Academic literature on the topic 'Electron transfer rates in proteins'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron transfer rates in proteins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron transfer rates in proteins"

1

Broo, Anders, and Sven Larsson. "Calculation of electron transfer rates in proteins." International Journal of Quantum Chemistry 36, S16 (June 19, 2009): 185–98. http://dx.doi.org/10.1002/qua.560360714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gray, Harry B., and Jay R. Winkler. "Electron tunneling through proteins." Quarterly Reviews of Biophysics 36, no. 3 (August 2003): 341–72. http://dx.doi.org/10.1017/s0033583503003913.

Full text
Abstract:
1. History 3422. Activation barriers 3432.1 Redox potentials 3442.2 Reorganization energy 3443. Electronic coupling 3454. Ru-modified proteins 3484.1 Reorganization energy 3494.1.1 Cyt c 3494.1.2 Azurin 3504.2 Tunneling timetables 3525. Multistep tunneling 3576. Protein–protein reactions 3596.1 Hemoglobin (Hb) hybrids 3596.2 Cyt c/cyt b5 complexes 3606.3 Cyt c/cyt c peroxidase complexes 3606.4 Zn–cyt c/Fe–cyt c crystals 3617. Photosynthesis and respiration 3627.1 Photosynthetic reaction centers (PRCs) 3627.2 Cyt c oxidase (CcO) 3648. Concluding remarks 3659. Acknowledgments 36610. References 366Electron transfer processes are vital elements of energy transduction pathways in living cells. More than a half century of research has produced a remarkably detailed understanding of the factors that regulate these ‘currents of life’. We review investigations of Ru-modified proteins that have delineated the distance- and driving-force dependences of intra-protein electron-transfer rates. We also discuss electron transfer across protein–protein interfaces that has been probed both in solution and in structurally characterized crystals. It is now clear that electrons tunnel between sites in biological redox chains, and that protein structures tune thermodynamic properties and electronic coupling interactions to facilitate these reactions. Our work has produced an experimentally validated timetable for electron tunneling across specified distances in proteins. Many electron tunneling rates in cytochrome c oxidase and photosynthetic reaction centers agree well with timetable predictions, indicating that the natural reactions are highly optimized, both in terms of thermodynamics and electronic coupling. The rates of some reactions, however, significantly exceed timetable predictions; it is likely that multistep tunneling is responsible for these anomalously rapid charge transfer events.
APA, Harvard, Vancouver, ISO, and other styles
3

Catarino, Teresa, and David L. Turner. "Thermodynamic Control of Electron Transfer Rates in Multicentre Redox Proteins." ChemBioChem 2, no. 6 (June 1, 2001): 416–24. http://dx.doi.org/10.1002/1439-7633(20010601)2:6<416::aid-cbic416>3.0.co;2-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Wonderen, Jessica H., Katrin Adamczyk, Xiaojing Wu, Xiuyun Jiang, Samuel E. H. Piper, Christopher R. Hall, Marcus J. Edwards, et al. "Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme." Proceedings of the National Academy of Sciences 118, no. 39 (September 23, 2021): e2107939118. http://dx.doi.org/10.1073/pnas.2107939118.

Full text
Abstract:
Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme–heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis. We observed rates of heme-to-heme electron transfer on the order of 109 s−1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser–Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
APA, Harvard, Vancouver, ISO, and other styles
5

Clarke, Thomas A., Shirley Fairhurst, David J. Lowe, Nicholas J. Watmough, and Robert R. Eady. "Electron transfer and half-reactivity in nitrogenase." Biochemical Society Transactions 39, no. 1 (January 19, 2011): 201–6. http://dx.doi.org/10.1042/bst0390201.

Full text
Abstract:
Nitrogenase is a globally important enzyme that catalyses the reduction of atmospheric dinitrogen into ammonia and is thus an important part of the nitrogen cycle. The nitrogenase enzyme is composed of a catalytic molybdenum–iron protein (MoFe protein) and a protein containing an [Fe4–S4] cluster (Fe protein) that functions as a dedicated ATP-dependent reductase. The current understanding of electron transfer between these two proteins is based on stopped-flow spectrophotometry, which has allowed the rates of complex formation and electron transfer to be accurately determined. Surprisingly, a total of four Fe protein molecules are required to saturate one MoFe protein molecule, despite there being only two well-characterized Fe-protein-binding sites. This has led to the conclusion that the purified Fe protein is only half-active with respect to electron transfer to the MoFe protein. Studies on the electron transfer between both proteins using rapid-quench EPR confirmed that, during pre-steady-state electron transfer, the Fe protein only becomes half-oxidized. However, stopped-flow spectrophotometry on MoFe protein that had only one active site occupied was saturated by approximately three Fe protein equivalents. These results imply that the Fe protein has a second interaction during the initial stages of mixing that is not involved in electron transfer.
APA, Harvard, Vancouver, ISO, and other styles
6

Kang, S. A., and B. R. Crane. "Effects of interface mutations on association modes and electron-transfer rates between proteins." Proceedings of the National Academy of Sciences 102, no. 43 (October 14, 2005): 15465–70. http://dx.doi.org/10.1073/pnas.0505176102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moser, Christopher C., Christopher C. Page, and P. Leslie Dutton. "Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase." Philosophical Transactions of the Royal Society B: Biological Sciences 361, no. 1472 (July 12, 2006): 1295–305. http://dx.doi.org/10.1098/rstb.2006.1868.

Full text
Abstract:
Biological electron transfer is designed to connect catalytic clusters by chains of redox cofactors. A review of the characterized natural redox proteins with a critical eye for molecular scale measurement of variation and selection related to physiological function shows no statistically significant differences in the protein medium lying between cofactors engaged in physiologically beneficial or detrimental electron transfer. Instead, control of electron tunnelling over long distances relies overwhelmingly on less than 14 Å spacing between the cofactors in a chain. Near catalytic clusters, shorter distances (commonly less than 7 Å) appear to be selected to generate tunnelling frequencies sufficiently high to scale the barriers of multi-electron, bond-forming/-breaking catalysis at physiological rates. We illustrate this behaviour in a tunnelling network analysis of cytochrome c oxidase. In order to surmount the large, thermally activated, adiabatic barriers in the 5–10 kcal mol −1 range expected for H + motion and O 2 reduction at the binuclear centre of oxidase on the 10 3 –10 5 s −1 time-scale of respiration, electron access with a tunnelling frequency of 10 9 or 10 10 s −1 is required. This is provided by selecting closely placed redox centres, such as haem a (6.9 Å) or tyrosine (4.9 Å). A corollary is that more distantly placed redox centres, such as Cu A , cannot rapidly scale the catalytic site barrier, but must send their electrons through more closely placed centres, avoiding direct short circuits that might circumvent proton pumping coupled to haems a to a 3 electron transfer. The selection of distances and energetic barriers directs electron transfer from Cu A to haem a rather than a 3 , without any need for delicate engineering of the protein medium to ‘hard wire’ electron transfer. Indeed, an examination of a large number of oxidoreductases provides no evidence of such naturally selected wiring of electron tunnelling pathways.
APA, Harvard, Vancouver, ISO, and other styles
8

Kuznetsov, Vadim Yu, Emek Blair, Patrick J. Farmer, Thomas L. Poulos, Amanda Pifferitti, and Irina F. Sevrioukova. "The Putidaredoxin Reductase-Putidaredoxin Electron Transfer Complex." Journal of Biological Chemistry 280, no. 16 (February 15, 2005): 16135–42. http://dx.doi.org/10.1074/jbc.m500771200.

Full text
Abstract:
Interaction and electron transfer between putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) fromPseudomonas putidawas studied by molecular modeling, mutagenesis, and stopped flow techniques. Based on the crystal structures of Pdr and Pdx, a complex between the proteins was generated using computer graphics methods. In the model, Pdx is docked above the isoalloxazine ring of FAD of Pdr with the distance between the flavin and [2Fe-2S] of 14.6 Å. This mode of interaction allows Pdx to easily adjust and optimize orientation of its cofactor relative to Pdr. The key residues of Pdx located at the center, Asp38and Trp106, and at the edge of the protein-protein interface, Tyr33and Arg66, were mutated to test the Pdr-Pdx computer model. The Y33F, Y33A, D38N, D38A, R66A, R66E, W106F, W106A, and Δ106 mutations did not affect assembly of the [2Fe-2S] cluster and resulted in a marginal change in the redox potential of Pdx. The electron-accepting ability of Δ106 Pdx was similar to that of the wild-type protein, whereas electron transfer rates from Pdr to other mutants were diminished to various degrees with the smallest and largest effects on the kinetic parameters of the Pdr-to-Pdx electron transfer reaction caused by the Trp106and Tyr33/Arg66substitutions, respectively. Compared with wild-type Pdx, the binding affinity of all studied mutants to Pdr was significantly higher. Experimental results were in agreement with theoretical predictions and suggest that: (i) Pdr-Pdx complex formation is mainly driven by steric complementarity, (ii) bulky side chains of Tyr33, Arg66, and Trp106prevent tight binding of oxidized Pdx and facilitate dissociation of the reduced iron-sulfur protein from Pdr, and (iii) transfer of an electron from FAD to [2Fe-2S] can occur with various orientations between the cofactors through multiple electron transfer pathways that do not involve Trp106but are likely to include Asp38and Cys39.
APA, Harvard, Vancouver, ISO, and other styles
9

Ma, Zhongxin, and Victor L. Davidson. "Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism." Biochemical Journal 474, no. 15 (July 18, 2017): 2563–72. http://dx.doi.org/10.1042/bcj20170349.

Full text
Abstract:
Ascorbate protects MauG from self-inactivation that occurs during the autoreduction of the reactive bis-FeIV state of its diheme cofactor. The mechanism of protection does not involve direct reaction with reactive oxygen species in solution. Instead, it binds to MauG and mitigates oxidative damage that occurs via internal transfer of electrons from amino acid residues within the protein to the high-valent hemes. The presence of ascorbate does not inhibit the natural catalytic reaction of MauG, which catalyzes oxidative post-translational modifications of a substrate protein that binds to the surface of MauG and is oxidized by the high-valent hemes via long-range electron transfer. Ascorbate was also shown to prolong the activity of a P107V MauG variant that is more prone to inactivation. A previously unknown ascorbate peroxidase activity of MauG was characterized with a kcat of 0.24 s−1 and a Km of 2.2 µM for ascorbate. A putative binding site for ascorbate was inferred from inspection of the crystal structure of MauG and comparison with the structure of soybean ascorbate peroxidase with bound ascorbate. The ascorbate bound to MauG was shown to accelerate the rates of both electron transfers to the hemes and proton transfers to hemes which occur during the multistep autoreduction to the diferric state which is accompanied by oxidative damage. A structural basis for these effects is inferred from the putative ascorbate-binding site. This could be a previously unrecognized mechanism by which ascorbate mitigates oxidative damage to heme-dependent enzymes and redox proteins in nature.
APA, Harvard, Vancouver, ISO, and other styles
10

Farooq, Yassar, and Gordon C. K. Roberts. "Kinetics of electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 3A4." Biochemical Journal 432, no. 3 (November 25, 2010): 485–94. http://dx.doi.org/10.1042/bj20100744.

Full text
Abstract:
We have incorporated CYP3A4 (cytochrome P450 3A4) and CPR (NADPH-cytochrome P450 reductase) into liposomes with a high lipid/protein ratio by an improved method. In the purified proteoliposomes, CYP3A4 binds testosterone with Kd (app)=36±6 μM and Hill coefficient=1.5±0.3, and 75±4% of the CYP3A4 can be reduced by NADPH in the presence of testosterone. Transfer of the first electron from CPR to CYP3A4 was measured by stopped-flow, trapping the reduced CYP3A4 as its Fe(II)–CO complex and measuring the characteristic absorbance change. Rapid electron transfer is observed in the presence of testosterone, with the fast phase, representing 90% of the total absorbance change, having a rate of 14±2 s−1. Measurements of the first electron transfer were performed at various molar ratios of CPR/CYP3A4 in proteoliposomes; the rate was unaffected, consistent with a model in which first electron transfer takes place within a relatively stable CPR–CYP3A4 complex. Steady-state rates of NADPH oxidation and of 6β-hydroxytestosterone formation were also measured as a function of the molar ratio of CPR/CYP3A4 in the proteoliposomes. These rates increased with increasing CPR/CYP3A4 ratio, showing a hyperbolic dependency indicating a Kd (app) of ~0.4 μM. This suggests that the CPR–CYP3A4 complex can dissociate and reform between the first and second electron transfers.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electron transfer rates in proteins"

1

Psalti, Ioanna S. M. "Microelectrodes : single and arrays in electron transfer." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beoku-Betts, D. F. "Electron transfer reactions of photosynthetic proteins." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Langen, Ralf Warshel Arieh Gray Harry B. Richards John. "Electron transfer in proteins : theory and experiment /." Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-03062006-091606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hart, S. E. "Electron transfer proteins in the cyanobacterium Phormidium laminosum." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603796.

Full text
Abstract:
This study continues the characterisation of redox proteins of the cyanobacterium Phormidium laminosum and their interactions. So far, research has focussed on the interaction between P. laminosum Cyt f and Pc. In order to create a more complete picture of the interactions taking place in P. laminosum, this study has begun the characterisation of P. laminosum COX and four luminal subunits of P. laminosum PSI. A long-term aim of this work is to be able to compare how Pc/Cyt c6 interact with Cyt f, PSI and COX in P. laminosum. The genes of the COX complex and the luminal subunits of PSI have been cloned and their sequences analysed at the nucleotide and amino acid level. It was possible to identify residues likely to be involved in the function of the proteins. P. laminosum was also found to contain the genes for an alternative respiratory terminal oxidase (ARTO), the genes of which have been cloned. In addition, the gene for Cyt cm, which may interact with COX, has been cloned. Attempts have been made to develop expression systems for truncated versions of subunit II of COX (CtaC) and ARTO (CtaCII). Expression of an untagged- and a tagged-version of CtaC in the cytosol of E. coli have been demonstrated. In addition, comparative models for regions of CtaC and Cyt cM have been generated. From these, it has been possible to identify potential docking sites and charge-clusters, which could play a role in the interactions of both proteins. This study expands the understanding of the interaction between Cyt f and Pc of P. laminosum, by determining the role of charged residues of Cyt f in its interaction with Pc.
APA, Harvard, Vancouver, ISO, and other styles
5

Khan, Anuja. "Solution structure and interactions of electron transfer proteins." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kyritsis, Panayotis. "Electron-transfer reactivity of some Cu-containing proteins." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Balabin, Ilya A. "Structural and dynamical control of the reaction rate in protein electron transfer /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9938586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

López, Martínez Montserrat. "Electrochemical tunneling microscopy and spectroscopy of electron transfer proteins." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/462883.

Full text
Abstract:
Electron Transfer (ET) plays essential roles in crucial biological processes such as cell respiration and photosynthesis. It takes place between redox proteins and in protein complexes that display an outstanding efficiency and environmental adaptability. Although the fundamental aspects of ET processes are well understood, more experimental methods are needed to determine electronic pathways. Understanding how ET works is important not only for fundamental reasons, but also for the potential technological applications of these redox‐active nanoscale systems. The general objective of this thesis is to investigate electron transfer in redox proteins at the single molecule level. To that end, we use Electrochemical Scanning Tunneling Microscopy (ECSTM) and conductive Atomic Force Microscopy (cAFM), excellent tools to study electronic materials and redox molecules including proteins. In this thesis, we focused on two redox protein systems: azurin, a small electron carrier protein and photosystem I, a light‐sensitive oxidoreductase protein complex. In azurin, we studied the protein conductance as a function of its redox state and location on the protein surface, and the effect of technical parameters such as the contact properties between azurin and the metal electrodes, and the mechanical force applied in such contact. For that we adapted our ECSTM setup for an alternating current method often used in ultrahigh vacuum (UHV) STMs. We also worked in the development of a methodology that combines AFM‐based single‐molecule force measurements with single‐molecule electrical measurements, while working in an electrochemically controlled environment. These techniques can lead to a more detailed description of the ET pathways, and to a deeper understanding of the complex relation between the structure of redox proteins and their electronic properties. In photosystem I, developed a method to immobilize complexes on a substrate suitable for ECSTM imaging and spectroscopy, atomically flat gold. In these conditions, we characterized photosystem I by imaging and spectroscopy, and evaluated its conductance and distance‐decay properties in a wide range of biologically relevant electrochemical potentials. The characterization of conduction pathways in redox proteins at the nanoscale would enable important advances in biochemistry and would cause a high impact in the field of nanotechnology.
La transferencia de electrones (ET) desempeña papeles esenciales en procesos biológicos cruciales como la respiración celular y la fotosíntesis. Tiene lugar inter‐ e intra‐ proteínas redox y en complejos de proteínas que muestran una eficiencia excepcional y gran capacidad de adaptación ambiental. Aunque los aspectos fundamentales de los procesos de ET se han estudiado en profundidad, se necesitan más métodos experimentales para determinar las vías electrónicas de ET. La comprensión de cómo funciona la ET es importante no sólo por razones fundamentales, sino también por las potenciales aplicaciones tecnológicas de estos sistemas redox nanoscópicos. El objetivo general de esta tesis es investigar la transferencia de electrones en las proteínas redox a nivel de molécula individual. Para ello utilizamos la Microscopía de Túnel Electroquímico (ECSTM) y la Microscopía de Fuerza Atómica Conductor (cAFM), que son excelentes herramientas para estudiar materiales electrónicos y moléculas redox, incluyendo proteínas. En esta tesis, nos centramos en dos sistemas de proteínas redox: azurina, una pequeña proteína portadora de electrones y el fotosistema I, un complejo de proteína oxidorreductasa sensible a la luz. En el estudio de la azurina, estudiamos la conductancia de las proteínas en función de su estado redox y el efecto de parámetros técnicos como las propiedades de contacto entre la azurina y los electrodos metálicos, y la fuerza mecánica aplicada en dicho contacto. Para ello hemos adaptado nuestra configuración de ECSTM para un método de corriente alterna a menudo utilizado en Microscopía de Túnel de ultra alto vacío (UHV‐STM). También trabajamos en el desarrollo de una metodología que combina medidas de fuerza de una sola molécula basadas en AFM con medidas eléctricas, mientras trabajamos en un ambiente controlado electroquímicamente. Estas técnicas pueden conducir a una comprensión más profunda de las vías de ET y de la compleja relación entre la estructura de las proteínas redox y sus propiedades electrónicas. En el estudio del fotosistema I, desarrollamos un método para inmovilizar complejos sobre un sustrato adecuado para la obtención de imágenes y espectroscopía con ECSTM, oro atómicamente plano. En estas condiciones, caracterizamos el fotosistema I mediante imágenes y espectroscopia, y evaluamos sus propiedades de conductancia y sus parámetros de decaimiento de la corriente con la distancia, en una amplia gama de potenciales electroquímicos biológicamente relevantes. La caracterización de las vías de conducción en las proteínas redox a escala nanométrica puede permitir importantes avances en bioquímica y causar un alto impacto en el campo de la nanotecnología.
APA, Harvard, Vancouver, ISO, and other styles
9

Hartshorn, R. T. "Kinetic studies of some Fe containing electron-transfer proteins." Thesis, University of Newcastle Upon Tyne, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yanagisawa, Sachiko. "Active Site Engineering of Copper-Containing Electron Transfer Proteins." Thesis, University of Newcastle upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.484818.

Full text
Abstract:
Cupredoxins arc electron transfer (ET) proteins which possess type I (Tl) copper sites. A TI copper ion is equatorially coordinated by the thiolate sulfur of a Cys and the imidazole nitrogens of two His residues, along with usually an axially coordinating thioether sulfur of a Met [azurin (Az) possess a second axial interaction with a backbone carbonyl oxygen]. Thr~e of these ligands (Cys, a His and Met) are found on a C-terminal loop which links two of the strands of the cupredoxin p-barrel scaffold. The length and sequence of this Tl copper-binding loop varies. The shOltest known Tl binding loop (that of amicyanin, Ami) has been introduced into three different cupredoxin scaffolds. All of the . loopcontraction variants possess copper centres with authentic TI properties and are redox active. The Cu(lI) and Co(II) sites experience only small structural alterations upon loop contraction with the largest changes in the Az variant (AzAmi) which can be ascribed to the removal of a hydrogen bond to the coordinating thiolate sulfur of the Cys ligand. In all cases loop-contraction leads to an increase in the pKa of the His ligand found on the loop in the reduced proteins, and in the pseudoazurin (Paz) and plastocyanin (Pc) variants the values are almost identical to that of Ami (~6.7). Thus in Paz, Pc and Ami the length of this loop tunes the pKa of the His ligand. In the AzAmi variant the pKa is 5.5 which is considerably higher than the estimated value for Az « 2) and other controlling factors, along with loop length, are involved. The reduction potentials (EmS) of the loop-contraction variants are all lower than those of the wild type (WT) proteins by ~ 30-60 mV and thus this property of a Tl copper site is finetuned by the C-tenninalloop. The electron self-exchange (ESE) rate constant (kESE) of Paz is diminished significantly by the introduction of a shorter loop. However, in PcAmi only a 2-fold decrease is observed and in AzAmi there is no effect, and thus in these two cupredoxins loop contraction does not signi~cantly influence ET reactivity. Loop-contraction provides an active site environment in all of the cup.re~oxins which is preferable for Cu(ll), whereas previous loop elongation experiments always favoure..d the cuprous site. Thus the ligand-containing loop plays an important role in tuning the entatic nature ora TI copper centre. The thiolate sulfur of the Cys ligand in Az is hydrogen bonded from the backbone amides of .Asn47 and Phe114. One of these interactions has been removed in the Phel14Pro variant. A unique . I'~ pectr~s~opj~=..featur~ ,of A.z is-the position of.the S(Cys)~Cu(Il),.ligand-to-metalcharge-transfer . - .. .' ~, . . .' . . (LMCT) band in its UVNis spectrum (~ 630 nm) which is shifted to 599 nm in the Phel14Pro variant, although a site with classic Tl properties is maintained. Shorter CU(Il)-SO(Metl21) and longer Cu(lI}O( Gly45) distances are found at the active site in the crystal structure of the variant compared to WT Az. The copper centre of Phel14Pro Az is more like those of Pc, Ami and Paz than the trigonal bipyramidal arrangement found in Az. The Phel14Pro mutation results in an 80 mV decrease in Em and an order of magnitude smaller kESE value. The influence of this mutation on Em is due to a number of structural effects ofthe mutation, with removal of the hydrogen bond probably most significant. Comparison of the active site structures of Cu(ll) and Cu(I) Phe114Pro· Az indicate larger changes upon redox interconversion than those in the WT protein which increases the reorganization energy and results in slower ET. The axial ligand at Tl copper sites is not conserved. In most cases a weakly coordinated thioether sulfur from a Met [Cu(II)-S5 ~ 2.6-3.3 A] is found in the axial position as in Pc, Paz, Az and Ami. A strong axial bond [Cu(II)-Otl of ~ 2.2 A] is sometimes provided by a Gln.[as in the stellacyanins (STCs)] and the axial ligand can be absent (a Val, Leu or Phe in the axial position) as in ceruloplasmin, FeOp, fungal laccases and some plantacyanins (PLTs). Cucumber basic protein (CBP) is a PLT which has a relatively short Cu(II)-S5(Met89) axial bond (2.6 A). The Met89Gln variant of CBP has a kE?E' a measure of intrinsic ET reactivity, ~ 7 times lower than that of the WT protein. The Met89Vai mutation to CBP results in a 2-fold increase in kESE' As the axial interaction decreases from strong Oel of Gin to relatively w.eak S5 of Met to no ligand (Val), ESE reactivity is enhanced by - 1 order of magnitude whilst Em increases by - 350 mY. The variable coordination position at this ubiquitous ET site provides a mechanism for tuning the driving force to optimize ET with the correct partner without significantly compromising intrinsic reactivity. The enhanced reactivity of a three-coordinate Tl copper site will facilitate intramolecular ET in fungallaccases and Fet3p. The phytocyanins form a sub-family of the cupredoxins and are made up of the STCs, PLTs and uc1acyanins. All of the phytocyanins exhibit an alkaline transition which results in the S(Cys)~Cu(II) LMCT band shifting - 20 nm to higher energy at elevated pH (pKa - 10). The alkaline transition influences all of the coordinating residues with the Cys ligand most affected. The exact cause of alkaline transition is not known, although deprotonation of a group close to the active site must be involved, and the side chain of the axial Gin ligand has been suggested as the trigger for this effect in the STCs. The influe!lce of pH on the spectrosco~ic properties of WT CBP and the Met89Gln and Met89Vai axial ligand variants has been studied. The alkaline transition has a similar influence on . the visible spectrum in all three proteins although the pKa value in Met89Vai CBP is smaller (8.9) than for the other two proteins (- 9.7). Thus the axial ligand is not the cause ofthe alkaline transition. The surface exposed Met16 residue of Paz is situated close to the His81 ligand in the centre of the protein's hydrophobic patch. To study the importance of Met'i6, and to attempt to introduce a 1t-1t. interaction with the imidazole ring of His81, the Met16Phe and Met16Trp variants have been prepared and characterized. NMR studies indicate that the introduced aromatic groups are oriented parallel to the imidazole ring of His8l. UVNis, EPR and paramagnetic IH NMR spectra of the Cu(II) variants highlight very similar active site structures in the two mutants which are less tetragonally distorted than in the WT protein. The pKa value for the His81 ligand in the Cu(I) proteins decreases from 4.9 in WT Paz to 4.5 and 4.1 in Metl6Phe and Metl6Trp Paz respectively, indicating that 1t-1t contact with the introduced aromatic ring stabilizes the Cu-N51 (His81) interaction. The enhanced rigidity at the active site may contribute to decr~ased reorganization energies in the variants resulting in - 2-fold and - 3-fold larger kESE values in Met16Phe alid Metl6Trp Paz respectively. These mutations could also contribute to tl~e increased kESE values by facilitating homo-dimer formation: The Metl6Phe and Metl6Trp mutations give rise to approximately 40-60 mV increases in the Em of Paz. The physiological function of Paz is donation of electrons to nitrite reductace (NiR) and the influence of these mutations on Em result in a decreased driving force for this ET reaction and smaller kC31 are found. The Km for the reaction with NiR is - 2-fold larger for the Met16Phe variant whilst similar values are found for Met 16Trp Paz and the WT protein. Introduction of a 1t-1t interaction at the active site of Paz leads to subtle structural changes but has little effect on the interaction with the physiological ET partner.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electron transfer rates in proteins"

1

Burch, Anita M. Electrostatic interaction and the function of electron transfer haem proteins. Norwich: University of East Anglia, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strauss, Mike. Cryo-electron microscopy of membrane proteins; lipid bilayer supports and vacuum-cryo-transfer. Ottawa: National Library of Canada, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Protein Electron Transfer. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

S, Bendall D., ed. Protein electron transfer. Oxford, UK: Bios Scientific Publishers, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Launay, Jean-Pierre, and Michel Verdaguer. The moving electron: electrical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0003.

Full text
Abstract:
The three basic parameters controlling electron transfer are presented: electronic interaction, structural change and interelectronic repulsion. Then electron transfer in discrete molecular systems is considered, with cases of inter- and intramolecular transfers. The semi-classical (Marcus—Hush) and quantum models are developed, and the properties of mixed valence systems are described. Double exchange in magnetic mixed valence entities is introduced. Biological electron transfer in proteins is briefly presented. The conductivity in extended molecular solids (in particular organic conductors) is tackled starting from band theory, with examples such as KCP, polyacetylene and TTF-TCNQ. It is shown that electron–phonon interaction can change the geometrical structure and alter conductivity through Peierls distortion. Another important effect occurs in narrow-band systems where the interelectronic repulsion plays a leading role, for instance in Mott insulators.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electron transfer rates in proteins"

1

McLendon, G., Q. Zhang, K. Pardue, F. Sherman, A. Corin, R. Ciacarelli, J. Falvo, and D. Holzschu. "Electron Transfer Rates in Mitochondrial Proteins: Regulation and Specificity." In Molecular Electronics, 131–40. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7482-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Whitford, David, David W. Concar, Yuan Gao, Gary J. Pielak, and Robert J. P. Williams. "Factors Controlling the Rates of Electron Transfer in Proteins." In Trace Elements in Man and Animals 6, 29–34. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0723-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Flanagan, Scott, Jorge A. González, Joseph E. Bradshaw, Lon J. Wilson, David M. Stanbury, Kenneth J. Haller, and W. Robert Scheidt. "Studies of CNI Copper Coordination Compounds: What Determines the Electron-Transfer Rate of the Blue-Copper Proteins?" In Bioinorganic Chemistry of Copper, 91–97. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-6875-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Warncke, K., and P. L. Dutton. "Effect of Cofactor Structure on Control of Electron Transfer Rates at the QA Site of the Reaction Center Protein." In Reaction Centers of Photosynthetic Bacteria, 327–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-61297-8_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Winkler, Jay R., Harry B. Gray, Tatiana R. Prytkova, Igor V. Kurnikov, and David N. Beratan. "Electron Transfer through Proteins." In Bioelectronics, 15–33. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760376x.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mathews, F. Scott, Louise Cunane, and Rosemary C. E. Durley. "Flavin Electron Transfer Proteins." In Subcellular Biochemistry, 29–72. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/0-306-46828-x_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ichiye, Toshiko. "Electron Transfer Proteins: Overview." In Encyclopedia of Biophysics, 614–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beratan, David N., and Spiros S. Skourtis. "Electron Transfer Through Proteins." In Encyclopedia of Biophysics, 625–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Liang, Ming-Y. Liu, and Jean Le Gall. "Characterization of Electron Transfer Proteins." In Sulfate-Reducing Bacteria, 113–49. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1582-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Udit, Andrew K., Stephen M. Contakes, and Harry B. Gray. "P450 Electron Transfer Reactions." In The Ubiquitous Roles of Cytochrome P450 Proteins, 157–85. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470028155.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron transfer rates in proteins"

1

Kawato, Suguru. "Visualization of electron transfer interactions of membrane proteins." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by Halina Podbielska. SPIE, 1991. http://dx.doi.org/10.1117/12.44671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ichiye, Toshiko. "Computational studies of redox potentials of electron transfer proteins." In SIMULATION AND THEORY OF ELECTROSTATIC INTERACTIONS IN SOLUTION. ASCE, 1999. http://dx.doi.org/10.1063/1.1301541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spears, Kenneth G., Steven M. Arrivo, and Xianoning Wen. "Picosecond infrared study of vibrational-dependent electron transfer rates." In OE/LASE '94, edited by Gabor Patonay. SPIE, 1994. http://dx.doi.org/10.1117/12.181344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

LEE, J. H. "Electron-impact vibrational excitation rates in the flow field of aeroassisted orbital transfer vehicles." In 20th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-1035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Yu, Jason D. Biggs, Daniel Healion, Konstantin Dorfman, Weijie Hua, and Shaul Mukamel. "Attosecond Stimulated X-ray Raman Probes of Energy and Electron Transfer in Porphyrin Dimers and Proteins." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.09.wed.p3.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Namsu, Seunghyup Yoo, William Potscavage, Benoit Domercq, Bernard Kippelen, and Samuel Graham. "Fabrication and Characterization of SiOx/Parylene and SiNx/Parylene Thin Film Encapsulation Layers." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33332.

Full text
Abstract:
Successful commercialization of flexible organic electronic devices is largely dependent on proper encapsulation that protects them from permeation of oxygen and water vapor. At present, low permeation encapsulation materials generally consist of multilayer films of organic/inorganic materials which can be deposited by plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), and vapor phase deposition. For this study, we report the effective water vapor transmission rates (WVTR) for multilayer thin films consisting of low temperature PECVD deposited SiNx and SiOx combined with a parylene organic layer. The effective WVTR was measured as a function of the number of bilayer pairs using Ca corrosion tests. The effective WVTR at 20 °C and 50% relative humidity [RH] for three bilayer pairs of SiOx/parylene ranged between 4.4–8.0 × 10−4 g/m2/day while SiNx/parylene had a transmission rate 1.3×10−4 g/m2/day. In general, additional layers were found to decrease the permeation rates to as low as 3.9×10−5 g/m2/day, while the SiNx/parylene coatings performed the best overall.
APA, Harvard, Vancouver, ISO, and other styles
7

Pop, Eric, Sanjiv Sinha, and Kenneth E. Goodson. "Detailed Phonon Generation Simulations via the Monte Carlo Method." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47312.

Full text
Abstract:
Modeling heat generation at nanometer scales in silicon is of great interest and particularly relevant to the heating and reliability of nanoscale and thin-film transistors. Joule heating is usually simulated as the dot product of the macroscopic electric field and current density [1]. This approach does not account for the microscopic non-locality of the phonon emission near a strongly peaked electric field region. It also does not differentiate between electron energy exchange with the various phonon branches and does not give any information regarding the types of phonons emitted. The present work addresses both of these issues: we use a detailed Monte Carlo (MC) simulation to compute sub-continuum and phonon mode-specific heat generation rates, with applications at nanometer length scales.
APA, Harvard, Vancouver, ISO, and other styles
8

Stevens, Robert J., Pamela M. Norris, and Arthur W. Lichtenberger. "Experimental Determination of the Relationship Between Thermal Boundary Resistance and Non-Abrupt Interfaces and Electron-Phonon Coupling." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56556.

Full text
Abstract:
Understanding thermal boundary resistance (TBR) is becoming increasingly important for the thermal management of micro and optoelectronic devices. The current understanding of room temperature TBR is often not adequate for the thermal design of tomorrow’s complex micro and nano devices. Theories have been developed to explain the resistance to energy transport by phonons across interfaces. The acoustic mismatch model (AMM) [1, 2], which has had success at explaining low temperature TBR, does not account for the high frequency phonons and imperfect interfaces of real devices at room temperature. The diffuse mismatch model (DMM) was developed to account for real surfaces with higher energy phonons [3, 4]. DMM assumes that all phonons incident on the interface from both sides are elastically scattered and then emitted to either side of the interface. The probability that a phonon is emitted to a particular side is proportional to the phonon density of states of the two interface materials. Inherent to the DMM is that the transport is independent of the interface structure itself and is only dependent on the properties of the two materials. Recent works have shown that the DMM does not adequately capture all the energy transport mechanisms at the interface [5, 6]. In particular, the DMM under-predicts transport across interfaces between non Debye-like materials, such at Pb and diamond, by approximately an order of magnitude. The DMM also tends to over-predict transport for interfaces made with materials of similar acoustic properties, Debye-like materials. There have been several explanations and models developed to explain the discrepancies between the mismatch models and experimental data. Some of these models are based on modification of the AMM and DMM [7–9]. Other works have utilized lattice-dynamical modeling to calculate phonon transmission coefficients and thermal boundary conductivities for abrupt and disordered interfaces [3, 6, 10–13]. Recent efforts to better understand room temperature TBR have utilized molecular dynamics simulations to account for more realistic anharmonic materials and inelastic scattering [14–18]. Models have also been developed to account for electron-phonon scattering and its effect on the thermal boundary conductance for interfaces with one metal side [19–22]. Although there have been numerous thermal boundary resistance theoretical developments since the introduction of the AMM, there still is not an unifying theory that has been well validated for high temperature solid-solid interfaces. Most of the models attempt to explain some of the experimental outliers, such as Pb/diamond and TiN/MgO interfaces [6, 23], but have not been fully tested for a range of experimental data. Part of the problem lies in the fact that very little reliable data is available, especially data that is systematically taken to validate a particular model. To this end, preliminary measurements of TBR are being made on a series of metal on non-metal substrate interfaces using a non-destructive optical technique, transient thermal reflectance (TTR) described in Stevens et al. [5]. Initial testing examines the impact of different substrate preparation and deposition conditions on TBR for Debye-like interfaces for which TBR should be small for clean and abrupt interfaces. Variables considered include sputter etching power and duration, electron beam source clean, and substrate temperature control. The impact of alloying and non-abrupt interfaces on the TBR is examined by fabricating interfaces of both Debye-like and non Debye-like interfaces followed by systematically measuring TBR and altering the interfaces by annealing the samples to increase the diffusion depths at the interfaces. Inelastic electron scattering at the interface has been proposed by Hubermann et al. and Sergeev to decrease TBR at interfaces [19–21]. Two sets of samples are prepared to examine the electron-phonon connection to improved thermal boundary conductance. The first consists of thin Pt and Ag films on Si and sapphire substrates. Pt and Ag electron-phonon coupling factors are 60 and 3.1×1016 W/m3K respectively. Both Pt and Ag have similar Debye temperatures, so electron scattering rates can be examined without much change in acoustic effects. The second electron scattering sample series consist of multiple interfaces fabricated with Ni, Ge, and Si to separate the phonon and electron portions of thermal transport. The experimental data is compared to several of the proposed theories.
APA, Harvard, Vancouver, ISO, and other styles
9

Kazemiabnavi, Saeed, Prashanta Dutta, and Soumik Banerjee. "Ab Initio Modeling of the Electron Transfer Reaction Rate at the Electrode-Electrolyte Interface in Lithium-Air Batteries." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40239.

Full text
Abstract:
Lithium-air batteries are very promising energy storage systems for meeting current demands in electric vehicles. However, the performance of these batteries is highly dependent on the electrochemical stability and physicochemical properties of the electrolyte such as ionic conductivity, vapor pressure, static and optical dielectric constant, and ability to dissolve oxygen and lithium peroxide. Room temperature ionic liquids, which have high electrical conductivity, wide electrochemical stability window and also low vapor pressure, are considered potential electrolytes for these batteries. Moreover, since the physicochemical and electrochemical properties of ionic liquids are dependent on the structure of their constitutive cations and anions, it is possible to tune these properties by choosing from various combinations of cations and anions. One of the important factors on the performance of lithium-air batteries is the local current density. The current density on each electrode can be obtained by calculating the rate constant of the electron transfer reactions at the surface of the electrode. In lithium-air batteries, the oxidation of pure lithium metal into lithium ions happens at the anode. In this study, Marcus theory formulation was used to calculate the rate constant of the electron transfer reaction in the anode side using the respective thermodynamics data. The Nelsen’s four-point method of separating oxidants and reductants was used to evaluate the inner-sphere reorganization energy. In addition, the Conductor-like Screening Model (COSMO) which is an approach to dielectric screening in solvents has been implemented to investigate the effect of solvent on these reaction rates. All calculations were done using Density Functional Theory (DFT) at B3LYP level of theory with a high level 6-311++G** basis set which is a Valence Triple Zeta basis set with polarization and diffuse on all atoms (VTZPD) that gives excellent reproducibility of energies. Using this methodology, the electron transfer rate constant for the oxidation of lithium in the anode side was calculated in an ionic liquids electrolyte. Our results present a novel approach for choosing the most appropriate electrolyte(s) that results in enhanced current densities in these batteries.
APA, Harvard, Vancouver, ISO, and other styles
10

Ni, Chunjian, Zlatan Aksamija, Jayathi Y. Murthy, and Umberto Ravaioli. "Coupled Electro-Thermal Simulation of MOSFETs." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89182.

Full text
Abstract:
Thermal transport in metal-oxide-semiconductor field effect transistors (MOSFETs) due to electron-phonon scattering is simulated using phonon generation rates obtained from an electron Monte Carlo device simulation. The device simulation accounts for a full band description of both electrons and phonons considering 22 types of electron-phonon scattering events. Detailed profiles of phonon emission/absorption rates in the physical and momentum spaces are generated and are used in a MOSFET thermal transport simulation with a recently-developed anisotropic relaxation time model based on the Boltzmann transport equation (BTE). Comparisons with a Fourier conduction model reveal that the anisotropic heat conduction model predicts higher maximum temperatures because it accounts for the bottlenecks in phonon scattering pathways. Heat fluxes leaving the boundaries associated with different phonon polarizations and frequencies are also examined to reveal the main modes responsible for transport. It is found that though the majority of the heat generation is in the optical modes, the heat generated in the acoustic modes is not negligible. The modes primarily responsible for the transport of heat are found to be medium-to-high frequency acoustic phonon modes.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electron transfer rates in proteins"

1

Lewis, N. S. (Electron transfer rates at semiconductor/liquid interfaces). Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7237506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lewis, N. S. [Electron transfer rates at semiconductor/liquid interfaces]. Progress report. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10169230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, Jianshu, Camilla Minichino, and Gregory A. Voth. The Computation of Electron Transfer Rates: The Nonadiabatic Instanton Solution. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tominaga, Keisuke, Gilbert C. Walker, Tai J. Kang, Paul F. Barbara, and Teresa Fonseca. Reaction Rates in the Phenomenological Adiabatic Excited State Electron Transfer Theory. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada235583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Norton, John D., Wendy E. Benson, Henry S. White, Bradford D. Pendley, and Hector D. Abruna. Voltammetric Measurement of Bimolecular Electron-Transfer Rates in Low Ionic Strength Solutions. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada229913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography