Academic literature on the topic 'Electron microscope'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron microscope.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron microscope"

1

Möller, Lars, Gudrun Holland, and Michael Laue. "Diagnostic Electron Microscopy of Viruses With Low-voltage Electron Microscopes." Journal of Histochemistry & Cytochemistry 68, no. 6 (May 21, 2020): 389–402. http://dx.doi.org/10.1369/0022155420929438.

Full text
Abstract:
Diagnostic electron microscopy is a useful technique for the identification of viruses associated with human, animal, or plant diseases. The size of virus structures requires a high optical resolution (i.e., about 1 nm), which, for a long time, was only provided by transmission electron microscopes operated at 60 kV and above. During the last decade, low-voltage electron microscopy has been improved and potentially provides an alternative to the use of high-voltage electron microscopy for diagnostic electron microscopy of viruses. Therefore, we have compared the imaging capabilities of three low-voltage electron microscopes, a scanning electron microscope equipped with a scanning transmission detector and two low-voltage transmission electron microscopes, operated at 25 kV, with the imaging capabilities of a high-voltage transmission electron microscope using different viruses in samples prepared by negative staining and ultrathin sectioning. All of the microscopes provided sufficient optical resolution for a recognition of the viruses tested. In ultrathin sections, ultrastructural details of virus genesis could be revealed. Speed of imaging was fast enough to allow rapid screening of diagnostic samples at a reasonable throughput. In summary, the results suggest that low-voltage microscopes are a suitable alternative to high-voltage transmission electron microscopes for diagnostic electron microscopy of viruses.
APA, Harvard, Vancouver, ISO, and other styles
2

Gauvin, Raynald, and Steve Yue. "The Observation of NBC Precipitates In Steels In The Nanometer Range Using A Field Emission Gun Scanning Electron Microscope." Microscopy and Microanalysis 3, S2 (August 1997): 1243–44. http://dx.doi.org/10.1017/s1431927600013106.

Full text
Abstract:
The observation of microstructural features smaller than 300 nm is generally performed using Transmission Electron Microscopy (TEM) because conventional Scanning Electron Microscopes (SEM) do not have the resolution to image such small phases. Since the early 1990’s, a new generation of microscopes is now available on the market. These are the Field Emission Gun Scanning Electron Microscope with a virtual secondary electron detector. The field emission gun gives a higher brightness than those obtained using conventional electron filaments allowing enough electrons to be collected to operate the microscope with incident electron energy, E0, below 5 keV with probe diameter smaller than 5 nm. At 1 keV, the electron range is 60 nm in aluminum and 10 nm in iron (computed using the CASINO program). Since the electron beam diameter is smaller than 5 nm at 1 keV, the resolution of these microscopes becomes closer to that of TEM.
APA, Harvard, Vancouver, ISO, and other styles
3

Ross, Frances M. "Materials Science in the Electron Microscope." MRS Bulletin 19, no. 6 (June 1994): 17–21. http://dx.doi.org/10.1557/s0883769400036691.

Full text
Abstract:
This issue of the MRS Bulletin aims to highlight the innovative and exciting materials science research now being done using in situ electron microscopy. Techniques which combine real-time image acquisition with high spatial resolution have contributed to our understanding of a remarkably diverse range of physical phenomena. The articles in this issue present recent advances in materials science which have been made using the techniques of transmission electron microscopy (TEM), including holography, scanning electron microscopy (SEM), low-energy electron microscopy (LEEM), and high-voltage electron microscopy (HVEM).The idea of carrying out dynamic experiments involving real-time observation of microscopic phenomena has always had an attraction for materials scientists. Ever since the first static images were obtained in the electron microscope, materials scientists have been interested in observing processes in real time: we feel that we obtain a true understanding of a microscopic phenomenon if we can actually watch it taking place. The idea behind “materials science in the electron microscope” is therefore to use the electron microscope—with its unique ability to image subtle changes in a material at or near the atomic level—as a laboratory in which a remarkable variety of experiments can be carried out. In this issue you will read about dynamic experiments in areas such as phase transformations, thin-film growth, and electromigration, which make use of innovative designs for the specimen, the specimen holder, or the microscope itself. These articles speak for themselves in demonstrating the power of real-time analysis in the quantitative exploration of reaction mechanisms.The first transmission electron microscopes operated at low accelerating voltages, up to about 100 kV. This placed a severe limitation on the thickness of foils that could be examined: Heavy elements, for example, had to be made into foils thinner than 0.1 μm. It was felt that any phenomenon whose “mean free path” was comparable to the foil thickness would be significantly affected by the foil surfaces, and therefore would be unsuitable for study in situ. However, technology quickly generated ever higher accelerating voltages, culminating in the giant 3 MeV electron microscopes. At these voltages, electrons can penetrate materials as thick as 6–9 μm for light elements such as Si and Al, and 1 μm for very heavy ones such as Au and U.
APA, Harvard, Vancouver, ISO, and other styles
4

Kordesch, Martin E. "Introduction to emission electron microscopy for the in situ study of surfaces." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 506–7. http://dx.doi.org/10.1017/s0424820100148368.

Full text
Abstract:
The Photoelectron Emission Microscope (PEEM) and Low Energy Electron Microscope (LEEM) are parallel-imaging electron microscopes with highly surface-sensitive image contrast mechanisms. In PEEM, the electron yield at the illumination wavelength determines image contrast, in LEEM, the intensity of low energy (< 100 eV) electrons back-diffracted from the surface, as well as interference effects, are responsible for image contrast. Mirror Electron Microscopy is also possible with the LEEM apparatus. In MEM, no electron penetration into the solid occurs, and an image of surface electronic potentials is obtained.While the emission microscope techniques named above are not high resolution methods, the unique contrast mechanisms, the ability to use thick single crystal samples, their compatibility with uhv surface science methods and new material-growth methods, coupled with real-time imaging capability, make them very useful.These microscopes do not depend on scanning probes, and some are compatible with pressures up to 10-3 Torr and specimen temperatures above 1300K.
APA, Harvard, Vancouver, ISO, and other styles
5

O'Keefe, Michael A., John H. Turner, John A. Musante, Crispin J. D. Hetherington, A. G. Cullis, Bridget Carragher, Ron Jenkins, et al. "Laboratory Design for High-Performance Electron Microscopy." Microscopy Today 12, no. 3 (May 2004): 8–17. http://dx.doi.org/10.1017/s1551929500052093.

Full text
Abstract:
Since publication of the classic text on the electron microscope laboratory by Anderson, the proliferation of microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions iinprovel transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.
APA, Harvard, Vancouver, ISO, and other styles
6

KONNO, Mitsuru, Toshie YAGUCHI, and Takahito HASHIMOTO. "Transmission Electron Microscop and Scanning Transmission Electron Microscope." Journal of the Japan Society of Colour Material 79, no. 4 (2006): 147–51. http://dx.doi.org/10.4011/shikizai1937.79.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Watson, John H. L. "In the beginning there were electrons." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1068–69. http://dx.doi.org/10.1017/s0424820100129978.

Full text
Abstract:
Electrons have undoubtedly been around since the beginning of time, but not until the first quarter of the twentieth century, following the work of deBroglie on the dual nature of the electron, Busch's hypothesis that an electron beam could be focussed by an axially symmetric magnetic field, and Davisson & Germer's and Thomson's independent demonstrations of electron diffraction, did microscopists take seriously the possibility of a microscope utilizing electrons and magnetic fields. The first attempts at building electron microscopes were made in Europe but the resolution in the often blurred and distorted electron images was not much better than that achieved by light microscopy, so that a general opposition to funding the development of electron microscopes began to emerge. In 1935 E.F. Burton, Chairman of the Department of Physics at the University of Toronto began a program of electron optical research with his graduate student Cecil E. Hall, building emission microscopes.
APA, Harvard, Vancouver, ISO, and other styles
8

Ai, R. "A Microscope-Compatible Auger Electron Spectrometer." Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 992–93. http://dx.doi.org/10.1017/s0424820100089275.

Full text
Abstract:
With the recent development of ultra-high vacuum high resolution electron microscopes (UHV-HREM), electron microscopes have become valuable tools for surface studies. Techniques such as surface profile image, surface sensitive plane view, and reflection electron microscopy have been developed to take full advantage of the atomic resolution of HREM to study surface structures. However a complete surface study requires information on both the surface structure and surface chemistry. Therefore in order to turn an electron microscope into a real surface analytical tool, the challenge is to develop a microscopecompatible, surface sensitive tool for in-situ surface chemical analysis.
APA, Harvard, Vancouver, ISO, and other styles
9

Kersker, M., C. Nielsen, H. Otsuji, T. Miyokawa, and S. Nakagawa. "The JSM-890 ultra high resolution Scanning Electron Microscope." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 88–89. http://dx.doi.org/10.1017/s0424820100152410.

Full text
Abstract:
Historically, ultra high spatial resolution electron microscopy has belonged to the transmission electron microscope. Today, however, ultra high resolution scanning electron microscopes are beginning to challenge the transmission microscope for the highest resolution.To accomplish high resolution surface imaging, not only is high resolution required. It is also necessary that the integrity of the specimen be preserved, i.e., that morphological changes to the specimen during observation are prevented. The two major artifacts introduced during observation are contamination and beam damage, both created by the small, high current-density probes necessary for high signal generation in the scanning instrument. The JSM-890 Ultra High Resolution Scanning Microscope provides the highest resolution probe attainable in a dedicated scanning electron microscope and its design also accounts for the problematical artifacts described above.Extensive experience with scanning transmission electron microscopes lead to the design considerations of the ultra high resolution JSM- 890.
APA, Harvard, Vancouver, ISO, and other styles
10

Schatten, G., J. Pawley, and H. Ris. "Integrated microscopy resource for biomedical research at the university of wisconsin at madison." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 594–97. http://dx.doi.org/10.1017/s0424820100127451.

Full text
Abstract:
The High Voltage Electron Microscopy Laboratory [HVEM] at the University of Wisconsin-Madison, a National Institutes of Health Biomedical Research Technology Resource, has recently been renamed the Integrated Microscopy Resource for Biomedical Research [IMR]. This change is designed to highlight both our increasing abilities to provide sophisticated microscopes for biomedical investigators, and the expansion of our mission beyond furnishing access to a million-volt transmission electron microscope. This abstract will describe the current status of the IMR, some preliminary results, our upcoming plans, and the current procedures for applying for microscope time.The IMR has five principal facilities: 1.High Voltage Electron Microscopy2.Computer-Based Motion Analysis3.Low Voltage High-Resolution Scanning Electron Microscopy4.Tandem Scanning Reflected Light Microscopy5.Computer-Enhanced Video MicroscopyThe IMR houses an AEI-EM7 one million-volt transmission electron microscope.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electron microscope"

1

Morgan, Scott Warwick. "Gaseous secondary electron detection and cascade amplification in the environmental scanning electron microscope /." Electronic version, 2005. http://adt.lib.uts.edu.au/public/adt-NTSM20060511.115302/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, Geoffrey Clive. "Virtual Scanning Electron Microscope : a web-based teaching and training solution for the Scanning Electron Microscope." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duckett, Gordon Richard. "Electron microscope studies of organic pigments." Thesis, University of Glasgow, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skoupý, Radim. "Quantitative Imaging in Scanning Electron Microscope." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-432610.

Full text
Abstract:
Tato práce se zabývá možnostmi kvantitativního zobrazování ve skenovacím (transmisním) elektronovém mikroskopu (S|T|EM) společně s jejich korelativní aplikací. Práce začíná popisem metody kvantitativního STEM (qSTEM), kde lze stanovenou lokální tloušťku vzorku dát do spojitosti s ozářenou dávkou, a vytvořit tak studii úbytku hmoty. Tato metoda byla použita při studiu ultratenkých řezů zalévací epoxidové pryskyřice za různých podmínek (stáří, teplota, kontrastování, čištění pomocí plazmy, pokrytí uhlíkem, proud ve svazku). V rámci této části jsou diskutovány a demonstrovány možnosti kalibračního procesu detektoru, nezbytné pozadí Monte Carlo simulací elektronového rozptylu a dosažitelná přesnost metody. Metoda je pak rozšířena pro použití detektoru zpětně odražených elektronů (BSE), kde byla postulována, vyvinuta a testována nová kalibrační technika založená na odrazu primárního svazku na elektronovém zrcadle. Testovací vzorky byly různě tenké vrstvy v tloušťkách mezi 1 až 25 nm. Použití detektoru BSE přináší možnost měřit tloušťku nejen elektronově průhledných vzorků jako v případě qSTEM, ale také tenkých vrstev na substrátech - qBSE. Obě výše uvedené metody (qSTEM a qBSE) jsou založeny na intenzitě zaznamenaného obrazu, a to přináší komplikaci, protože vyžadují správnou kalibraci detektoru, kde jen malý posun úrovně základního signálu způsobí významnou změnu výsledků. Tato nedostatečnost byla překonána v případě qSTEM použitím nejpravděpodobnějšího úhlu rozptylu (zachyceného pixelovaným STEM detektorem), namísto integrální intenzity obrazu zachycené prstencovým segmentem detektoru STEM. Výhodou této metody je její použitelnost i na data, která nebyla předem zamýšlena pro využití qSTEM, protože pro aplikaci metody nejsou potřeba žádné zvláštní předchozí kroky. Nevýhodou je omezený rozsah detekovatelných tlouštěk vzorku způsobený absencí píku v závislosti signálu na úhlu rozptylu. Obecně platí, že oblast s malou tloušťkou je neměřitelná stejně tak jako tloušťka příliš silná (použitelný rozsah je pro latex 185 - 1 000 nm; rozsah je daný geometrií detekce a velikostí pixelů). Navíc jsou v práci prezentovány korelativní aplikace konvenčních a komerčně dostupných kvantitativních technik katodoluminiscence (CL) a rentgenové energiově disperzní spektroskopie (EDX) spolu s vysokorozlišovacími obrazy vytvořenými pomocí sekundárních a prošlých elektronů.
APA, Harvard, Vancouver, ISO, and other styles
5

Löfgren, André. "Detection of electron vortex beams : Using a scanning transmission electron microscope." Thesis, Uppsala universitet, Materialteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255330.

Full text
Abstract:
Electron vortex beams (EVBs) are electron beams with a doughnut-like intensity profile, carrying orbital angular momentum due to their helical phase shift distribution. When employed in an electron microscope, they are expected to be efficient for the detection of magnetic signals. In this report I have investigated high angle annular dark field (HAADF) images obtained using EVBs. This was done for 300 K and 5K. For 5 K,  I also compared HAADF images from an ordinary electron beam with HAADF images from an electron vortex beam. What was found was that EVBs produced doughnuts around the atomic columns. However, when taking the size of the electron source into account, this phenomena could no longer  be observed. When comparing images from EVBs with images from ordinary electron beams, I found that the intensity of scattered electrons around atomic columns was broader for EVBs. This was persistent even after taking the source size into account.
Elektronvirvelstrålar (EVS) är elektronstrålar med en munk-liknande intensitetsprofil. Dessa bär på rörelsemängdsmoment på grund av sin fasdistribution. När de används i ett elektronmikroskop förväntas de vara effektiva för detektering av magnetiska signaler. I denna uppsats har jag undersökt high angle annular dark field (HAADF) bilder som erhållits med hjälp av EVS. Detta gjordes för 300 K och 5K. För 5 K, jämförde jag även HAADF bilder från en vanlig elektronstråle med HAADF bilder från en elektronvirvelstråle. Vad jag fann var att EVS producerade en munkformad intensitetsfördelning runt atomerna. Men när hänsyn till storleken på elektronkällan togs i beaktande kunde inte detta fenomen observeras längre. När bilder från EVS jämfördes med bilder från vanliga elektronstrålar, fann jag att intensiteten av spridda elektroner runt atomkolumnerna var bredare för EVS. Detta kunde observeras även efter att jag tagit hänsyn till elektronkällans storlek.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Li. "Fabrication of electron sources for a miniature scanning electron microscope." Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johnson, Lars. "Nanoindentation in situ a Transmission Electron Microscope." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8333.

Full text
Abstract:

The technique of Nanoindentation in situ Transmission Electron Microscope has been implemented on a Philips CM20. Indentations have been performed on Si and Sapphire (α-Al2O3) cut from wafers; Cr/Sc multilayers and Ti3SiC2 thin films. Different sample geometries and preparation methods have been evaluated. Both conventional ion and Focused Ion Beam milling were used, with different ways of protecting the sample during milling. Observations were made of bending and fracture of samples, dislocation nucleation and dislocation movement. Basal slip was observed upon unloading in Sapphire. Dislocation movement constricted along the basal planes were observed in Ti3SiC2. Post indentation electron microscopy revealed kink formation in Ti3SiC2 and layer rotation and slip across layers in Cr/Sc multilayer stacks. Limitations of the technique are presented and discussed.

APA, Harvard, Vancouver, ISO, and other styles
8

Lyster, Martin. "Electron microscope studies of cadmium mercury telluride." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dellith, Meike. "Electron microscope investigations of defects in DRAMs." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Christensen, K. N. "Electron microscope studies of oxygen implanted silicon." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292615.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electron microscope"

1

Thomas, Mulvey, and Sheppard C. J. R, eds. Advances inoptical and electron microscopy. London: Academic, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Champness, P. E. Electron diffraction in the transmission electron microscope. Oxford: BIOS Scientific Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hayat, M. A. Basic techniques for transmission electron microscopy. Orlando: Academic Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reimer, Ludwig. Scanning electron microscopy: Physics of image formation and microanalysis. 2nd ed. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Goodhew Peter, ed. Thin foil preparation for electron microscopy. Amsterdam: Elsevier, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomb, Howard. Microaliens: Dazzling journeys with an electron microscope. New York: Farrar, Straus and Giroux, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Egerton, Ray F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-6887-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-5099-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9583-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Egerton, R. F. Electron energy-loss spectroscopy in the electron microscope. 2nd ed. New York: Plenum Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electron microscope"

1

Gooch, Jan W. "Electron Microscope." In Encyclopedic Dictionary of Polymers, 889. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weik, Martin H. "electron microscope." In Computer Science and Communications Dictionary, 505. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_6014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schmitt, Robert. "Scanning Electron Microscope." In CIRP Encyclopedia of Production Engineering, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-35950-7_6595-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Staufer, U., L. P. Muray, D. P. Kern, and T. H. P. Chang. "Miniaturized Electron Microscope." In Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, 101–10. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1729-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dijkstra, Jeanne, and Cees P. de Jager. "Electron Microscope Serology." In Practical Plant Virology, 380–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72030-7_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmitt, Robert. "Scanning Electron Microscope." In CIRP Encyclopedia of Production Engineering, 1501–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_6595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gooch, Jan W. "Scanning Electron Microscope." In Encyclopedic Dictionary of Polymers, 647. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitome, Masanori. "Transmission Electron Microscope." In Compendium of Surface and Interface Analysis, 775–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kinoshita, Toyohiko. "Photoemission Electron Microscope." In Compendium of Surface and Interface Analysis, 465–69. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schmitt, Robert. "Scanning Electron Microscope." In CIRP Encyclopedia of Production Engineering, 1085–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-20617-7_6595.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron microscope"

1

Yatagai, Toyohiko, Katsuyuki Ohmura, and Shigeo Iwasaki. "Phase sensitive analysis of electron holograms." In Holography. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/holography.1986.wb3.

Full text
Abstract:
Holography has been used in electron microscopy since the field emission electron microscope was developed.[1] Tonomura et al described the interference microscope based on the electron holography to evaluate microscopic distribution of the magnetic field. [2] To gain high sensitivity the use of the optical phase multiplication technique was discussed so as to obtain 10 time magnification of the reconstructed phase. [3] Recently Takeda et al applied the FFT method of the subfringe analysis for electron holographic fringes.[4] They mentioned phase variations much smaller than 2 π could be detected without recource to optical reconstruction or optical interferometric measurements.
APA, Harvard, Vancouver, ISO, and other styles
2

Larionov, Yu V., and Yu A. Novikov. "Virtual scanning electron microscope." In International Conference on Micro-and Nano-Electronics 2012, edited by Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2016977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Postek, Michael T. "Scanning electron microscope metrology." In Critical Review Collection. SPIE, 1994. http://dx.doi.org/10.1117/12.187461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mačák, Martin. "Electrohydrodynamic Model Of Electron Microscope." In STUDENT EEICT 2021. Brno: Fakulta elektrotechniky a komunikacnich technologii VUT v Brne, 2021. http://dx.doi.org/10.13164/eeict.2021.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krysztof, Michał, Marcin Białas, and Tomasz Grzebyk. "Imaging Using Mems Electron Microscope." In 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2023. http://dx.doi.org/10.1109/ivnc57695.2023.10188948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krysztof, Michal, Tomasz Grzebyk, Piotr Szyszka, Karolina Laszczyk, Anna Gorccka-Drzazza, and Jan Dziuban. "Electron Transparent Anode for MEMS Transmission Electron Microscope." In 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). IEEE, 2018. http://dx.doi.org/10.1109/coe.2018.8435173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simonaitis, John W., Maurice A. R. Krielaart, Stewart A. Koppell, Benjamin J. Slayton, Joseph Alongi, William P. Putnam, Karl K. Berggren, and Phillip D. Keathley. "Electron-Photon Interactions in a Scanning Electron Microscope." In 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2023. http://dx.doi.org/10.1109/ivnc57695.2023.10188999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Demarest, James, Chris Deeb, Thomas Murray, and Hong-Ying Zhai. "Energy-Dispersive X-ray Spectrometry Performance on Multiple Transmission Electron Microscope Platforms." In ISTFA 2010. ASM International, 2010. http://dx.doi.org/10.31399/asm.cp.istfa2010p0301.

Full text
Abstract:
Abstract Energy-dispersive X-ray spectrometry (EDS) is a key analytical tool aiding root cause determination in the failure analysis (FA) process. This paper looks at a number of analytical TEM microscopes currently in use in various facilities: microscope A, a STEM operated at 200kV; microscope B, a 300kV TEM; and microscopes C and D, both 200kV TEMs. EDS counts per unit time from multiple microscope platforms were examined. Microscope D demonstrated two orders of magnitude higher counts per unit time than the other three microscopes. Microscope D represents the state-of-the-art EDS analytical TEM configuration and has achieved this through a novel windowless EDS configuration which significantly increases the detector area (by about a factor of three) that receives X-rays generated from the sample.
APA, Harvard, Vancouver, ISO, and other styles
9

Ivanov, S. N., S. N. Shilimanov, and Sergei I. Shkuratov. "Design of field electron emission spectrometer, field ion microscope, and field electron emission microscope combination." In XVI International Symposium on Discharges and Electrical Insulation in Vacuum, edited by Gennady A. Mesyats. SPIE, 1994. http://dx.doi.org/10.1117/12.174564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aksenov, Y. Y., E. G. I. Reinders, Jan Greve, C. van Blitterswijk, J. de Bruijn, and Cees Otto. "Integration of a confocal Raman microscope in an electron microscope." In EOS/SPIE European Biomedical Optics Week, edited by Karsten Koenig, Hans J. Tanke, and Herbert Schneckenburger. SPIE, 2000. http://dx.doi.org/10.1117/12.410628.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electron microscope"

1

Crewe, A. V., and O. H. Kapp. Electron microscope studies. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/6000131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crewe, A. V., and O. H. Kapp. Electron microscope studies. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/7015892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kenik, E. (Intermediate voltage electron microscope). Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5356814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Z. F. Purchase of Transmission Electron Microscope. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada392051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hadjipansyis, George C. DURIP 00 Scanning Electron Microscope (SEM). Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada388472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stirling, J. A. R., and G. J. Pringle. Tools of investigation: the electron microprobe and scanning electron microscope. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/210959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marder, A., K. Barmak, and D. Williams. Environmental scanning electron microscope (ESEM). Final report. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/676882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Collins, Kimberlee Chiyoko, Albert Alec Talin, David W. Chandler, and Joseph R. Michael. Development of Scanning Ultrafast Electron Microscope Capability. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1331925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fraser, Hamish L. Request for an Analytical Transmission Electron Microscope. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada189111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruggiero, S. T. Single-electron tunneling. [Microwave scanning tunneling microscope]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6854553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography