Academic literature on the topic 'Electronic Properties - Metal Clusters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electronic Properties - Metal Clusters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electronic Properties - Metal Clusters"
Pastor, G. M. "Electronic properties of divalent-metal clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 19, no. 1-4 (March 1991): 165–67. http://dx.doi.org/10.1007/bf01448282.
Full textJena, P., S. N. Khanna, and B. K. Rao. "CLUSTERS WITH NOVEL PROPERTIES." International Journal of Modern Physics B 06, no. 23n24 (December 1992): 3657–66. http://dx.doi.org/10.1142/s0217979292001717.
Full textMaryam Darvishpour, Maryam Darvishpour, and Mohammad Hossein Fekri Mohammad Hossein Fekri. "Investigation of the Magnetic and Electronic Properties of Copper Nanocluster Cu14 Contaminated with Fe, Ni and Co." Journal of the chemical society of pakistan 42, no. 3 (2020): 399. http://dx.doi.org/10.52568/000647.
Full textMaryam Darvishpour, Maryam Darvishpour, and Mohammad Hossein Fekri Mohammad Hossein Fekri. "Investigation of the Magnetic and Electronic Properties of Copper Nanocluster Cu14 Contaminated with Fe, Ni and Co." Journal of the chemical society of pakistan 42, no. 3 (2020): 399. http://dx.doi.org/10.52568/000647/jcsp/42.03.2020.
Full textRao, B. K., S. N. Khanna, and P. Jena. "Structural and electronic properties of compound metal clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 3, no. 2-3 (June 1986): 219–22. http://dx.doi.org/10.1007/bf01384810.
Full textOleshko, Vladimir P., Peter A. Crozier, Nick Schryvers, and Michail Vargaftik. "Mesostructure Of Pd And Pt Nanoclusters Chemically Stabilized With Phosphide And Phenanthroline Ligands: Hrtem And Aem Characterization." Microscopy and Microanalysis 5, S2 (August 1999): 184–85. http://dx.doi.org/10.1017/s1431927600014240.
Full textPhaahla, TM, PE Ngoepe, RA Catlow, and HR Chauke. "The effect of doping with pt impurity on ti clusters: a density functional theory study." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 40, no. 1 (January 24, 2022): 75–78. http://dx.doi.org/10.36303/satnt.2021cosaami.15.
Full textGOODMAN, D. W. "CATALYSIS BY METALS: FROM EXTENDED SINGLE CRYSTALS TO SMALL CLUSTERS." Surface Review and Letters 01, no. 04 (December 1994): 449–55. http://dx.doi.org/10.1142/s0218625x94000424.
Full textNguyen, Hong Van, That Van Nguyen, Bong Thi Le, Huong Thi Thanh Do, and Truc Thi Thanh Huynh. "Theoretical study on structures and electronic properties of Na8TM clusters (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn)." Science and Technology Development Journal - Natural Sciences 2, no. 2 (May 16, 2019): 54–61. http://dx.doi.org/10.32508/stdjns.v2i2.734.
Full textNOZUE, Y., T. KODAIRA, S. OHWASHI, N. TOGASHI, and O. TERASAKI. "FERROMAGNETISM OF ALKALI-METAL CLUSTERS INCORPORATED IN THE PERIODIC SPACE OF ZEOLITE LTA." Surface Review and Letters 03, no. 01 (February 1996): 701–6. http://dx.doi.org/10.1142/s0218625x96001261.
Full textDissertations / Theses on the topic "Electronic Properties - Metal Clusters"
Raparla, Mrudula. "Study of the structural and electronic properties of aluminum nano clusters by DFT." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textStoll, Tatjana. "Ultrafast electronic, acoustic and thermal properties of metal nanoparticles and clusters." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10332/document.
Full textWe used ultrafast time-resolved pump-probe spectroscopy to experimentally investigate the optical response of small metal nano-objects in the few nanometer range (< 2 nm), where a transition from a small solid behaviour to a molecular one is expected. The modification of the intrinsic thermalization processes (electron-electron and electron-phonon interactions) has been studied both on glass-embedded mass-selected silver samples and chemically synthesized ligand-stabilized atomic-defined gold clusters. Electron gas internal thermalization and cooling with the lattice are shown to be affected by size reduction and the concomitant discretization of electronic states. The acoustic response in the same small size range has been investigated. Vibrations of gold clusters were characterized by a quasi-breathing mode scaling with their size, in analogy with larger nanoparticles. The breathing mode of bimetallic core/shell Pt-Au and Ni-Ag nanospheres appeared to be in good quantitative agreement with predictions of continuous elastic models, despite the monoatomic thickness of the layer shell. The same time-resolved approach was used to investigate heat transfer through the nanoparticles interfaces. In this context, heat evacuation of bare or silica-encapsulated gold
Irawan, Thomas Christoph Eng Fuk. "Geometric and electronic properties of size selected metal clusters on surfaces." Berlin Pro Business, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?id=2899406&prov=M&dok_var=1&dok_ext=htm.
Full textVERONESE, MARCO. "ELECTRONIC AND MAGNETIC PROPERTIES OF IMPURITIES AND CLUSTERS ON METAL SURFACES." Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12556.
Full textLa struttura elettronica ed il magnetismo di atomi singoli e impurezze di metalli di transizione deposti su superfici metalliche sono stati studiati per mezzo di tecniche dicroiche di assorbimento dei raggi X (XMCD) e misure di magnetizzazione, in alti campi magnetici ed a temperature criogeniche. Le caratteristiche uniche delle XMCD nell'investigare sia momenti magnetici di spin che orbitali con selettività chimica sono state applicate a sistemi estremamente diluiti, con concentrazione di superficie dell'ordine di 1012 atomi cm-2 , fino al limite di atomi isolati. Questo genere di misure è stato applicato ai sistemi di impurezze di superficie soltanto in ultimi anni grazie alla disponibilità di sorgenti di radiazione di sincrotrone di elevata brillanza. Ad oggi queste misure rappresentano un esempio di punta nello studio sul magnetismo delle impurezze di superficie. l risultati sono riportati per tre gruppi di sistemi: Impurezze di V e Mn sulla superficie dei metalli alcalini (Cs, K, Na); atomi isolati di Mn, V, Fe, Co sulla superficie Cu(100) ed atomi isolati di Co su Pt(111 ).Inoltre è presentato uno studio della distribuzione dei momenti magnetici di uno strato monoatomico di manganese accoppiato alla superficie Fe(1 00). Il manganese su potassio è stato indicato possedere una configurazione elettronica simile a quella atomica d5 . Questa configurazione elettronica è particolarmente stabile per i piccoli cambiamenti di ibridazione indotti dal cambiamento della densità elettronica nei dai metalli alcalini. Se l'ibridazione è ulteriormente aumentata come nel caso di atomi di M n deposti su Al(1 00) le caratteristiche spettroscopiche che si evidenziano in strutture di multipletti atomici negli spettri sono soppresse e con esse il magnetismo. Le impurezze di vanadio sulle superfici alcaline mostrano una configurazione elettronica che non più così simile a quella degli atomi liberi, come ad esempio le configurazioni d o d4 .11 momento orbitale è trovato essere piccolo, minore di 0.5 f.ls, rispetto al momento orbitale delle configurazioni puramente atomiche, ma in similitudine con esse è allineato antiparallelamente al momento di spin. Inoltre il momento orbita le diminuisce risalendo lungo la colonna dei metalli alcalini (gruppo 1 A della tabella periodica degli elementi), cioè andando dal Cs al Li, mentre la densità elettronica è aumentata. Questo effetto è legato all'aumento dell'ibridazione dovuta alla maggiore densità elettronica. l momenti magnetici misurati sono dell'ordine di 3 f.ls e non possono essere spiegati con parametri puramente atomici. Due meccanismi possibili vengono proposti per spiegare l'estinzione parziale del momento orbitale: l'effetto di un debole campo cristallino e l'effetto dell'ibridazione in concomitanza con maggiore larghezza dello stato regato di Friedel nel caso dei primi elementi della serie dei metallo di transizione 3d. Gli atomi isolati di Fe sulla superficie del Cu(1 00) mostrano una grande anisotropia magnetica, di 1,5 me V/atomo ed un momento magnetico orbitale aumentato rispetto al Fedi volume. Il substrato di Cu non contribuisce considerevolmente all'anisotropia come nel caso del Co su platino. All'opposto gli atomi isolati di Co su Cu(100) non mostrano alcuni dicroismo e quindi alcun magnetismo. Questo risultato è spiegato in termini di effetto Kondo, poiché i singoli atomi di Co sono stati trovati per essere un sistema di Kondo con T K=88 K. Un confronto dei dati sperimentali per impurezze di V, M n, Fe e Co su Cu(1 00) con il comportamento magnetico calcolato dei adatomi lungo la serie 3d, mostra un buon accordo generale, ma con deviazioni importanti per le impurezze di Co e di V. Atomi singoli atomi di Co sulla superficie del Pt(111) hanno una straordinaria anisotropia magnetica di circa 9,2 meV/atomo (circa 1000 volte quella del Co di volume) ed ad oggi la più alta energia di anisotropia magnetica misurata per un sistema magnetico. L'origine di un effetto cosi' grande risiede in un momento orbitale aumentato dalla ridotta coordinazione del singolo atomo, alla rottura di simmetria sulla superficie ed all'effetto dell'ibridazione del platino, conseguenza di un mescolamento di stati 3d-5d tra Co ePt, che porta il substrato a contribuire all'anisotropia magnetica totale.
The electronic structure and the magnetism of transition metal single atoms and magnetic impurities on metal surfaces have been studied by means of x-ray absorption dichroic techniques (XMCD, and magnetization measurements) in high magnetic fields and at low temperatures. The unique capabilities of XMCD to probe the both spin and orbital magnetic moments with element selectivity have been applied to diluted systems with low surface concentration (1012 atoms cm-2 ) down to the limit of isolated atoms. This kind of measurements have been applied to surface impurity systems only in the last few year thanks to the availability of high flux and brilliance synchrotron radiation sources. At the present these measurements represent the state of the art in the study of the magnetism of surface impurities. Results are reported for three different classes of systems: Mn and V impurities on the surface of alkali metals (Cs, K, N a); M n, V, Fe, Co single atoms on the Cu(1 00) surface an d Co single atoms on the Pt(111) surface. Furthermore results have been presented, regarding the magnetic moment distribution of a Mn monolayer coupled to the Fe(1 00) surface. Manganese on potassium has been shown to possess an atomic like magnetic d5 electronic configuration. This electronic configuration is particularly stable for small hybridization changes induced by alkali metals of increased electronic density. lf the hybridization is further increased as on Al(100) the spectroscopic features related to atomic multiplets are suppressed together with magnetism. Vanadium impurities on alkali metal surfaces also show atomic multiplet features. The electronic configuration is not an atomic-like configuration as d3 or d4 . The orbital moment is found to be small, less than 0.5 !-ls with respect to the purely atomic configurations and to be antiparallel to the spin. lt decreases along the alkali metals column (group 1A) of the periodic table, as the electronic density is increased, i.e. going from Cs to Li. This effect is related to an increased hybridization with the substrate due to the larger electronic density. The measured magnetic moments are of the order of 3)-ls, and cannot be explained with simple atomic parameters. Two possible mechanisms have been proposed to explain the partial quenching of the orbital moment, the effect of a weak crystal field and the effect of hybridization through the larger width of Friedel resonant bound state for the early elements of 3d transition metal series. Fe single atoms on Cu(100) surface have a large ot1f of plane magnetic anisotropy of 1.5 meV/atom and enhanced orbital magnetic moment with the respect to the bulk. The Cu substrate does not contribute considerably to the anisotropy as in the case of Co o n Pt. At the apposite Co single atoms on Cu(1 00) surface do not show any dichroism an d hence magnetism. This result ca n be explained on the basis of the Kondo effect, since Co single atoms have been found to be a Kondo system with T K=88 K. A comparison of the experimental data for V, Mn, Fe, Co impurities on Cu(100) with the calculated magnetic behavior of adatoms along the 3d series, gives an overall reasonable agreement, with important deviations for V and Co impurities. Co single atoms on the Pt(111) surface have an extraordinary large out of plane magnetic anisotropy of about 9.2 meV/atom due to the interplay between an enhanced orbital moment, consequence reduced coordination of the single atom, at the surface, and the effect of Pt hybridization, consequence of a d-d mixing between Co and Pt orbitals. This result is of particular relevance since this magnetic anisotropy is the highest measured, by now, for any system.
XVI Ciclo
1971
Versione digitalizzata della tesi di dottorato cartacea.
Rittmann, Jochen [Verfasser], and Thomas [Akademischer Betreuer] Möller. "Electronic Properties of Transition Metal Doped Silicon Clusters / Jochen Rittmann. Betreuer: Thomas Möller." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2011. http://d-nb.info/1016730470/34.
Full textFernández, Villanueva Estefanía. "Theoretical Study of the Geometrical, Electronic and Catalytic properties of Metal Clusters and Nanoparticles." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/135277.
Full text[CAT] Atès que són de grandària subnanomètrica, els clusters metàl·lics estan regits pel confinament quàntic, el qual els fa més "moleculars" i menys "metàl·lics". En conseqüència, manifesten propietats que són diferents a les de partícules més grans del mateix element, i que sovint són avantatjoses per a la catàlisi de reaccions específiques. A més a més, la seua menor grandària fa que siguen més econòmics, amb una major superfície exposada. Així, els clusters són una opció molt interesant en catàlisi, i el seu estudi, síntesi i aplicació ha cres-cut contínuament des del seu descobriment als anys 90. Aquesta tesi s'ha centrat principalment en el coure, del qual es presenta, en primer lloc, un estudi fonamental sobre la dissociació de l'oxígen per clusters de diferents grandàries. Després, s'explora computacionalment la catàlisi de les oxidacions de CO i de propè, confirmant que els clusters de Cu5 (o inferior) són prometedors per a reaccions d'oxidació. Les dues reaccions utilitzades són bons exemples de l'aplicació potencial en indústria, siga per reduir emissions de CO o per produir epòxid de propè, que és un intermedi important en la producció de plàstics i adhesius, entre altres. A més, també es va estudiar la influència de dos suports en els clusters de coure i la seua capacitat d'oxidació: N-grafè com a un sistema més inert i cèria com a un que pot participar activament en reaccions d'oxidació. Finalment, s'inclouen altres dos estudis més específics, sobre la capacitat dels clusters de Pt3 y Pd3 per catalitzar reaccions d'acoblament C-C com la reacció de Heck, important per a la síntesi de productes de la química fina, i sobre la reacció CO + NO als clusters de Pt, motivat pel seu ús potencial com a catalitzadors per a la conversió d'eixes espècies en els menys perjudicials CO2 i N2 als motors de combustió interna.
[EN] Due to their subnanometric size, metal clusters belong to the regime affected by quantum confinement, which makes them more "molecular" and less "metallic". As a result, they exhibit properties that differ with respect to those of larger particles of the same element, and which are often advantageous in the catalysis of specific reactions. Besides, their smaller size makes them more economic and with a higher surface exposed. All of this renders metal clusters very interesting options for catalysis, and their study, synthesis and application has steadily increased since their discovery in the 90s. In this work we have largely focused on copper, of which a fundamental study on the oxygen dissociation by clusters of different sizes is first presented. Then, the catalysis of the CO and propene oxidation reactions is theoretically explored, confirming that Cu5 (or smaller) clusters are promising systems for oxidation reactions. The two reactions used are good examples of the potential application in industry, either to reduce CO emissions or to produce propene epoxide, an important intermediate in the production of plastics and adhesives, among others. In addition, the influence of two supports in the copper clusters and their oxidation capability is explored: on N-graphene as a more inert system and on ceria as one that can actively participate in oxidation reactions. Finally, two other more specific studies are included, regarding the capability of Pt3 and Pd3 clusters to undergo C-C coupling reactions such as the Heck reaction, important for the synthesis of many products of fine chemistry, and regarding the CO + NO reaction on Pt clusters, motivated by their potential use as catalysts for the conversion of those species in less harmful CO2 and N2 in internal combustion engines.
En primer lugar me gustaría agradecer al Ministerio de Economía y Competitividad de España (MINECO) por la financiación de esta tesis mediante el programa Severo Ochoa (SVP-2013-068146), incluyendo los costes adicionales de mi estancia de investigación (EEBB-I-17-12057).
Fernández Villanueva, E. (2019). Theoretical Study of the Geometrical, Electronic and Catalytic properties of Metal Clusters and Nanoparticles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/135277
TESIS
Hoffmann, Sabrina [Verfasser], Heinz [Akademischer Betreuer] Hövel, and Shaukat [Akademischer Betreuer] Khan. "Structure and electronic properties of supported noble metal clusters / Sabrina Hoffmann. Betreuer: Heinz Hövel. Gutachter: Shaukat Khan." Dortmund : Universitätsbibliothek Dortmund, 2013. http://d-nb.info/1099912806/34.
Full textSinha, Roy Rajarshi. "Ab initio simulation of optical properties of noble-metal clusters." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0017/document.
Full textThe fundamental research interest in nanometric pieces of noble metals is mainly due to the localized surface-plasmon resonance (LSPR) in the optical absorption. Different aspects related to the theoretical understanding of LSPRs in `intermediate-size' noble-metal clusters are studied in this thesis. To gain a broader perspective both the real-time \ai formalism of \td density-functional theory (RT-TDDFT) and the classical electromagnetics approach are employed. A systematic and detailed comparison of these two approaches highlights and quantifies the limitations of the electromagnetics approach when applied to quantum-sized systems. The differences between collective plasmonic excitations and the excitations involving $d$-electrons, as well as the interplay between them are explored in the spatial behaviour of the corresponding induced densities by performing the spatially resolved Fourier transform of the time-dependent induced density obtained from a RT-TDDFT simulation using a $\delta$-kick perturbation. In this thesis, both bare and ligand-protected noble-metal clusters were studied. In particular, motivated by recent experiments on plasmon emergence phenomena, the TDDFT study of Au-Cu nanoalloys in the size range just below 2~nm produced subtle insights into the general effects of alloying on the optical response of these systems
Zhang, Chaofan. "Multicomponent Clusters/Nanoparticles : An Investigation of Electronic and Geometric Properties by Photoelectron Spectroscopy." Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205651.
Full textWoodruff, Daniel. "Organometallic and metal-amide precursors for transition metal and lanthanide cluster complexes with interesting electronic an magnetic properties." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/organometallic-and-metalamide-precursors-for-transition-metal-and-lanthanide-cluster-complexes-with-interesting-electronic-an-magnetic-properties(d35cea40-6e84-4d19-ba6a-7a7fe1e4a135).html.
Full textBooks on the topic "Electronic Properties - Metal Clusters"
1957-, Vollmer Michael, ed. Optical properties of metal clusters. Berlin: Springer, 1995.
Find full textKreibig, Uwe, and Michael Vollmer. Optical Properties of Metal Clusters. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-09109-8.
Full textBasseet, Jamal Omar Al. Magnetic properties of some metal clusters. Norwich: University of East Anglia, 1989.
Find full textMeiwes-Broer, Karl-Heinz. Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Find full textMetal-oxygen clusters: The surface and catalytic properties of heteropoly oxometalates. New York: Kluwer Academic/Plenum Publishers, 2001.
Find full textToshihiro, Arai, ed. Mesoscopic materials and clusters: Their physical and chemical properties. [Tokyo]: Kodansha, 1999.
Find full textGeorge, Maroulis, ed. Structures and properties of clusters: From a few atoms to nanoparticles. Leiden, The Netherlands: Brill Academic, 2006.
Find full textReadman, Jennifer Elizabeth. Structural and electronic properties of metal- and metal-oxide containing zeolites. Birmingham: University of Birmingham, 2001.
Find full textBersuker, Isaac B. Electronic Structure and Properties of Transition Metal Compounds. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470573051.
Full textMotizuki, Kazuko. Electronic structure and magnetism of 3d- transition metal pnictides. Heidelberg: Springer, 2009.
Find full textBook chapters on the topic "Electronic Properties - Metal Clusters"
Rao, B. K., S. N. Khanna, and P. Jena. "Structural and Electronic Properties of Compound Metal Clusters." In Metal Clusters, 119–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71571-6_18.
Full textde Heer, W. A., and W. D. Knight. "Electronic Properties of Metal Clusters." In Elemental and Molecular Clusters, 45–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73501-1_3.
Full textPastor, G. M. "Electronic properties of divalent-metal clusters." In Small Particles and Inorganic Clusters, 165–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_39.
Full textCox, D. M., M. R. Zakin, and A. Kaldor. "Metal Clusters: Size Dependent Chemical and Electronic Properties." In Physics and Chemistry of Small Clusters, 741–54. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0357-3_99.
Full textMasubuchi, Tsugunosuke, and Atsushi Nakajima. "Electronic Properties of Transition Metal-Benzene Sandwich Clusters." In Theoretical Chemistry for Advanced Nanomaterials, 313–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0006-0_8.
Full textJena, P., and S. N. Khanna. "Electronic and Structural Properties of Caged Metal Clusters." In Nanophase Materials, 371–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1076-1_42.
Full textEllis, D. E. "Theory of Electronic Properties of Metal Clusters and Particles." In Physics and Chemistry of Metal Cluster Compounds, 135–57. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-1294-7_4.
Full textKoutecký, J., V. Bonacić-Koutecký, I. Boustani, P. Fantucci, and W. Pewestorf. "Electronic Structure and Basic Properties of Small Alkali Metal Clusters." In The Jerusalem Symposia on Quantum Chemistry and Biochemistry, 303–17. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4001-7_28.
Full textFantucci, P., V. Bonačić-Koutecký, and J. Koutecký. "General properties of the electronic structure of alkali metal clusters and Ia-IIa mixed clusters." In Small Particles and Inorganic Clusters, 307–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_71.
Full textElzain, M. E., A. A. Yousif, A. D. Al Rawas, A. M. Gismelseed, H. Widatallah, K. Bouziani, and I. Al-Omari. "The Electronic and Magnetic Properties of FCC Iron Clusters in FCC 4D Metals." In SSP 2004, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36794-9_1.
Full textConference papers on the topic "Electronic Properties - Metal Clusters"
Mertig, M. "Nucleation and Growth of Metal Clusters on a DNA template." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514160.
Full textBaumert, T., R. Thalweiser, V. Weiss, E. Wiedenmann, and G. Gerber. "Femtosecond Dynamics of Nan and Hgn Metal-Cluster." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.thb.4.
Full textPark, Y. H., and I. Hijazi. "Ground State Structure of Cu Nanoclusters." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57748.
Full textPark, Y. H., and I. Hijazi. "Properties of Bimetallic Core-Shell Nanoclusters." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78242.
Full textPinegar, Jacqueline C., Jon D. Langenberg, and Michael D. Morse. "Spectroscopy of Jet-Cooled Ag2Au." In High Resolution Spectroscopy. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/hrs.1993.pd1.
Full textDas, Nishith K., and T. Shoji. "First-Principles Study of Atomic Hydrogen and Oxygen Adsorption on Doped-Iron Nanoclusters." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60516.
Full textStella, A., M. Nisoli, S. De Silvestri, O. Svelto, G. Lanzani, P. Cheyssac, and R. Kofman. "Confinement Effects on the Electron Thermalization Process in Tin Nanocrystals." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.48.
Full textKee Hag Lee, Wang Ro Lee, and Han Myoung Lee. "Electronic structure and properties of high-T/sub c/- substituted YBCO superconductors: II. charged model clusters relating to high-T/sub c/- C1-substituted YBCO suerconductors." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835833.
Full textSpassova, E., J. Assa, I. Jivkov, G. Danev, and J. Ihlemann. "Laser Effect on Vacuum Deposited Polyimide-Aluminium Composites." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cwf68.
Full textLee, Keeyung. "Magnetic properties of 4d transition metal clusters." In Similarities and differences between atomic nuclei and clusters. AIP, 1997. http://dx.doi.org/10.1063/1.54550.
Full textReports on the topic "Electronic Properties - Metal Clusters"
Author, Not Given. (Vibrational and electronic properties of clusters and ultrathin films). Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6004445.
Full textLannin, J. S. Vibrational and electronic properties of clusters and ultrathin films. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6675629.
Full textKrishnan Balasubramanian. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/959347.
Full textLannin, J. S. Vibrational and electronic properties of clusters and ultrathin films. Progress report. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10142449.
Full textReifenberger, R. (Electronic and structural properties of individual nanometer-size supported metallic clusters). Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5871939.
Full textReifenberger, R. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Progress report. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10115501.
Full textReifenberger, R. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10177319.
Full textBowen, Kit H. Measuring Complementary Electronic Structure Properties of both Deposited and Gas Phase Clusters using STM, UPS, and PES: Size-Selected Clusters on Surfaces. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1122129.
Full textJena, P., B. K. Rao, and S. N. Khanna. Electronic structure and geometries of small compound metal clusters: Progress report, August 1, 1988--July 31, 1989. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6280635.
Full textLad, Robert J. Structural, electronic and chemical properties of metal/oxide and oxide/oxide interfaces and thin film structures. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/758832.
Full text