Academic literature on the topic 'Electron transfer rates in proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron transfer rates in proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electron transfer rates in proteins"
Broo, Anders, and Sven Larsson. "Calculation of electron transfer rates in proteins." International Journal of Quantum Chemistry 36, S16 (June 19, 2009): 185–98. http://dx.doi.org/10.1002/qua.560360714.
Full textGray, Harry B., and Jay R. Winkler. "Electron tunneling through proteins." Quarterly Reviews of Biophysics 36, no. 3 (August 2003): 341–72. http://dx.doi.org/10.1017/s0033583503003913.
Full textCatarino, Teresa, and David L. Turner. "Thermodynamic Control of Electron Transfer Rates in Multicentre Redox Proteins." ChemBioChem 2, no. 6 (June 1, 2001): 416–24. http://dx.doi.org/10.1002/1439-7633(20010601)2:6<416::aid-cbic416>3.0.co;2-z.
Full textvan Wonderen, Jessica H., Katrin Adamczyk, Xiaojing Wu, Xiuyun Jiang, Samuel E. H. Piper, Christopher R. Hall, Marcus J. Edwards, et al. "Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme." Proceedings of the National Academy of Sciences 118, no. 39 (September 23, 2021): e2107939118. http://dx.doi.org/10.1073/pnas.2107939118.
Full textClarke, Thomas A., Shirley Fairhurst, David J. Lowe, Nicholas J. Watmough, and Robert R. Eady. "Electron transfer and half-reactivity in nitrogenase." Biochemical Society Transactions 39, no. 1 (January 19, 2011): 201–6. http://dx.doi.org/10.1042/bst0390201.
Full textKang, S. A., and B. R. Crane. "Effects of interface mutations on association modes and electron-transfer rates between proteins." Proceedings of the National Academy of Sciences 102, no. 43 (October 14, 2005): 15465–70. http://dx.doi.org/10.1073/pnas.0505176102.
Full textMoser, Christopher C., Christopher C. Page, and P. Leslie Dutton. "Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase." Philosophical Transactions of the Royal Society B: Biological Sciences 361, no. 1472 (July 12, 2006): 1295–305. http://dx.doi.org/10.1098/rstb.2006.1868.
Full textKuznetsov, Vadim Yu, Emek Blair, Patrick J. Farmer, Thomas L. Poulos, Amanda Pifferitti, and Irina F. Sevrioukova. "The Putidaredoxin Reductase-Putidaredoxin Electron Transfer Complex." Journal of Biological Chemistry 280, no. 16 (February 15, 2005): 16135–42. http://dx.doi.org/10.1074/jbc.m500771200.
Full textMa, Zhongxin, and Victor L. Davidson. "Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism." Biochemical Journal 474, no. 15 (July 18, 2017): 2563–72. http://dx.doi.org/10.1042/bcj20170349.
Full textFarooq, Yassar, and Gordon C. K. Roberts. "Kinetics of electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 3A4." Biochemical Journal 432, no. 3 (November 25, 2010): 485–94. http://dx.doi.org/10.1042/bj20100744.
Full textDissertations / Theses on the topic "Electron transfer rates in proteins"
Psalti, Ioanna S. M. "Microelectrodes : single and arrays in electron transfer." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302826.
Full textBeoku-Betts, D. F. "Electron transfer reactions of photosynthetic proteins." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353440.
Full textLangen, Ralf Warshel Arieh Gray Harry B. Richards John. "Electron transfer in proteins : theory and experiment /." Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-03062006-091606.
Full textHart, S. E. "Electron transfer proteins in the cyanobacterium Phormidium laminosum." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603796.
Full textKhan, Anuja. "Solution structure and interactions of electron transfer proteins." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415724.
Full textKyritsis, Panayotis. "Electron-transfer reactivity of some Cu-containing proteins." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336272.
Full textBalabin, Ilya A. "Structural and dynamical control of the reaction rate in protein electron transfer /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9938586.
Full textLópez, Martínez Montserrat. "Electrochemical tunneling microscopy and spectroscopy of electron transfer proteins." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/462883.
Full textLa transferencia de electrones (ET) desempeña papeles esenciales en procesos biológicos cruciales como la respiración celular y la fotosíntesis. Tiene lugar inter‐ e intra‐ proteínas redox y en complejos de proteínas que muestran una eficiencia excepcional y gran capacidad de adaptación ambiental. Aunque los aspectos fundamentales de los procesos de ET se han estudiado en profundidad, se necesitan más métodos experimentales para determinar las vías electrónicas de ET. La comprensión de cómo funciona la ET es importante no sólo por razones fundamentales, sino también por las potenciales aplicaciones tecnológicas de estos sistemas redox nanoscópicos. El objetivo general de esta tesis es investigar la transferencia de electrones en las proteínas redox a nivel de molécula individual. Para ello utilizamos la Microscopía de Túnel Electroquímico (ECSTM) y la Microscopía de Fuerza Atómica Conductor (cAFM), que son excelentes herramientas para estudiar materiales electrónicos y moléculas redox, incluyendo proteínas. En esta tesis, nos centramos en dos sistemas de proteínas redox: azurina, una pequeña proteína portadora de electrones y el fotosistema I, un complejo de proteína oxidorreductasa sensible a la luz. En el estudio de la azurina, estudiamos la conductancia de las proteínas en función de su estado redox y el efecto de parámetros técnicos como las propiedades de contacto entre la azurina y los electrodos metálicos, y la fuerza mecánica aplicada en dicho contacto. Para ello hemos adaptado nuestra configuración de ECSTM para un método de corriente alterna a menudo utilizado en Microscopía de Túnel de ultra alto vacío (UHV‐STM). También trabajamos en el desarrollo de una metodología que combina medidas de fuerza de una sola molécula basadas en AFM con medidas eléctricas, mientras trabajamos en un ambiente controlado electroquímicamente. Estas técnicas pueden conducir a una comprensión más profunda de las vías de ET y de la compleja relación entre la estructura de las proteínas redox y sus propiedades electrónicas. En el estudio del fotosistema I, desarrollamos un método para inmovilizar complejos sobre un sustrato adecuado para la obtención de imágenes y espectroscopía con ECSTM, oro atómicamente plano. En estas condiciones, caracterizamos el fotosistema I mediante imágenes y espectroscopia, y evaluamos sus propiedades de conductancia y sus parámetros de decaimiento de la corriente con la distancia, en una amplia gama de potenciales electroquímicos biológicamente relevantes. La caracterización de las vías de conducción en las proteínas redox a escala nanométrica puede permitir importantes avances en bioquímica y causar un alto impacto en el campo de la nanotecnología.
Hartshorn, R. T. "Kinetic studies of some Fe containing electron-transfer proteins." Thesis, University of Newcastle Upon Tyne, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383993.
Full textYanagisawa, Sachiko. "Active Site Engineering of Copper-Containing Electron Transfer Proteins." Thesis, University of Newcastle upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.484818.
Full textBooks on the topic "Electron transfer rates in proteins"
Burch, Anita M. Electrostatic interaction and the function of electron transfer haem proteins. Norwich: University of East Anglia, 1991.
Find full textStrauss, Mike. Cryo-electron microscopy of membrane proteins; lipid bilayer supports and vacuum-cryo-transfer. Ottawa: National Library of Canada, 2003.
Find full textProtein Electron Transfer. Taylor & Francis Group, 2020.
Find full textS, Bendall D., ed. Protein electron transfer. Oxford, UK: Bios Scientific Publishers, 1996.
Find full textLaunay, Jean-Pierre, and Michel Verdaguer. The moving electron: electrical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0003.
Full textBook chapters on the topic "Electron transfer rates in proteins"
McLendon, G., Q. Zhang, K. Pardue, F. Sherman, A. Corin, R. Ciacarelli, J. Falvo, and D. Holzschu. "Electron Transfer Rates in Mitochondrial Proteins: Regulation and Specificity." In Molecular Electronics, 131–40. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7482-8_15.
Full textWhitford, David, David W. Concar, Yuan Gao, Gary J. Pielak, and Robert J. P. Williams. "Factors Controlling the Rates of Electron Transfer in Proteins." In Trace Elements in Man and Animals 6, 29–34. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0723-5_10.
Full textFlanagan, Scott, Jorge A. González, Joseph E. Bradshaw, Lon J. Wilson, David M. Stanbury, Kenneth J. Haller, and W. Robert Scheidt. "Studies of CNI Copper Coordination Compounds: What Determines the Electron-Transfer Rate of the Blue-Copper Proteins?" In Bioinorganic Chemistry of Copper, 91–97. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-6875-5_7.
Full textWarncke, K., and P. L. Dutton. "Effect of Cofactor Structure on Control of Electron Transfer Rates at the QA Site of the Reaction Center Protein." In Reaction Centers of Photosynthetic Bacteria, 327–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-61297-8_32.
Full textWinkler, Jay R., Harry B. Gray, Tatiana R. Prytkova, Igor V. Kurnikov, and David N. Beratan. "Electron Transfer through Proteins." In Bioelectronics, 15–33. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760376x.ch2.
Full textMathews, F. Scott, Louise Cunane, and Rosemary C. E. Durley. "Flavin Electron Transfer Proteins." In Subcellular Biochemistry, 29–72. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/0-306-46828-x_2.
Full textIchiye, Toshiko. "Electron Transfer Proteins: Overview." In Encyclopedia of Biophysics, 614–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_35.
Full textBeratan, David N., and Spiros S. Skourtis. "Electron Transfer Through Proteins." In Encyclopedia of Biophysics, 625–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_13.
Full textChen, Liang, Ming-Y. Liu, and Jean Le Gall. "Characterization of Electron Transfer Proteins." In Sulfate-Reducing Bacteria, 113–49. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1582-5_5.
Full textUdit, Andrew K., Stephen M. Contakes, and Harry B. Gray. "P450 Electron Transfer Reactions." In The Ubiquitous Roles of Cytochrome P450 Proteins, 157–85. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470028155.ch6.
Full textConference papers on the topic "Electron transfer rates in proteins"
Kawato, Suguru. "Visualization of electron transfer interactions of membrane proteins." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by Halina Podbielska. SPIE, 1991. http://dx.doi.org/10.1117/12.44671.
Full textIchiye, Toshiko. "Computational studies of redox potentials of electron transfer proteins." In SIMULATION AND THEORY OF ELECTROSTATIC INTERACTIONS IN SOLUTION. ASCE, 1999. http://dx.doi.org/10.1063/1.1301541.
Full textSpears, Kenneth G., Steven M. Arrivo, and Xianoning Wen. "Picosecond infrared study of vibrational-dependent electron transfer rates." In OE/LASE '94, edited by Gabor Patonay. SPIE, 1994. http://dx.doi.org/10.1117/12.181344.
Full textLEE, J. H. "Electron-impact vibrational excitation rates in the flow field of aeroassisted orbital transfer vehicles." In 20th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-1035.
Full textZhang, Yu, Jason D. Biggs, Daniel Healion, Konstantin Dorfman, Weijie Hua, and Shaul Mukamel. "Attosecond Stimulated X-ray Raman Probes of Energy and Electron Transfer in Porphyrin Dimers and Proteins." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.09.wed.p3.22.
Full textKim, Namsu, Seunghyup Yoo, William Potscavage, Benoit Domercq, Bernard Kippelen, and Samuel Graham. "Fabrication and Characterization of SiOx/Parylene and SiNx/Parylene Thin Film Encapsulation Layers." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33332.
Full textPop, Eric, Sanjiv Sinha, and Kenneth E. Goodson. "Detailed Phonon Generation Simulations via the Monte Carlo Method." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47312.
Full textStevens, Robert J., Pamela M. Norris, and Arthur W. Lichtenberger. "Experimental Determination of the Relationship Between Thermal Boundary Resistance and Non-Abrupt Interfaces and Electron-Phonon Coupling." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56556.
Full textKazemiabnavi, Saeed, Prashanta Dutta, and Soumik Banerjee. "Ab Initio Modeling of the Electron Transfer Reaction Rate at the Electrode-Electrolyte Interface in Lithium-Air Batteries." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40239.
Full textNi, Chunjian, Zlatan Aksamija, Jayathi Y. Murthy, and Umberto Ravaioli. "Coupled Electro-Thermal Simulation of MOSFETs." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89182.
Full textReports on the topic "Electron transfer rates in proteins"
Lewis, N. S. (Electron transfer rates at semiconductor/liquid interfaces). Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7237506.
Full textLewis, N. S. [Electron transfer rates at semiconductor/liquid interfaces]. Progress report. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10169230.
Full textCao, Jianshu, Camilla Minichino, and Gregory A. Voth. The Computation of Electron Transfer Rates: The Nonadiabatic Instanton Solution. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294523.
Full textTominaga, Keisuke, Gilbert C. Walker, Tai J. Kang, Paul F. Barbara, and Teresa Fonseca. Reaction Rates in the Phenomenological Adiabatic Excited State Electron Transfer Theory. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada235583.
Full textNorton, John D., Wendy E. Benson, Henry S. White, Bradford D. Pendley, and Hector D. Abruna. Voltammetric Measurement of Bimolecular Electron-Transfer Rates in Low Ionic Strength Solutions. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada229913.
Full text