect of my investigation is threefold: the prediction and characterization of electron beam quality; the optimization of seeded and unseeded FELs performances, that is possible through the mitigation of instabilities originated in the electron bunch; the investigation of unexplored FELs features and configurations that could be exploited for novel experiments. Finally, although the results and discussions are directly applied to the FEL case, some of the theoretical results regarding the coherence can be applied, without loss of generality, to any process of electrons-light interaction.
APA, Harvard, Vancouver, ISO, and other styles
7

Mallet, François. "Cohérence quantique, diffusion magnétique et effets topologiques." Grenoble 1, 2006. https://theses.hal.science/tel-00546850.

Full text
Abstract:
Dans mon mémoire de Thèse sont regroupés des résultats expérimentaux, centrés autour de la thématique de la cohérence quantique des électrons à très basse température, obtenus à partir de mesures très précises des corrections quantiques au transport classique dans les nanostructures métalliques. Nous avons tout d'abord étudié les effets de cohérence dans des réseaux de fils métalliques. Nous avons montré l'influence de la dimension du régime de diffusion sur la cohérence. En passant d'un conducteur macroscopique à un conducteur mésoscopique, on a observé un “crossover” dimensionnel pour l'amplitude des diverses corrections quantiques quand la longueur de cohérence de phase excède la taille typique du système, ce qui nous a permis de préciser exactement ce qu'est la moyenne d'ensemble en Physique Mésoscopique. Dans la deuxième partie de ce manuscrit, nous avons présenté des mesures du temps de cohérence de phase dans des fils métalliques contenant des impuretés magnétiques. Ces échantillons ont été fabriqués d'une fa¸con originale et contrôlée en utilisant une technologie nouvelle grâce à l'utilisation d'un faisceau d'ions focalisé. Nous avons mesuré un comportement universel sur 2 decades en temperature du déphasage par impuretés implantées, ceci étant la preuve que cette décohérence supplémentaire s'inscrit dans la Physique de l'effet Kondo. Nous avons montré que le taux de déphasage mesuré est en très bon accord avec de récents calculs du Groupe de Renormalisation Numérique. Plus particulièrement, nous avons montré de façon non équivoque que l'écrantage en dessous de TK induit une désaturation du temps de cohérence de phase linéaire en température jusqu'à 0, 1 TK
In this thesis are reported experimental results centered on the thematic of the electronic quantum coherence at very low temperatures, obtained by very precise measurements of the quantum correction to the classical electronic transport in metallic nanostructures. We have first studied the coherence effects in network of metallic one-dimensional wires. We have shown the influence on the coherence itself of the diffusion dimensionality. By going from a macroscopic conductor to a purely mesoscopic one, we measured a crossover in the scaling of the quantum corrections amplitudes when the phase coherence length exceed the typical size of the system. This has allowed us to really precise what the ensemble averaging is in Mesoscopic Physics. In the second part of this work, we have shown the temperature dependence of the phase coherence length in metallic wire with magnetic impurities. These samples were fabricated in a very new and controlled way, by using a new technics with a focus ion beam. We have measured a universal behavior over 2 decades in temperature for the dephasing due to one magnetic impurity. This was the direct prove that this added decoherence belongs to the physics of the generic many body problem named « Kondo Physics ». We have finally shown that the measured dephasing rate was in excellent agreement with recent theoretical calculations based one the numerical renormalization group technics. More precisely we have shown that the magnetic impurities screening induces a linear desaturation of the phase coherence time above 0,1 TK
APA, Harvard, Vancouver, ISO, and other styles
8

Flentje, Hanno. "Coherent transfer of electron spins in tunnel-coupled quantum dots." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY039/document.

Full text
Abstract:
De récentes avancées technologiques laissent entrevoir le potentiel des spins électroniques uniques comme supports pour le stockage et la manipulation de l'information. En raison de leur nature quantique, les spins électroniques contrôlé à l’échelle de l’électron unique peuvent non seulement être utilisés pour stocker l'information classique, mais pourraient également être mis en œuvre pour réaliser des qubits dans un ordinateur quantique. Dans un tel dispositif, les superpositions de différents états de spin peuvent être utilisées pour calculer plus efficacement que les ordinateurs classiques.Une mise en œuvre prometteuse d'un tel système est un électron piégé dans une boite quantique latérale. Ce dispositif nanométrique défini dans des structures semiconductrices permet d'isoler et de manipuler le spin d’un électron de façon cohérente avec des potentiels électrostatiques. Dans cette thèse, nous manipulons les électrons dans des boites quantiques dans un régime dit « isolé». La manipulation de charges électroniques individuelles en plusieurs boites quantiques connectées entre elles apparaît alors être simplifiée. Cette manipulation de spin se fait grâce à l’échange cohérent d’un quantum de spin entre deux électrons piégés. Le contrôle du couplage tunnel entre ces deux boites quantiques rend cet échange contrôlé. De cette façon, la manipulation de spin peut se faire à un "sweet spot", un point insensible au bruit de charge, permettant ainsi d'obtenir des oscillations de spin de haute qualité.Le contrôle précis de la charge dans le régime isolé est ensuite utilisé pour contrôler le déplacement d’un électron dans un système circulaire de trois boites quantiques qui sont fortement couplées par effet tunnel. Ainsi la cohérence d'une superposition de deux spins électroniques déplacée le long d’une boucle fermée a été étudiée. Nos mesures montrent le transport cohérent de spins électroniques uniques sur des distances allant jusqu'à 5 μm. Pendant le transfert, le temps de cohérence se révèle être considérablement augmenté. Nous avons identifié le mécanisme sous-jacent à cette amélioration comme provenant d’un rétrécissement, lors du mouvement, des gradients de champ nucléaires générées par l'environnement cristallin. Les sources de décohérence sont discutées et permettent d’obtenir de nouvelles connaissances sur la dynamique interne du processus de transfert entre des boites quantiques couplées. Nos résultats sur le transport cohérent d'électrons peuvent être utilisés pour évaluer les possibilités d’intégration à grande échelle de qubits de spin dans des réseaux de boites quantiques à deux dimensions
Recent technological advances hint at the future possibility to use single electron spins as carriers and storage of information. Due to their quantum nature, individually controlled electron spins can not only be used to store classical information, but could also find implementation as quantum bits in a quantum computer. In this envisioned device, the superposition of different spin states could be used to perform novel calculation procedures more efficiently than their classical counterparts.A promising implementation of a controllable single electron spin system is an electron trapped in a lateral quantum dot. This nanoscale solid state device allows to isolate and coherently manipulate the spin of individual electrons with electrostatic potentials. In this thesis we study electrons in quantum dot structures using a manipulation technique which we call the "isolated regime". In this regime the manipulation of individual electron charges in several connected quantum dots is shown to be simplified. This allows to implement a novel spin manipulation scheme to induce coherent exchange of a quantum of spin between two electrons via a variation of the tunnel-coupling between adjacent quantum dots. This manipulation scheme is observed to lead to a reduced sensibility to charge noise at a "sweet spot" and thereby allows to obtain high quality spin oscillations.The improved charge control in the isolated regime is then used to achieve circular coupling in a triple quantum dot device with high tunnel-rates. This allows to directly probe the coherence of a superposition of two electron spins which are displaced on a closed loop in the three quantum dots. Our measurements demonstrate coherent electron transport over distances of up to 5 μm. During the transfer the coherence time is found to be significantly increased. We identify the underlying mechanism for the enhancement with a motional narrowing of the nuclear field gradients originating from the crystal environment. The limiting decoherence source is found to be single electron spin-flips induced by a real space motion of the electrons. Our results on the coherent transport of electrons can be used to asses the scaling possibilities of spin qubit implementations on two-dimensional lattices
APA, Harvard, Vancouver, ISO, and other styles
9

Kabir, Amin. "Phase coherent photorefractive effect in II-VI semiconductor quantum wells and its application for optical coherence imaging." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282315981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneider, Adam. "Coherent electron transport in triple quantum dots." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32541.

Full text
Abstract:
We use a quantum master equation approach to study the transport properties of a triple quantum dot ring. Unlike double quantum dots and triple quantum dot chains, this geometry gives two transport paths with a relative phase sensitive to magnetic flux via the Aharonov-Bohm effect. This gives rise to a coherent population trapping effect and what is known as a "dark state". Unlike other master equation techniques valid only in the high bias voltage limit, our treatment reproduces such results as well as giving an analytic zero-bias conductance formula. As well as providing a more robust signature of this "dark state" physics, our model further predicts a negative differential resistance in connection with high bias rectification already predicted.
Nous utilisons une approche d´equation quantique maîtresse pour étudier les propriétés de transport des points quantiques triples en forme d'anneau. Contrairement aux points quantiques doubles et triples en forme de chaînes, cette géométrie offre deux chemins pour le transport avec une phase quantique relative qui est sensible au flux magnétique en raison de l'effet Aharonov-Bohm. Ceci méne à un effet de piégeage de population cohérent et cela est connu sous le nom d'un "état sombre". Contrairement à d'autres techniques d'équation maîtresse qui sont seulement valides dans la limite d'un potentiel électrique élevé, notre méthode reproduit les résultats de ces derniers en plus de donner une expression analytique pour la conductance différentielle de zéro potentiel électrique. En plus de donner une optique plus robuste de la physique "d´etats sombres", notre modèle prédit une résistance différentielle négative qui est reliée au phénomène déjà prédit de rectification à potentiel élevé.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electronic quantum coherence"

1

Italy) International School of Physics "Enrico Fermi" (171st 2008 Varenna. Quantum coherence in solid state systems. Amsterdam: IOS Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tadao, Shimizu, and International Symposium on Atomic Frequency Standards and Coherent Quantum Electronics (1993 : Nara, Japan), eds. Atomic frequency standards and coherent quantum electronics. Tokyo: Japanese Journal of AppliedPhysics, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1916-, Prokhorov A. M., and Institute for Advanced Physics Studies. La Jolla International School of Physics., eds. Coherent radiation generation and particle acceleration. New York: American Institute of Physics, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International School of Physics "Enrico Fermi" (1995 Varenna, Italy). Coherent and collective interactions of particles and radiation beams: Varenna on Lake Como, Villa Monastero 11-21 July 1995. Amsterdam: IOS Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Topical, Meeting on Short Wavelength Coherent Radiation Generation and Applications (1988 North Falmouth Ma ). OSA proceedings on short wavelength coherent radiation--generation and applications: Proceedings of the Fourth Topical Meeting, September 26-29, 1988, North Falmouth, MA. Washington, DC: Optical Society of America, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Topical Meeting on Short Wavelength Coherent Radiation, Generation and Applications (1986 Monterey, Calif.). Topical Meeting on Short Wavelength Radiation, Generation and Applications: Summaries of papers presented at the Short Wavelength Coherent Radiation: Generation and Applications Topical Meeting, March 24-26, 1986, Monterey, California. Washington, DC: The Society, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Topical Meeting on Short Wavelength Coherent Radiation, Generation and Applications. (1991 Monterey, Calif.). OSA proceedings on short-wavelength coherent radiation--generation and applications: Proceedings of the Fifth Topical Meeting, April 8-10, 1991, Monterey, California. Washington, DC: Optical Society of America, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spectroscopy with coherent radiation: Selected papers of Norman F. Ramsey with commentary. Singapore: World Scientific, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1953-, Akulin V. M., ed. Decoherence, entanglement and information protection in complex quantum systems. Dordrecht: Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Phillips, R. T. Coherent optical interactions in semiconductors. Boston, MA: Springer, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electronic quantum coherence"

1

Rössler, Ulrich. "Electronic Structure of Small Systems." In Quantum Coherence in Mesoscopic Systems, 45–62. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3698-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Nam, Jinhee Kim, Jong Wan Park, Kyung-Hwa Yoo, Jeong-O. Lee, Kicheon Kang, Hyun-Woo Lee, and Ju-Jin Kim. "Phase-Coherent Electronic Transport in a Multi-Wall Carbon Nanotube." In Macroscopic Quantum Coherence and Quantum Computing, 51–60. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1245-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heitmann, Detlef, and Klaus Ensslin. "Far-Infrared Spectroscopy of Two-Dimensional Electronic Systems with Tunable Charge Density." In Quantum Coherence in Mesoscopic Systems, 3–22. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3698-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stauffer, Hans U., Joshua B. Ballard, Zohar Amitay, and Stephen R. Leone. "State-selective phase control of molecular wave packets in two electronic states." In Coherence and Quantum Optics VIII, 493–94. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lasorne, Benjamin, Graham A. Worth, and Michael A. Robb. "Non-adiabatic Photochemistry: Ultrafast Electronic State Transitions and Nuclear Wavepacket Coherence." In Molecular Quantum Dynamics, 181–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45290-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blavier, Martin, Natalia Gelfand, R. D. Levine, and F. Remacle. "Controlling the Time Evolution of Electron-Nuclei Entanglement for Steering Vibronic Coherences Dynamics Induced by Short 1–2 fs Optical Pulses." In Springer Proceedings in Physics, 83–100. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-47938-0_9.

Full text
Abstract:
AbstractAtto pulses allow controlling the charge migration and the spatio-temporal beating of the electronic density on a purely electronic time scale by tailoring the parameters of the pump pulse to excite specific electronic coherences. As the nuclei begin to move, the electronic and nuclear motions are entangled and the engineered electronic coherences can be usefully exploited for steering the vibronic density to specific products through the network of non adiabatic interactions. Three recent examples for which we demonstrate such a control by fully quantum dynamical computations are discussed. Two diatomic molecules, LiH and N2 excited by a 2 fs deep UV pulse and the ultrafast structural Jahn-Teller rearrangement in CH4+. The entanglement between electronic and nuclear degrees of freedom arises from the optical excitation and from non adiabatic coupling induced by the nuclear motion. We provide insight of the coherence control mechanism by analyzing the time evolution of the entanglement using a singular valued decomposition (SVD) of the matricized wave function.
APA, Harvard, Vancouver, ISO, and other styles
7

Calhoun, Tessa R., Naomi S. Ginsberg, Gabriela S. Schlau-Cohen, Yuan-Chung Cheng, Matteo Ballottari, Roberto Bassi, and Graham R. Fleming. "Observation of Quantum Coherence in Light-Harvesting Complex II by Two-Dimensional Electronic Spectroscopy." In Springer Series in Chemical Physics, 406–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stern, Ady, Yakir Aharonov, and Yoseph Imry. "Linear Response and Dephasing by Coulomb Electron-Electron Interactions." In Quantum Coherence in Mesoscopic Systems, 99–104. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3698-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Timp, Gregory, Robert E. Behringer, Eric H. Westerwick, and Jack E. Cunningham. "Transport in an Electron Waveguide." In Quantum Coherence in Mesoscopic Systems, 113–51. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3698-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Corato, Valentina, Carmine Granata, Luigi Longobardi, Maurizio Russo, Berardo Ruggiero, and Paolo Silvestrini. "Josephson Systems for Quantum Coherence Experiments." In International Workshop on Superconducting Nano-Electronics Devices, 33–41. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electronic quantum coherence"

1

Hu, Wenxiang, and Ignacio Franco. "Understanding electronic decoherence in molecules from exact modeling." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.m5a.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Jinming, Jinping Yao, Haisu Zhang, Zhaoxiang Liu, Bo Xu, Wei Chu, Lingling Qiao, et al. "Electronic quantum coherence in N 2 + air lasing." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_qels.2019.fth1m.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huxter, Vanessa M., Jeongho Kim, and Gregory D. Scholes. "Measurement of Electron Correlation Using Two-Dimensional Electronic Double-Quantum Coherence Spectroscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.wb4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prior, Y., I. Sh Averbukh, and O. Kinrot. "Coin - Coherence Observation by Interference Noise." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hartley, R. T., T. Grevatt, N. J. Traynor, and R. E. Worsley. "A New Method For Study of Exciton Coherence in Semiconductors." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Peng, Yonghao Mi, Marianna Lytova, Mathew Britton, Xiaoyan Ding, A. Yu Naumov, P. B. Corkum, and D. M. Villeneuve. "Coherent control of molecular absorption line shape and optical gain in XUV." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.th2a.2.

Full text
Abstract:
We demonstrated coherent control of molecular absorption line shape and optical gain in XUV. The control is achieved by creating a quantum coherence in the ground electronic state of hydrogen molecules.
APA, Harvard, Vancouver, ISO, and other styles
7

Konar, Arkaprabha, Jay D. Shah, Tapas Goswami, Yinan Shu, Benjamin Levine, Vadim V. Lozovoy, and Marcos Dantus. "Electronic Coherence Mediated Quantum Control of Chemical Reactions in Polyatomic Molecules." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fw1a.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vespelov, V. G., and D. I. Staslelko. "Suppression of Quantum Fluctations and Coherence of SRS on Bragg Grating." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moody, Galan, Corey McDonald, Ari Feldman, Todd Harvey, Richard P. Mirin, and Kevin L. Silverman. "Electronic Control of Exciton Coherence in a Charged Quantum Dot Photonic Waveguide." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.jw2a.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schlau-Cohen, G. S., T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming. "Elucidation of Electronic Structure and Quantum Coherence in LHCII with Polarized 2D Spectroscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.wd6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electronic quantum coherence"

1

Schoelkopf, Robert J., and Steven M. Girvin. Experiments in Quantum Coherence and Computation With Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada455700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schoelkopf, R. J. Experiments in Quantum Coherence and Computation with Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada414679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steel, Duncan G. Working Beyond Moore's Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ad1003429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Flagg, Edward. Final Technical Report: Combined Coherent Manipulation and Single-Shot Measurement of an Electron Spin in a Quantum Dot. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1925163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography